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Abstract

In this paper, the robust control problem of general nonlinear multi-input multi-output (MIMO) systems is
proposed. The robustness against unknown disturbances is considered. Two algorithms based on the Sliding
Mode Control (SMC) for nonlinear coupled Multi-Input Multi-Output (MIMO) systems are proposed: the
first order sliding mode control (FOSMC) with saturation (sat) function and the FOSMC with sat combined
with integrator controller. Those algorithms were simulated and implemented on the three tanks test-bed
system and the experimental results confirm the effectiveness of our control design.

Keywords: Sliding Mode Control, Integrator, Nonlinear Systems, Coupled, Mimo, Uncertain, Liquid Level
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1. Introduction

The SMC is a widely used approach to design robust
control law of uncertain systems. The advantage of such
approach is its robustness to parameter variations and
disturbances [1,2]. But the major inconvenience of clas-
sic sliding mode control is the existence of chattering
phenomenon [3], which may induce many undesirable
oscillations in control signal. Some attempts on chatter-
ing [4] canceling have considered continuous functions
instead of sign one. However the provided results lead to
a large steady state error which can be reduced using the
integral action [5-7]. Moreover even though there exist
many works dealing with sliding mode control in the
case of Single Input Single Output (SISO) systems [8],
there is lock of results when the addressed process is
Multi-Input Multi-Output (MIMO) one. This shortage is
due to output coupling problem.

In this paper, we propose a first order sliding mode
control using Sat function and this control combined
with an integrator corrector. Experimental results, oper-
ated on a three tank system, are presented to illustrate the
effectiveness of the proposed controllers.

The paper is organized as follows. In Section 2 we re-
mind the classical sliding mode control of coupled MIMO
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nonlinear systems and its robustness to parameter uncer-
tainties and external disturbances. Section three is de-
voted to SMC with sat function and integral action. The
model of the coupled three tanks system and its control is
presented in Section 4. The simulation and experimental
results are presented in Sections 5 and 6. Finally Section
7 concludes the paper.

2. Sliding Mode Control

Consider a MIMO non linear system with p inputs and m
outputs defined by the following state representation:

5c=f(x,t)+g(x,t)u 1
y= c(x, t) M
where x is the n-dimensional state vector and y is the
m-dimensional output vector.
x=[x xn]T and y=[y, ym]T is the
m-dimensional vector, the coefficients of which are
nonlinear functions c(x,f), fix,7) is the n-dimensional
vector, the coefficients of which are nonlinear functions
Six.0), g(x0) is a (nx p)matrix with coefficients are the
nonlinear functions g;(x,f) and u is the p-dimensional
control vector of coefficients u;.
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u:[ul up]r 2)

2.1. Classical Sliding Mode Control

Consider the sliding surface [9] defined by:
T
s = [sl s p] 3)
where:

S—Z/l

, fori=1,- 4)

with:
7; 1S the relative degree of the error ¢; /1,2 ) =1 and for

k=1, -, r— 2, /1( are constants chosen so that
léi) -i—ﬂ,l(")p+-~~—i-/”tr[7)l tis a Hurwitz polynomial one
and ¢"is the ¥ order derivative of the error e;.
ei:yi_yid’ i=1-n =1 (%)
where y¢ is the desired output. The derivative of s, is:
ds, & [0, &oe, .
_122,115) %, ixj (6)
dt k=0 ot j=1 axj

Replacing x; by its expression in (1) and omitting the
index (x,t), relation (6) becomes.

bosw(Bagifsii,) o
t - 1=l j= 1 0
which can be written as:
(:; b +bou, +-+bpu, =h +sz/”/ ®)
=1

with:
-1 ) Os.
h=3 2" =i
l kZ::‘) * ( ot Za ]
r—1 . n as.
b, =20y g
ik kZ::,) % (; ﬁxj g]lJ

Then we can write the derivative of the surface vector as

S=h+bu C)
with:
hy b, bp
h= and b=| : :
hy by - bpp
Theorem 1.

The control law for the first order sliding mode control
(FOSMC) of the system 1 so that the sliding surfaces go
to zero in a finite time is defined by:
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k,sign(sl)
u=-b"\ h+ : (10)

kpsign(s,)

with k; a positive constant and b an invertible matrix.
Proof.
Consider the following Lyapunov function:

VZ%STS—;(S12+"-+S}2,) 1D

the derivative of Vis:
V=58 ++5p5, =58 (12)

Using (9) we have:
=s" (h+bu) (13)

Replacing u by its expression (10) in Equation (9), we
obtain:

i klsign(s,)
§=- : (14)
_szign(sP)
then
k,sign(s,) 1
V=—s" : —Z —k,sign s =—Zk|s|<0
kpsign(s, )_
15)
Since k; (i=1, ---, p) are positive we have V' < 0.

