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Abstract 
 
In this paper, the robust control problem of general nonlinear multi-input multi-output (MIMO) systems is 
proposed. The robustness against unknown disturbances is considered. Two algorithms based on the Sliding 
Mode Control (SMC) for nonlinear coupled Multi-Input Multi-Output (MIMO) systems are proposed: the 
first order sliding mode control (FOSMC) with saturation (sat) function and the FOSMC with sat combined 
with integrator controller. Those algorithms were simulated and implemented on the three tanks test-bed 
system and the experimental results confirm the effectiveness of our control design. 
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1. Introduction 
 
The SMC is a widely used approach to design robust 
control law of uncertain systems. The advantage of such 
approach is its robustness to parameter variations and 
disturbances [1,2]. But the major inconvenience of clas-
sic sliding mode control is the existence of chattering 
phenomenon [3], which may induce many undesirable 
oscillations in control signal. Some attempts on chatter-
ing [4] canceling have considered continuous functions 
instead of sign one. However the provided results lead to 
a large steady state error which can be reduced using the 
integral action [5-7]. Moreover even though there exist 
many works dealing with sliding mode control in the 
case of Single Input Single Output (SISO) systems [8], 
there is lock of results when the addressed process is 
Multi-Input Multi-Output (MIMO) one. This shortage is 
due to output coupling problem. 

In this paper, we propose a first order sliding mode 
control using Sat function and this control combined 
with an integrator corrector. Experimental results, oper-
ated on a three tank system, are presented to illustrate the 
effectiveness of the proposed controllers. 

The paper is organized as follows. In Section 2 we re-
mind the classical sliding mode control of coupled MIMO 

nonlinear systems and its robustness to parameter uncer-
tainties and external disturbances. Section three is de-
voted to SMC with sat function and integral action. The 
model of the coupled three tanks system and its control is 
presented in Section 4. The simulation and experimental 
results are presented in Sections 5 and 6. Finally Section 
7 concludes the paper. 
 
2. Sliding Mode Control 
 
Consider a MIMO non linear system with p inputs and m 
outputs defined by the following state representation: 

   
 

, ,

,                 

x f x t g x t u

y c x t

  
 


           (1) 

where x is the n-dimensional state vector and y is the 
m-dimensional output vector. 

 1

T

nx x x  and  is the 
m-dimensional vector, the coefficients of which are 
nonlinear functions ci(x,t), f(x,t) is the n-dimensional 
vector, the coefficients of which are nonlinear functions 
fi(x,t), g(x,t) is a 

 1

T

my y y  

 pn matrix with coefficients are the 
nonlinear functions gij(x,t) and u is the p-dimensional 
control vector of coefficients ui. 
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1

T

pu u u                (2) 

 
2.1. Classical Sliding Mode Control 
 
Consider the sliding surface [9] defined by: 

1

T

ps s s                  (3) 

where: 

   
1

0

,  for 1, ,
ir

i k
i k i

k

s e i




   p          (4) 

with: 
ri is the relative degree of the error ei i

 and for 
k = 1,  , ri – 2, 

 
1 1i

r  
 i
k are constants chosen so that  

   
10 1 i

i
rp 



 k

 i i  1ir p is a Hurwitz polynomial one  

and is the kth  order derivative of the error ei. ie

,   1, , 1.d
i i i ie y y i r              (5) 

where d
iy  is the desired output. The derivative of si is: 

 
1

0 1

d e

d

ir n
ii i

k
k j j

s ei
jx

t t x




 

  
    
  


          (6) 

Replacing xj by its expression in (1) and omitting the 
index (x,t), relation (6) becomes. 

 
1

0 1 1 1

d

d

ir pn n
ii i i i

k j
k j l jj j

s e e e
jl lf g u

t t x x




   

   
       
     (7) 

which can be written as: 

1 1
1

d

d

p
i

i i iP P i il l
l

s
h b u b u h b u
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           (8) 

with: 
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Then we can write the derivative of the surface vector as 

s h bu                   (9) 

with: 

1 11

1

 and  
P1

P P P

h b

h b

h b

   
       
      


  

 P

b

b

  

Theorem 1.  

