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Abstract 
 
Although various estimating methods have been developed for measuring Q from near-surface seismic data, 
less thought has been given to the accuracy of Q obtained. The errors of Q depend on the ways of measuring 
Q and the computation techniques used in estimating. The main purpose of this paper is to give a compre- 
hensive evaluation for the accuracy of measuring near-surface Q. We discuss the possible origins from which 
errors may develop, and provide a statistical guide to the accuracy that can be expected. A set of real data 
based on the improved spectral ratio method for near-surface Q was used as an example of validation and 
sensitivity analysis. The Bonferroni procedure was adopted for deriving the joint confidence intervals for k 
and n of the power law model. The same approach with modest modification may be applied to analyze the 
accuracy of Q estimated by other methods. 
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1. Introduction 
 
Wave energy attenuation is an important physics issue 
for many applications, and has been defined in geosci- 
ences as the quality factor Q indicating the inverse of 
intrinsic attenuation. In other words, a large Q implies 
small energy dissipation when wave propagates through 
the rock. By contrast, rocks with small Q values will be a 
poor transmitter for wave propagating. In geophysical 
investigation, Q is useful for describing rock properties, 
implementing inverse filters [1], and indicating fluid 
saturation better than the velocity ratio. In particular, 
anisotropy of Q could give unique information on sub- 
surface properties, such as the lithology and orientation 
of fractures [2,3]. Although the importance of Q is fully 
recognized by geophysicists, the estimation of Q is still 
controversial perhaps due to the practical difficulties of 
in-situ measurement using geophysical method and in- 
sufficient information of physical mechanisms to estab- 
lish appropriate models. In view of this, some geophysi- 
cists suggest that directly measuring variations of wave 
velocity, amplitude, and frequency content due to ab- 
sorption effects is more practical than estimating Q [4]. 
However, in near surface seismic survey, an accurate Q 
model is still exclusively needed for performing inverse 
Q filtering to recover the deep reflection energy and to 

improve the resolution of the subsurface image. Two 
basic hypotheses are considered in the estimate of Q for 
shallow earth. The conventional one is that the Q model 
is independent of frequency; but some investigators sug- 
gest that Q may be frequency dependent [5,6]. A theo- 
retical derivation proposed by Jeng et al. [7] indicates 
that the Q of shallow seismic waves is frequency de- 
pendent. The frequency dependent Q has gained more 
attentions in recent inversion studies. Li et al. [8] have 
developed Q estimates using both t* and spectral ampli- 
tudes for frequencies between 1 and 40 Hz, and yielded 
consistent results that Q increases with depth and fre- 
quency up to 20 Hz within the Seattle Basin. Although 
the frequency dependent model is more practical in use, 
the standard error in the estimation of Q for each given 
frequency may be enormous. Most seismologists attri- 
bute the limitations of the Q estimation to the source 
factor, the data quality, the effect of time window length, 
and the velocity model. However, some peculiar prob- 
lems may not be so easy to answer; for instance, the 
negative Q is noted in some cases. Therefore, we suspect 
the assumption of energy dissipation of traveling plane 
waves may not be true for the shallow earth model. In 
addition to this, the analysis problems should also be a 
crucial factor. In order to give a comprehensive evalua- 
tion for the accuracy of Q, this paper examines the  
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commonly used definition of Q from the near-surface 
point of view and the basic theory for Q estimation along 
with a statistical analysis. We present a framework of 
determining the errors in near-surface Q, and provide a 
statistical guide to the accuracy that can be expected. A 
field example of data acquisition and processing meth-
odology is also briefly described. The physics behind the 
data scatter may give us a better understanding of many 
systematic errors of near-surface Q measurements. 
 
2. Methodology and Background 
 
The work discussed in this paper is part of a series of 
experiments related to the near-surface seismic explora- 
tion project that has been carried out at the geophysical 
laboratory of National Taiwan Normal University. Seve- 
ral test sites located mainly in northern and central Tai- 
wan provide the real data for analysis. The test sites are 
very similar in geology, and consist basically of Recent 
alluvium and unconsolidated Quaternary sediments [9,10]. 
In the previous experiments, Jeng et al. [7,11] proposed 
an improved field measurement of near-surface Q using 
a frequency dependent spectral ratio method. The field 
lay-out is shown in Figure 1. A multichannel seismo- 
graph with 4.5 Hz three-component geophones and 28 Hz, 
40 Hz, and 100 Hz vertical geophones were used to ac-
quire data of different dominant frequencies. A me- 
chanical striking seismic source (Figure 2) and a 7-kg 
sledgehammer were used to generate P and S waves of 
different impacting energy. Figure 3 demonstrates the 
way of generating shear wave using the sledgehammer. 
A typical shot gather acquired in the field for picking the  
 

 

Figure 1. Standard field layout of the experiment. Geo-
phone intervals vary from 0.5 m to 2.0 m based on the site 
environments and sources applied. An engineering seismo-
graph was employed to record data. 