Then, the Lyapunov function V tends to 0 and there-
fore all surfaces s; tend to zero, hence the existence of the
first order sliding mode.

To prove the finite time convergence of our control we
take the Equation (14), we have s, = —k;sign (s, )s, then
5.8, = —k;|s;| < ]s,|, with 0< u <k, ,which is the u
reachability condition [10], then the finite time conver-
gence.

2.2. Robustness to Parametric Uncertainties and
External Disturbances

Consider an uncertain MIMO nonlinear system:
X= f(x,t)+ Af(x,t)+(§(x,t)+Ag(x,t))u +d (16)

where xeR"is the state vector, u € R”is the input-
control bounded as |u,| <u,,. fori=1 top, the vector
field f(x,¢)=f(x¢)+Af(x,) is continuous and
smooth, where f'(x,7) is the nominal part and Af (x,7)
is the uncertain part bounded by a known function.
d e D cR" represents the disturbances. The dynamic
2(t,x) is not exactly known and it is written as the sum of
the nominal part g(x,s)and the uncertain part Ag (x, t) .
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with:
i (x0) M| T4
flet)=| 1 [ &f(nt)=| 1 |d=|
]A’,, (x,t) Af” (x,t) d,
_éll('x’t) glp(xat)
g(x,t): . . .
_énl (x’t) gnP (xst)
Agy, (x.1) Ag,p (x.1)
and Ag(x,t)= : :
Agnl ('x’t) AgnP (‘x’t)

Then the derivative of the sliding surface takes the
following form:

ds. LAy
d—t’:hi+Ahi+kZ:;(bik+Abik)uk+5i (17)
then:
$= ﬁ+Ah+(5+Ab)u+8
h (x,1) Al (x,1) 5,
fz(x,t)z : ,Ah(x,t)z : 0=
h, (x,1) A, (x0)] 8,
A 511 (x.7) b, (x,7)
b(x,t) = : :
by (xt) - b, (%)
Aby, (x,t) Ab,, (x,1)
and Ab(x,t) = : :
Abp1 (x,t) Abpp (x,t)
Theorem 2.

Consider the uncertain system defined by Equation
(16). The control law:

ksign (s1 )
u=-b"|h+ : (18)
kpsign(s,)
with k; satisfying:
V4
k> @48+ 3 Bt (19)
k=1

and wherea,, f,, & and u,,, are the upper bounds
of uncertainties, Ak , Ab, , 9, and u, respectively,
ensures the finite time convergence of the sliding surface
to zero.
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Proof.
The expression of the derivative of the surface be-
comes:

s'=12+Ah+(z§+Ab)u+5 (20)

where 6 is the p-dimensional vector whose coefficients
are :

5,=3 %04, for i=ltop
j=10X j
Using the control expression in (18) we have:
kysign (s, )
: +Ah+ Abu+8 21)
kpsign (s, )

.
Il
|

The derivative of the surface s, is then written:
5, = Al —ksign(s; )+ Z,,: Ab,u, +3, (22)
k=1
and the derivative of the Lyapunov function given by (12)
is: V= Zn:sijl.
i=1
¥V will be negative if the following conditions are sat-

isfied: 5,5, <0 fori=1top.
If s;> 0 then s, >0, we have:

P
Ah, —k; + ZAbl.kuk +9, <0 (23)
k=1
then
V4
Ah, + Z Ab,u, +6, <k, (24)

k=1

If s;<0then §, <0, we have:

P
A +k, + Y Abyu, +8, >0 (25)
k=1
then
P
—(Ahl. +> Abu, +6,) <k (26)
k=1
The conditions (24) and (26) are satisfied if:
p
&+ Bl +0, <Kk, (27)
k=1
then
V<0
3. SMC with Sat

The major inconvenient of classic sliding mode control is
the existence of chattering phenomenon. To avoid this
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problem, we approximate the «sign» function by con-
tinuous functions such as sat function [9] defined by:

sign (S;) if |s,.| >,
sat(s;)=1 s. 28
() =15 if |s| <o 8
b,
where ¢, is a positive constant that defines the thickness
of the boundary layer.
Theorem 3.