The control law for the first order sliding mode control 
(FOSMC) of the system 1 so that the sliding surfaces go 
to zero in a finite time is defined by: 

 

 

1 1
1

P P

k sign s

u b h

k sign s



  
      
    

          (10) 

with ki a positive constant and b an invertible matrix. 
Proof. 

Consider the following Lyapunov function: 

 2
1

1 1

2 2
T 2

PV s s s s            (11) 

the derivative of V is: 

1 1
T

P PV s s s s s s                 (12) 

Using (9) we have: 

 TV s h bu                (13) 

Replacing u by its expression (10) in Equation (9), we 
obtain: 

 

 

1 1

P P

k sign s

s

k sign s

 
    
  

                (14) 

then 

 

 
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1 1

1 1

0
p P

T
i i i i i

i i
P P

k sign s

V s k sign s s k s

k sign s
 

 
       
  

     

(15) 
Since ki (i = 1, , p) are positive we have V < 0. 
Then, the Lyapunov function V tends to 0 and there-

fore all surfaces si tend to zero, hence the existence of the 
first order sliding mode. 

To prove the finite time convergence of our control we 
take the Equation (14), we have  i i i is k sign s s  then 

i i i i i is s k s s    , with 0 ik  ,which is the   
reachability condition [10], then the finite time conver-
gence. 

2.2. Robustness to Parametric Uncertainties and 
External Disturbances 

Consider an uncertain MIMO nonlinear system: 

        ˆ ˆ, , , ,x f x t f x t g x t g x t u d        (16) 

where nx is the state vector, pu is the input-
control bounded as maxi iu u  for i = 1 to p, the vector 
field     ˆ, , ,f x t f x t f x t    is continuous and 
smooth, where  ˆ ,f x t is the nominal part and  ,f x t  
is the uncertain part bounded by a known function. 

nd D 
no

minal pa

 represents the disturbances. The dynamic 
g(t,x
the no

) is t exactly known an
rt 

d it is written as the sum of 
 ˆ ,g x t and the uncertain part  ,g x t . 
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with: 
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Then the derivative of the sliding surface takes the 
following form: 
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then: 



 ˆ ˆ δs h h b b u        

 
 

 

1̂ ,
ˆ ,

ˆ ,p

h x t

h x t

h x t

 
 

  
 
  

 ,  
 

 

1 ,

,

,p

h x t

h x t

h x t

 
    
  

 ,
1δ

δ

δ p

 
   
  

  

 
   

   

11 1

1

ˆ ˆ, ,
ˆ ,

ˆ ˆ, ,

p

p pp

b x t b x t

b x t

b x t b x t

 
 

  
 
  


  



 

and


Theorem 2. 
Consider the uncertain system defined by Equation 

trol law: 
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1
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Using the control expression in (18) we ve: ha
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The derivative of the surface si is then written: 

  δi i i i ik k is h k sign s b u
1

p
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and the derivative of the Lyapunov function given by (12) 
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3. SMC with Sat 
 

t of classic sliding mode control is 
e existence of chattering phenomenon. To avoid this 
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problem, we approximate the «sign» function by con-
tinuous functions such as sat function [9] defined by: 
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order to solve a steady-state error problem, an inte-
gral sliding manifold was proposed in [10]
op

 

  (38) 

with 

In 
. This devel-

ment is introduced and justified only by tests on spe-
cific systems. Our idea consists on reconstituting a con-
trol law to eliminate steady-state error created by distur-
bance. To do so we added an integral action when the 
trajectories of states approach their references [11-14]. 
Proposition. 