 

Figure 2. VAKIMPAK, a mechanical striking seismic source 
used in the field for generating P- and S-waves. The striking 
energy is much stronger than the sledgehammer, about 
2500 Nm for P-wave and 2000 Nm for SH-wave. 
 

 

Figure 3. Shear wave generating by using a sledgehammer 
striking against the end of a block of a wooden plank. 
 
first arrivals is shown in Figure 4. This technique firstly 
estimates the Q of any given frequency by fitting a 
straight line to the slope of the spectral ratio over a finite 
range of arrival-time difference of two receivers, and 
then a frequency dependent equation of Q is determined 
by an optimum power law model. The final Q of any 
particular frequency is then evaluated from the equation. 
In practice, similar to the problem of the conventional 
spectral ratio method, the ratio values rarely fall on a 
straight line that has been described by Patton [12]. 
Therefore the estimated Q is far from a definite value no 
matter what method is applied. It is more like an ap- 
proximate value with an estimating error.  

The origin of the estimation errors of near-surface Q 
values from spectral ratios can be considered from two 
aspects, i.e., the inherent and processing errors. The in- 
herent error can be interpreted as a trade-off error that 
stems from the measurement of spectral ratios itself, and 
places fundamental limits on the accuracy of estimates of 
Q [13]. The processing error depends predominantly on  
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Figure 4. Typical raw shot gather data acquired in the ex-
perimental sites. 
 
the model of measurement. Conventional estimating me- 
thod is based upon the assumption of frequency inde-
pendence that may be problematic in shallow Q values 
[7,14] due to heterogeneity, variations in saturation and 
porosity of the near surface layers, thin bed scattering, 
leaky modes and so on. Given this, we investigated the 
accuracy of near-surface Q in a broad view by way of the 
improved method, developed by Jeng et al. [7], which 
assumes frequency dependence. 
 
3. Theoretical Consideration 
 
3.1. Errors of Small Dissipation Assumption 
 
The concepts of the seismic attenuation and the estima-
tion from the amplitude spectral ratios in near-surface 
seismic data will be reviewed briefly before we discuss 
the accuracy of near-surface Q. 

The fundamental definition of Q is based upon the in-
trinsic property of rock, and can be described by the 
harmonic oscillation theory 

2π
E

Q  

E

E

E

,                 (1) 

where  represents the elastic energy stored at maxi-
mum stress and strain, and   is the energy loss per 

harmonic cycle. Q is also defined as  

πf
Q

V
                   (2) 

where   is the exponential decay constant, V is the 
wave velocity, and f is the frequency [6,15]. The above 
definitions are valid if the attenuation is small, i.e., large 
Q is assumed. A more appropriate equation is proposed 
by Hamilton [16] for large-dissipation (small Q): 

2 2

1 V

π
4π

Q V
f

f







               (3) 

Let LQ
Q

 denote the estimated Q on the small-dissipa- 
tion assumption (Q >10) [15], and S  the estimated Q 
on the large-dissipation assumption, then Equation (3) 
becomes 
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Most Q values estimated in near surface are lower than 
2π, thus the error on small dissipation assumption can be 
determined by Equation (4). 
 
3.2. Errors of the Over-Parameterized Model  
 
White [14] has proposed that it is essential to parameter-
ize the estimation model based on the principle of parsi-
mony. According to this principle, fundamental limits on 
the accuracy of estimating Q can be set up. The error of 
the over-parameterized model mainly originates from the 
calculation of spectral ratios. If the estimation of spectral 
ratios comes from multiple coherence analysis of two 
time intervals in surface seismic data, then the equation 
of the relative standard error is 

 
 

26
. .

Q
s e Q 

22 3π t F T
           (5) 

where Q denotes the sample mean of Q, F is the band-
width over which useful measurements can be made, and 
T is the duration of the data segment [14]. 
 