The control law for the first order sliding mode control
(FOSMC) with sat of the system (1) is defined by:

kysat (s1 )
u=-b"\h+ : 29)
kpsat(s,)
with k; a positive constant and b an invertible matrix.
Proof.
We consider the same Lyapunov function defined by

Equation (11). Its derivative with using control defined
in (31) is:

kysat(s,)
V=—s" : (30)
kpsat(s,)
then
V= —Zp: ksat(s,)s, (31)
i=l
Using sat definition given by (28), we have:
sign(s;)s; 20 if |si| > @,
t(s;)s; =9 52 32
sa (sl)s, S50 " |S,-|S(ﬂ,- (32)
@i
Therefore:
sat(s,.)s[ >0 (33)
then
V<0 (34)
Remark.

In the boundary layer the derivative of the surface is:

5, =4 (35)
?;
then
eI )
S =S; (tri)e " =pe (36)
with:
t,; is the start time of boundary layer.
then
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s;#0 Vt>t, for i=1,---,p (37)

In order to solve a steady-state error problem, an inte-
gral sliding manifold was proposed in [10]. This devel-
opment is introduced and justified only by tests on spe-
cific systems. Our idea consists on reconstituting a con-
trol law to eliminate steady-state error created by distur-
bance. To do so we added an integral action when the
trajectories of states approach their references [11-14].
Proposition.

Consider the uncertain system defined by Equation (1).
The control law FOSMC with integrator to eliminate
steady-state error is defined by:

klsat(sl) I(J’l _yfj)dt
u=-b"h+ : +K : (38)
kpsat(s,) J'(yl _y)f dt
with
Kll K]p
K=|: :
Kpl Kpp

The coefficients K; are the integrator constant defined
by:

positive constant if | v, =y |>¢)j
K, = N (39)
0 1f|y[—y[|£(pj

with ¢, a positive constant.
4. Validation
4.1. System Description and Modeling

The considered process is a three tank system, which
have two inputs and three outputs. It consists on three
cylindrical tanks with identical Section a supplied with
distilled water, which are serially interconnected by two
cylindrical pipes of identical Sections S,. The pipes of
communication between the tanks 7' and T, are equipped
with manually adjustable valves; the flow rates of the
connection pipes can be controlled using ball valves a.,
and a,,. The plant has one outlet pipe located at the bot-
tom of tank 73. There are three other pipes each installed
at the bottom of each tank; they are provided with a di-
rect connection (outflow rate) to the reservoir with ball
valves b.;, b, and b, respectively, it can only be ma-
nipulated manually. The pumps 1 and 2 are supplied by
water from the reservoir with flow rates Q;(¢) and Q(?),
respectively. The necessary level measurements /(2),
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hy(f) and hs(f) are carried out by the piezo-resistive dif-
ferential pressure sensors.

The state Equations are obtained by writing that the
variation of the water volume in a tank is equal to the
difference between the incoming flow and the outgoing
flows, that means, the water of the tanks 1 and 2 can
flow toward the tank 3.

Then, the system can be represented by the following
Equations:

2 1 in ou, ou P

h(?) =Z(Ql. (6)-05" (£)-05" (1)) i.j=1,2,3 (40)
where Q" (t) is the flow through pump i (i = 1; 2) and
0" (1) represents the flow rates of water between the

tanksiandj (7,7 =1,2,3 Vi# j), and can be expressed
using the law of Torricelli[15].

oM (1) = az,SHSIgn(h h 1[2g|hl.—hj| i j=1,3(41)

and Q" () represents the outflow rate, given by:
Q;"tz ( ) b,;S,\2gh,

where hi(t), Q" (t)and Q) (¢) are respectively the
levels of water, the input flow and the output flow rates.

The parameters of three tank system are defined in the
Table 1.

The controlled signals are the water levels (%,, /;) of
tanks 2 and tank 3. These levels are controlled by two
pumps. The system can be considered as a multi input
multi output system (MIMO) where the input are inflow
rates 0, 0> and the output are liquid levels %,, #;. Then
the three tank systems can be modeled by the following
three differential Equations as shown in (43):
where the parameters ¢;, i=1,3 and B, j =1, 2, 3, 4 are
defined by:

j=12,3 (42)

i=13

Cl = iaziSn\@

j=12,3,4

1
B, =—b,5,\¢

While taking B; = B, = B; = 0, the three Equations of
the system become (see Equation (44)):

At equilibrium, for constant water level set point, the
level derivatives must be zero.

hy=h,=h =0 (45)

Therefore, using (45) in the steady state, the following
algebraic relationship holds.

—c,sign(h —hy) 1/h h +—:
¢,sign(h —hy) |h1 —h3| —c3sign(h3 —hz),l|h3 —h2| =0

(46)

For the coupled tanks system, the fluid flow Q; into

tank 1, cannot be negative because the pump can only
drive water into the tank, then:

0120 47

From (47) we have ¢;sign(h —h), /|l —h, _a and
a

c]sign(h] —h3) |h] —h3| —c3sign(h3 —hz) |h3 —h2|

Then (h;-h3) > 0 and (h3-hy) > 0. Therefore if we as-
sume.