Consider the uncertain system defined by Equation (1). 
aw FOSMC with integrator to eliminateThe control l

steady-state error is defined by: 
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The coefficients Kij are the integrator constant defined 
by: 

j

j

positive constant  if  >    d
i iy y

0                        if    
ij d

i i

K
y y




 

 
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with 

 

j a positive constant. 
 

cription and Modeling 

tem, which 
ts on three 

1  

4. Validation 
 
4.1. System Des
 
The considered process is a three tank sys

ave two inputs and three outputs. It consish
cylindrical tanks with identical Section a supplied with 
distilled water, which are serially interconnected by two 
cylindrical pipes of identical Sections Sn. The pipes of 
communication between the tanks T1 and T2 are equipped 
with manually adjustable valves; the flow rates of the 
connection pipes can be controlled using ball valves az1 
and az2. The plant has one outlet pipe located at the bot-
tom of tank T3. There are three other pipes each installed 
at the bottom of each tank; they are provided with a di-
rect connection (outflow rate) to the reservoir with ball 
valves bz1, bz2 and bz3, respectively, it can only be ma-
nipulated manually. The pumps 1 and 2 are supplied by 
water from the reservoir with flow rates Q1(t) and Q2(t), 
respectively. The necessary level measurements h (t),
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oming flow and the outgoing 
flo

h2(t) and h3(t) are carried out by the piezo-resistive dif-
ferential pressure sensors. 

The state Equations are obtained by writing that the 
variation of the water volume in a tank is equal to the 
difference between the inc

1
2                1,  2,  3,  4j zj LB b S g j

A
   

While taking B1 = B2 = B3 = 0, the three Equations of 
the system become (see Equation (44)): 

At equilibrium, for constant water level set point, the 
level derivatives must be zero. 

ws, that means, the water of the tanks 1 and 2 can 
flow toward the tank 3. 

Then, the system can be represented by the following 
Equations: 
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  , 1, 2,3in out out

i i ij ijt Q t Q t Q t i j

1 2 3 0h h h                    (45) 

Therefore, using (45) in the steady state, the
algebraic relationship holds. 

 following 

h
A

     (40) 

 

   

1
1 1 3 1 3 =0   

Q
c sign h h h h   


1 1 3 1 3 3 3 2 3 2 0

a

c sign h h h h c sign h h h h





where s the flow through pump i (i = 1; 2) and 
esents the flow rates of water betwee

, and can be expressed 

 in
iQ t i

   repr
 and j ( ,

e law o

1out
ijQ t

tanks i
n the 

     

 

(46) 
For the coupled tanks system, the fluid flow Q1 into 

tank 1, cannot be negative because the pump can 
dr

From (47) we have

1, 2,3   )i j i j  
using th f Torricelli[15]. 
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The parameters of three tank system are defi
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he system can be considered as a multi input 
m
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Then (h1-h3) ≥ 0 and (h3-h2) ≥ 0. Therefore if we as-
sume. 

  

Table 1. 
The controlled signals are the water levels (h2, h3) of

nks 2 and tank 3. These levels are controlled by two 
pumps. T

 1 1 2 2 3 3 1 1 2 2,  ,  ,   and  x h x h x h u Q u Q       (48) 

We hulti output system (MIMO) where the input are inflow 
rates Q1, Q2 and the output are liquid levels h2, h3. Then 
the three tank systems can be modeled by the following 
three differential Equations as shown in (43): 
where the parameters ci, i = 1, 3 and Bj, j = 1, 2, 3, 4 are 
defined by: 
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which can be written in the same form of (1) as: 
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4.2. Sliding Mode Control of the Three Tank 
System 

 
The objective is to regulate the water levels of tank 2 and 

tank 3 by using both laws  defined in Section 3. 
The vector of the sliding surface is given by: 
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 Control SMC with integrator vector is defined by: 
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   (55) 

with:  

The

 
 

1 11 11

2 2 2 2

( )

( )

d

d

y y dtk sign s
u b l K

k sign s y y dt


               




11 12

21 22

K K
K

K K

 
  
 

 

5. Simulation Results 

The controllers designed in Section 3 are simulated using 
the MATLAB software. The parameters of the three tank 
system Figure 1 are given in Table 1.The para eters for 
the both controls for three tanks are

m
0.6  , k1= 0.699, 

k2 = 0.53, K11 = 10−4, K12 = 18.10−3, K21 = 7.10−4 and K22 

= −4

can notice that in the absence of chattering in controls u1 
and u2 both controls proposed and both output h2

follows their desired references h2d and h3d. 
ver, when we inject a disturbance at t = 1500 s in 
low pipes of tank 2 and tank 3, the tow control-

lers ensure the convergence of the water levels h3 and h2 
to their desired references h2d and 3d. We see in the 
Figure 3 when we add integral action, the steady state 

This is the advantage of the 
-variables coupled system 

case. 