3.3. Noise Effect 
 
The primary assumption of the spectral ratios is the line-
arity of the data to be fitted. This assumption is some-
times invalid due to the peaks occurring in the spectral 
ratio. The spikes in the spectral ratio obtained from the 
conventional method are the contributions from the 
P-wave leaky modes and other noises. The leaky modes 
are the energy of surface waves (normal modes) below 
certain cutoff frequencies that leak through the half- 
space as body waves, and the phase velocity may exceed 
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 
 

 the body wave’s velocity. Because the energy of leaky 
modes attenuate exponentially with distance, the spikes 
occurring at the spectral ratio can be reduced by increas-
ing the source-receiver offset, but it is still a probable 
cause for unstable spectral ratios. The improved spectral 
ratio method reduces the effect of leaky modes by taking 
an optimum linear model from a variety of geophone 
pairs of different source-receiver offsets, then assuming a 
simple nonlinear power law regression model to estimate 
the Q as a function of frequency. The data uncertainties 
due to other noises are poorly known; therefore, the 
noises usually are assumed to be a zero-mean Gaussian 
process, and ignored in the inversion algorithm [17]. This 
is an oversimplified assumption about the noise, and 
adds errors to the Q estimation. Therefore, the standard 
error of the slope of the optimum linear regression model 
may reflect the residual error originating from the leaky 
modes and other noises.  

1 1 2 1, π π
ln

,

S Z f t t f tf
C C
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4. Processing Errors 
 
4.1. High and Low Estimates of the Regression  

Coefficient from the Least-Squares Fit 
 
Equation (1) can be generalized for an arbitrarily small Q 
by taking the differential form: 

2π d dE E 
   

d dQ E t E t
             (6) 

where   is the period of the wave or oscillation [18]. 
Integrating Equation (6) yields  

2π

e
t
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Since energy is proportional to the square of amplitude A, 
Equation (7) can be expressed as 
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A conventional equation of spectral ratios is derived 
from Equation (8) as 
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where  is the amplitude at frequency f of the 
signal recorded at offset nZ  and C is a constant that 
takes into account the source function, receiver function, 
and geometric function.  

Jeng et al. [7] have improved the conventional spectral 
ratio method by measuring the two-way travel time dif-
ference rather than the difference of the offset. Accord-
ingly the equation of spectral ratios is given by  

2 2

   (10) 

In order to obtain a stable Q, the improved spectral ratio 
method assumes that Q is frequency dependent. For each 
given frequency f, the natural logarithm of the amplitude 
ratio    1 1 2 2  is taken; then plot it against 
the arrival time difference Δt of the two receivers at off-
sets Z1 and Z2. A large number of different Δts and cor-
responding spectral ratios are estimated for the same 
frequency (normally 30 to 60 different Δts were taken for 
one frequency); then the Q of the given frequency is de-
termined by the slope of an optimum linear regression 
model.  

, ,S Z f S Z f

The estimated standard error of the slope for the linear 
regression model is the square root of our estimator of 
variance, thus 

 
 2
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s
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where b is the sample mean of the slope and x represents  

the value of Δt. The numerator 
2n

rs
s 


 is the square  

root of the residual variance in which rs is the residual 
sum of squares. The standard error in the estimate of the 
slope can be related to the standard error in estimated Q 
through Equation (10). The estimated limits for the slope 
b of the regression model with a 95% confidence interval 
are 

 
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

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where t is the test for significance from the t table, 0.025 
is one-half of the significance level of t test (usually de-
noted by α), and n − 2 is the degrees of freedom of the 
t-distribution [19-21]. These are also the estimated limits 
for the Q of a given frequency with a 95% confidence 
interval. 
 
4.2. Standard Errors and Confidence of the  

Optimum Power Law Model 
 
Since near-surface seismic data show strong evidence of 
frequency dependence [7], the true value of Q can only 
be approximated by estimating an optimum regression 
model related to the frequency. We calculated the error 
by estimating the deviation of our calculated Q from the 
power law model  where f is the frequency, k 
and n are constants to be determined. For a very small Q, 
Equation (4) is suggested to correct the small-dissipation 
(large Q) assumption error before calculating the uncer-
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tainty at this stage. Because the nonlinear regression 
model consists of two parameters, k and n, thus we use 
confidence regions that involve separate intervals in each 
parameter. The joint confidence intervals for multi-re- 
gression parameters in nonlinear regression can be de-
rived by the Bonferroni procedure [21]. A [100(1 − α)]% 
joint confidence interval for k and n is given by  

 1
2 sk p k
   

 
              (13) 

 1
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 
              (14) 

where α is the significance level, 1
2

p
  

 
 is the  

1
2

  
 

 100 percentile of the standard normal distribu- 

tion, and sk  and sn  are the standard error of parame-
ters k and n, respectively.  
 