X =h,x,=hy, x;=hy, uy =0 and u, =0, (48)

We have

. u,

X, :—cl,/|x1 —x3| +—
a

u
. 2
xz—c311|x3—x2|—B4 X, +— (49)
a
x3=cl\/|xl—x3|—c3\/|x3—x2|

(:i—hlz—clwgn(hl hy) ,l B\/7+

dr
—h3 = clsign(h1 - hj) |h1

Copyright © 2011 SciRes.

" 2= cysign(hy — h )\/|h3_h2|_(34+32)\/h—2+% (43)
a
— | —(By+ B, )by —cssign(hy—hy) |y — |

dh, .

T

da, . 2

— 5 =cusign (b =y )| -hz|‘B4‘/E+Q7 “
Thj—cszgn(hl hj)\” | ¢,sign(hy —h, ) |h3 _h2|
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which can be written in the same form of (1) as:
)'c:f(t,x)+gu (50)
y=cx

where . . .
x:[x1 X, x3] ,u:[u1 uz] ,yz[x2 x3]

1
- 0
—C X =Xy a
f(t.x)=] eyx—x —Byx, |,.g=|0 ! and
a
cl\/xl—x3—c3\/x3—x2 0 0

010
C =
0 0 1

4.2. Sliding Mode Control of the Three Tank
System

The objective is to regulate the water levels of tank 2 and

tank 3 by using both laws defined in Section 3.
The vector of the sliding surface is given by:

s:[s1 sz]T
where:
s, =(x2—x2d) and s, :/1(x3—x3d)+(5c3—5c3d)

X4 and x3; are the desired water levels of tank 2 and
tank 3. The derivative of the sliding surface $s_1$ can be
written as follows:

8, =1 +b,u, (51)

with:

11:(03\/H_B4 X, —XZd) and blz:%

Similarly, the derivative of s, is:
§, =1, +byu, +byu, (52)

with:

—201\/|x1 —x3| +cz\/|)c3 —x2| e cl\/|x1 —x3| —2c3,l|x3 —x2| +B4\/g_x

L :/12(01\/|x1 —x3| _Cs\/|x3 —x2| _x3d)+cl

1

by =c 1
2a |x3—xl|

3 and b, =c
2a |x3—x2|

then
$S=1+bu (53)

] 0 b,
/= and b=
12 | b21 b22

The Control SMC with sat vector is:

u=-b" z{kl‘qig"(sl ) D (54)

kysign(s),

with:

with:

acz\/|x1 —x3| 2a\/|x1 —x3|
bl= A \/|x3 —x2| G

a 0

A

The Control SMC with integrator vector is defined by:

. iV
u:_b-l[l{klszgn(sl)DJrK I(yl yl) t )

k,sign(s,) J'(yz —yd )dt
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2,/|x1 —x3| ’

3d
21/|x3 —x2|

K:|:K]l K12:|
K21 K22

5. Simulation Results

with:

The controllers designed in Section 3 are simulated using
the MATLAB software. The parameters of the three tank
system Figure 1 are given in Table 1.The parameters for
the both controls for three tanks are A =0.6 , k1= 0.699,
ky=0.53, Kjy =107, K1, = 18.107, K5 = 7.10 *and K>,
=10

Simulation results are shown in Figures 2 to 4. We
can notice that in the absence of chattering in controls u;
and u, both controls proposed and both output %, and /;
follows their desired references 4., and 73,

However, when we inject a disturbance at t = 1500 s in
the outflow pipes of tank 2 and tank 3, the tow control-
lers ensure the convergence of the water levels h; and h,
to their desired references 4,; and /3, We see in the
Figure 3 when we add integral action, the steady state
error is almost eliminated. This is the advantage of the
controls proposed in multi-variables coupled system
case.
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Pomp 2 Pomp 1
O
©: Cuve T; Cuve
Cuve T, -
b4 Iy az hs 4z hn
Ej b b Ej b1

Figure 1. Three tank system.
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=
T
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= 0.1 4
2
<
2
0.05
hzsat
h,d
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ h,sat+int
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (sec)
Figure 2. Liquid level in tank 2.
Zoom
T
0.21+ B
0.205 - B
£
~
02
[
>
3 R
9]
k]
S 0195 E
h,sat
0.19+ 2
hzd
hzsatﬂnt

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (sec)
Figure 3. Liquid level with zoom in tank 2.