10 . 
Simulation results are shown in Figures 2 to 4. We 

 and h3 

Howe
the outf

h

error is almost eliminated. 
controls proposed in multi
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Figure 1. Three tank system. 
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Figure 2. Liquid level in tank 2. 
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Figure 3. Liquid level with zoom in tank 2. 
 
6. Experim
 
The proposed control algo ithms were tested on the 
physical laboratory plant (Figure 8) consisting of inter-

connected three tank system. The objective is to control 
the liquid level of tanks 2 and 3. The experimental 
schemes have been done under Matlab/Simulink, using 
Real-Time Interface, and run on the DS1102 DSPACE 
system, which is equipped by a power PC processor. The 
control algorithm is implemented on DSP (TMS 
320C31). 
 

ental Results 
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Figure 4. Liquid level in tank 3. 

 
Table 1. Numerical values for physical parameters of the 
three tank system. 

Symbol Value Meaning 

a 0.0154 m2 tank section 

Sn 2.5 10−5 m2 cross-section of valve 

aZi 0 1zia   flow correction term (i = 1, 2, 3) 

zib  0 1zib   leakage flow correction term 
(i = 1, 2, 3) 

g 9.81 m/s2 gravity constant m/s2 

hmax 0.6 m 
maximum water level in each tank 

(i = 1, 2, 3) 

Qimax 1.17 10−4 m3/s
maximum inflow through pump i  

(i = 1, 2) 
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Figure 5. Liquid level with z  oom in tank 3.
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Figure 6. Input signals of control Q1. 
 

 

Figure 7. Input signals of control Q .2  

 

Figure 8. Real system. The parameters for both controls for 
three tanks are:   , 

.10−5and 
k1 = 0.46, k2 = 0.32, K11 = 10−3, K12 

= 3.10−4, K21 = 11 K22 = 7.10−4. 
 

For given references we remark that water levels h2d 
and h3d reach their references without overshooting. 
When we change the references we obtain the same re-
sponse. In order to test the robustness of our strate  
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Figure 9. Liquid level in tank 2. 
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Figure 10. Liquid level with zoom in tank 2. 

 
we varied the parameters c1 and c3 by closing and open-
ing a little bit the valves az1 and az2 and we introduce a 
permanent leakage in the outflow pipes of tank 2 and 
tank 3 at t =  the outflow 

ipes of tank 2 and tank 3, the two controllers ensure the 
convergence of the water level h3 and h2 to their desired 
references h3d and h2d (Figures 9 and 11). 

Then, the advantage of the sliding mode control with 
integrator in simulation and experimental results is the 
attenuation of error static (Figures 3, 5, 10, and 12). 

Moreov er, we can also observe that control inputs Q1 
and Q2 are smooth and the chattering phenomenon is 
almost eliminated (Figures 6, 7, 13 and 14). 
 

7. Conclusion 
 
In this paper, robust sliding mode control for a class of 
MIMO nonlinear systems was presented. In order  
elimina  state 
rror ind s slid-
g mode control, combined with a conditional integrator  

1500 s. We remark at 1500 s in
p

to
te chattering phenomenon and the steady

uced by the use of sat function, continuoue
in

Copyright © 2011 SciRes.                                                                              ENG 



A. BENAMOR  ET  AL. 443 
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time ( sec )

 

W
er

 le
ve

l h
3 (

 m
 )

 

at

h3d

h3sat+int

h3sat

Zoom

 
Figure 11. Liquid level in tank 3. 
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Figure 12. Liquid level with zoom in tank 3. 

 

 
Figure 13. Input signals of control Q1 

 
admittance coefficients of various pipes, leakage in the
tanks and uncertainty due to neglected pump dynamics. 
was proposed. This control was applied to the level
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Figure 14. Input signals of control Q2. 
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