5. Example of Real Data 
 
We use some typical field data acquired at the Keelung 
experimental site in northern Taiwan to demonstrate the 
statistical approach of the previous section. Figure 5 
shows a representative numerical plot of the spectral 
ratios of P-wave versus arrival time difference at one 
particular frequency (60 Hz) for any two geophones of 
different offsets in one geophone spread (Table 1). The 
linear regression model of the data is Y = 0.05442 +  
0.09025X. The estimated standard error of the slope of 
the regression model was  . . 0.012149s e b  , and a 
95% confidence interval for the slope of the regression 
model was 0.09025 ± 0.0245 since t(0.025,n − 2) = 
t(0.025,37) = 2.02 in Equation (12). The standard error in 
the estimate of Q can be related to the standard error of 
the slope of the regression model.  

Table 2 is the frequency dependent near-surface Q 
values estimated for the P-wave data recorded at the 
same experimental site [22]. Inspection of the examples 
and Table 5 in Jeng et al. [7], these values are reasonable 
for the near surface Q estimation and more stable than 
those obtained by using the conventional spectral ratio 
method. Let us take the data set of SHOT NO. P0430-2 
for example. Given that Q = 5 for the representative Q 
value in our case, data of T = 30 ms with Δt = 5 ms were 
analyzed. The seismic bandwidth was from 60 to 300 Hz 
normally. Then the error of the over-parameterized 
model for our near surface Q in this case is about 1.2. A 
desirable way of reducing the relatively large inherent 
standard error is to expand the duration of the analyzed 
data segment and their time separation because the 
bandwidth is wide enough for seismic frequency ranges.  

 

Figure 5. Representative numerical values of the spectral 
ratios of P-wave versus arrival time difference at one par-
ticular frequency (60 Hz). Dashed lines define the confi-
dence bands. Data were recorded at the Keelung experi-
mental site in northern Taiwan (Table 1). The linear re-
gression model of the data is Y = 0.05442 + 0.09025X with a 
correlation coefficient of 0.77371. 
 
Table 1. Original representative 60 Hz P-wave spectral 
ratio data acquired at the Keelung experimental site. The 
arrival time difference in millisecond is calculated from any 
two geophones of different offsets in one geophone spread. 
The amplitude ratio is natural logarithmic transformed. 

Time Difference 
(ms) 

Amplitude Ratio 
Time Difference 

(ms) 
Amplitude Ratio

4.0 0.15 20.4 1.40 

4.0 0.45 20.4 2.87 

4.1 0.90 21.5 1.85 

4.0 1.40 21.5 3.03 

6.0 0.15 22.4 0.73 

7.3 0.45 22.6 2.60 

8.0 1.63 24.8 1.14 

9.0 0.45 25.2 1.90 

10.8 0.60 24.5 3.06 

10.7 1.03 27.8 0.94 

10.7 2.06 27.8 1.95 

12.7 0.30 28.4 2.45 

14.0 0.88 27.4 2.80 

14.4 2.45 31.3 3.45 

15.2 0.27 32.3 3.00 

15.1 1.98 34.5 3.20 

16.0 2.80 38.0 3.45 

17.5 0.70 41.3 3.75 

19.3 2.27 45.0 5.50 

20.3 0.74   
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Table 2. Qp of the Keelung experimental site versus 
frequency. An improved spectral ratio method is used to 
estimate Qp. 

SHOT NO. 

FREQ.(Hz) P0430-1 P0430-2 P0430-3 

60.00 2.03 2.71 2.17 

90.00 2.95 3.16 3.04 

120.00 3.23 3.37 3.31 

150.00 3.60 4.03 4.13 

180.00 3.41 5.66 4.04 

210.00 4.63 5.33 4.58 

240.00 6.00 6.18 5.37 

270.00 2.97 6.38 7.01 

300.00 6.33 7.46 6.89 

 
Correction for the error of small dissipation assumption 
is another way to improve the accuracy of near surface Q. 
However, it produces only an insignificantly small dif-
ference (about 1% of difference for Q with a value of 5) 
when compared with the standard errors from other ori-
gins.  