6. Experimental Results

The proposed control algorithms were tested on the
physical laboratory plant (Figure 8) consisting of inter-
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connected three tank system. The objective is to control
the liquid level of tanks 2 and 3. The experimental
schemes have been done under Matlab/Simulink, using
Real-Time Interface, and run on the DS1102 DSPACE
system, which is equipped by a power PC processor. The
control algorithm is implemented on DSP (TMS
320C31).

0.35 T T T T T T T T T

0.3 R

025l N

Zoom

>

Water level h3 (m)
o
o
(2]
L

h3sat
h,d

0.05

‘ ‘ ‘ ‘ ‘ h3sat+|nt

0 I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time ( sec)

Figure 4. Liquid level in tank 3.

Table 1. Numerical values for physical parameters of the
three tank system.

Symbol Value Meaning
a 0.0154 m? tank section
S, 25107 m? cross-section of valve
az 0<a,<1 flow correction term (i = 1, 2, 3)
leakage flow correction term
b 0<bh, <1
i=1,2,3)
g 9.81 m/s’ gravity constant m/s’
A 0.6 m maximum water level in each tank
max . (l' o 1’ 2’ 3)
) 43 maximum inflow through pump i
leax 1.1710 " m’/s (121’2)
0.27 — : : : : : : ; ;
0.265- 1
0.26| 1
T 0255¢ B
o A
s 025 Al
]
& 0245} 1
I}
=
0.24| 1
0.235} hgsat
hyd
0.23F hgsat+int

| | | | | I
1100 1200 1300 1400 1500 1600 1700 1800 1900
Time ( sec )

Figure 5. Liquid level with zoom in tank 3.
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x10*
1.2 . . . . :
] Q1sat T .
Q1sat+int
1 i
~ 0.8 -
2
2
<
£
‘_I 0.6 =
g
<
5
O 0.4 L 4
 —
0.2 B
0 1 1 L L 1 L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time ( sec )
Figure 6. Input signals of control Q;.
x16°
1.2 T T T T T T T
N Q,sat
Qsat+int
1k =
—~ 0.8 B
2
by
S
N[ 0.6} m
g
2
5
O 0.4r B
0.2} 4{‘“‘_‘_*‘1/\;/7—
W '

0 1 1 . . ! . 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (sec )

Figure 7. Input signals of control Q,.

Figure 8. Real system. The parameters for both controls for
three tanks are: 4=0.6, k; = 0.46, k,= 0.32, K;; = 107, Ky,
=3.107, Ky = 11.10and Ky, = 7.107°,

For given references we remark that water levels /4,
and /3, reach their references without overshooting.
When we change the references we obtain the same re-
sponse. In order to test the robustness of our strategy
with respect to parameter uncertainties and disturbances,

Copyright © 2011 SciRes.

0.22
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0.18}
0.16}
E 014} B
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T 0124 B
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hzsat
0.02 . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time ( sec )
Figure 9. Liquid level in tank 2.
0.205}-
02
3
=
2
g 0195
9]
8
=
0.19}
h,d
hzsat+im
0.185F hzsal
. . . . . . .
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Time (sec)

Figure 10. Liquid level with zoom in tank 2.

we varied the parameters ¢, and c; by closing and open-
ing a little bit the valves a.; and a., and we introduce a
permanent leakage in the outflow pipes of tank 2 and
tank 3 at t = 1500 s. We remark at 1500 s in the outflow
pipes of tank 2 and tank 3, the two controllers ensure the
convergence of the water level /3 and /4, to their desired
references /3, and /,, (Figures 9 and 11).

Then, the advantage of the sliding mode control with
integrator in simulation and experimental results is the
attenuation of error static (Figures 3, 5, 10, and 12).

Moreov er, we can also observe that control inputs Q,
and O, are smooth and the chattering phenomenon is
almost eliminated (Figures 6, 7, 13 and 14).

7. Conclusion

In this paper, robust sliding mode control for a class of
MIMO nonlinear systems was presented. In order to
eliminate chattering phenomenon and the steady state
error induced by the use of sat function, continuous slid-
ing mode control, combined with a conditional integrator
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Figure 11. Liquid level in tank 3.
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Figure 12. Liquid level with zoom in tank 3.
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Figure 13. Input signals of control Q,

admittance coefficients of various pipes, leakage in the
tanks and uncertainty due to neglected pump dynamics.

was proposed. This control was applied to the levels
control of MIMO nonlinear three tanks system bench-
mark. The simulation and experimental results show ro-
bustness to parameter variations such as tank Section,
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Figure 14. Input signals of control Q,.

The simulation and experimental results, compared
with those obtained without integrator, confirm the ef-
fectiveness of our control strategy.
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