For estimating the optimum power law model we used 
the Simplex estimation algorithm to do the nonlinear 
regression (Figure 6). From Equation (13) and Equation 
(14), the estimated parameters k and n of the power law 
model are 

0.13402k 

0.69754n 

s

 

 

and the standard errors of parameters k and n are 
0.04637sk

0.06452n 

  

 

Figure 6 shows the power law model for the Q values 
obtained at the Keelung experimental site. Because the  

1
2

  
 

0.04314 0.22491k 

0.57108 0.824n 

0.57108 0.824n 

 100 percentile of the standard normal distribu- 

tion for a 95% confidence interval is 1.960 in Equation 
(13) and Equation (14), the approximated 95% confi-
dence interval for k is  

 
and for n is  

 

The joint confidence interval for the family coefficient 
approximates 90% for  

0.04314 0.22491k   

 

to be valid simultaneously. The standard error of the es-
timated Q at this stage can readily be obtained by substi-
tuting the numerical values of ks and ns into the power 
law model. The error of the individual Q values of each 
given frequency can be inferred from the plot of the re-
siduals against the fitted values (Figure 7). However, 
different estimation algorithms and the convergence cri-
teria in nonlinear estimation may change the standard 
error of the power law model dramatically; therefore, a 
more accurate treatment to optimize the residual variance 
around the regression line is probably to be important. 
 
6. Discussions 
 
The apparent Q estimated using the field data is the total 
attenuation Qt that includes the intrinsic Qi and scattering 
Qs induced by effects such as thin-bed tuning and scat-
tering. Thus, the error in Q is inversely proportional to 
interval two-way time thickness, but increases with depth 
of the interval [23]. By use of the parallel circuit model, 
Lerche and Menke [24] prove that the two attenuations 
are additive, i.e., 
 

 

Figure 6. Power law model for the Q values obtained at the 
Keelung experimental site. The data used is P0430-2 
shown in Table 2. The nonlinear regression model of the 
data is Q = 0.1340208 × f0.6975394 with a correlation coeffi-
cient of 0.97445. 
 

 
Figure 7. Plot of the residuals against the model predicted 
values showing the significant relationship. Dashed lines de- 
fine the confidence bands. The data used is P0430-2 listed in 
Table 1. The linear regression model for residual values (R) 
to predicted values (P) of the data is R = 0.08052 − 0.01390 P 
with a correlation coefficient of −0.0610. 
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t i sQ Q Q
   

Neep et al. [25] propose that this equation is valid if at 
least one full wavelength propagates through the medium, 
and the relationship appears to be valid in the spectral 
ratio method despite the scattering Q having both posi-
tive and negative values. The scattering Q in the near- 
surface is more significant due to thin bed scattering, and 
therefore, it may contribute more errors to the total Q 
because the geometrical spreading factor is insignificant 
in the near-surface Q estimation [7].  

The real data example in this paper demonstrates that 
the standard error of the estimated Q is strongly related 
to the numerical values of ks and ns of the power law 
model; thus the accuracy of the estimated Q depends on 
the frequency bandwidth of data. This is also a coinci-
dent result proposed by White [14]. 

The total error associated with the near-surface Q es-
timation can be obtained by summing up all the relative 
errors if they are independent and that the change of Q is 
linear. Because these conditions may not be true in 
reality, the total error only describes the maximum or the 
worst-case scenario.   
 
7. Conclusions 
 
The attributes of uncertainties in estimating Q depend on 
the methods used. The approach discussed in this study 
suggests that the accuracy of near surface Q is affected 
by a variety of factors resulting from errors of small dis-
sipation assumption, over-parameterized model, noise 
effect, slope of the optimum linear regression model, and 
optimum power law model. 

Except under exceptionally favorable conditions, the 
value of Q is always unstable and far from a definite 
value no matter what method is applied. Our statistical 
analysis can help understand the stability of the Q esti-
mated. However, the noise effect is the most uncertain 
factor that may affect the accuracy of near surface Q. 
Since no any filtering technique may remove noises 
completely, it is suggested that every endeavor should be 
made to acquire accurate estimates of error in the field. 
The errors in estimating Q can be handled well by the 
proposed method if the data acquisition errors have zero 
mean, are approximately Gaussian, and have been well 
estimated.  
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