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ABSTRACT 

Background modeling is a technique for extracting moving objects in video frames. This technique can be used in ma-
chine vision applications, such as video frame compression and monitoring. To model the background in video frames, 
initially, a model of scene background is constructed, then the current frame is subtracted from the background. Even-
tually, the difference determines the moving objects. This paper evaluates a number of existing background modeling 
techniques in terms of accuracy, speed and memory requirement. 
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1. Introduction 

Detection of objects or persons in a video sequence re-
quires, in most of the techniques, that the background of 
the frame be omitted from the scene. A common method 
for extracting moving objects in video sequences is 
background subtraction [1,2]. This technique can be used 
in monitoring applications such as work place security, 
traffic control and video frame compression [3-5]. To 
detect the moving objects in video frames, initially, the 
model of scene background must be constructed (i.e. the 
image without the moving objects), then current frame is 
subtracted from the background model and eventually, 
the difference, determines the moving objects [6,7]. 

Background modeling can be classified into two main 
groups: non-statistical [8-10] and statistical approaches 
[2,11,12]. In the former group, the background image, 
usually from the initial frame, is modified along the 
frame sequences. In this approach, to extract the moving 
objects in the video sequences, the difference between 
the current frame and the background model is computed. 
Non-statistical approaches are fast, hence, they are suit-
able for real time applications. 

The non-statistical background modeling presented in 
[1,13] namely RGABM, considers each pixel in a frame 
to be either as part of the moving object (simply the ob-
ject) or the background. In this approach, the first frame 
is considered as the background and subsequent frames 
are subtracted from the background. Then the pixels with 
a value higher than a threshold are considered as the ob-

jects. In this approach, the background is updated along 
the frame sequences. 

In the second group of background modeling ap-
proaches, the statistical based approaches, the probability 
distribution functions of the background pixels are esti-
mated; then, in each video frame, the likelihood that a 
pixel belongs to the background is computed. The statis-
tical based approaches have a better performance, com-
pared to the non-statistical based approaches, in model-
ing background of the outer scenes. However, they may 
require more memory and processing time and hence be 
slower than the non-statistical based approaches. 

One of the important statistical-based approaches to 
model the background image is the Gaussian mixture 
model. This approach uses mixture of models (multi- 
models) to represent the statistics of the pixels in the 
scene. The multimodal background modeling can be very 
useful in removing repetitive motion from, for examples 
shining water, leaves on a branch, or a wigging flag [14, 
15]. This approach is based on the finite mixture model 
in mathematics, and its parameters are assigned using the 
expectation maximization (EM) algorithm. 

The non-parametric statistical-based background mod-
eling presented in [11] can handle situations in which the 
background of the scene is cluttered and not completely 
static. In the other words, the background may have 
small wiggling motions, as it is in tree branches and 
bushes. This model estimates the probability of observ-
ing a specified value for a pixel in its previous values 
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obtained from older frame sequences. This model is fre-
quently updated to adapt with the changes in the scene, 
hence to have a sensitive detection of moving targets. 

There is a tradeoff between computational speed, 
memory requirement and accuracy in using the statistical 
based methods compared to non-statistical based meth-
ods. It is important for users to know the capabilities of 
different techniques, to choose the suitable method for 
their applications, which is the aim of this paper. 

There are a number of issues need to be considered in 
any background modeling technique, they include de-
tecting objects from the background, updating the back-
ground during time and extracting moving objects from 
video frames. These issues are considered as comparison 
factors in the evaluation process of this paper. 

The rest of this paper is organized as following: Sec-
tion 2, and Section 3, respectively, review a number of 
non-statistical and statistical background modeling meth- 
ods. Experimental results of evaluating different back-
ground modeling methods on various videos are pre-
sented in Section 4. Finally, the paper is concluded in 
Section 5. 

2. Non-Statistical-Based Background  
Modeling Methods 

The non-statistical approaches suppose that the back-
ground is an image, usually from the initial frame, which 
is modified along the frame sequences. These approaches, 
aimed to extract the moving objects in the video se-
quences, use the difference between the current frame 
and the background model. The non-statistical methods 
are suitable for real time applications as they are consid-
erably fast. To detect moving objects, in these approaches, 
subsequent frames are subtracted from the background, 
and then pixels with the value higher than a threshold are 
considered as the objects. A number of existing non- 
statistical background modeling methods are briefly de-
scribed in the following subsections. 

2.1. Background Modeling Independent of Time 

This method is the simplest approach for computing 
background, which is independent of time; hence this 
method is named as BMIT (Background Modeling Inde-
pendent of Time) [14,16,17]. In this approach, the first 
frame in video frame sequences is supposed to be the 
background and remains unchanged along the video se-
quences. The mathematical description of the back-
ground model can be represented as 

0
,

k
x y xB I y                 (1) 

where ,
k
x yI  is the pixel (x, y) of k-th captured frames, 

and ,
k
x yB

2.2. The Improved Basic Background Modeling 

BMIT suffers from noise and varying luminance in im-
age sequence. The improved basic background modeling 
(IBBM) method was developed in [5] to alleviate the 
deficiencies of BMIT approach. Once the pixel value of 
the absolute difference frame is more than the threshold 
value, the pixel is regarded as part of the foreground; 
otherwise, it is assigned to the background. Whenever a 
pixel belongs to the moving object, it should be updated; 
otherwise, it is not essential to update. According to this 
idea, the mathematical description of IBBM can be ex-
pressed as the following [16]: 
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where ,
k
x yAD  is the pixel (x, y) of the absolute difference 

frame between the k-th captured frame and the (k-1)-th 
background model, i.e: 
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The IBBM method can be used to reduce the noise ef-
fect and the varying luminance effect. However, IBBM 
has deckle effect hence it suffers from updating the 
deckle of the foreground in the background model 
[16,18]. On the other hand, if the foreground and back-
ground have similar colors then the wrong updating oc-
curs. 

2.3. The Long-Term Average Background  
Modeling 

To solve the deckle effect problem of IBBM, the long- 
term average background modeling (LTABM) was sug-
gested in [15,19] as defined bellow: 
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and its recursive model is as follows: 
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The LTABM computes the average by involving the 
whole past frame up to the current frame. This approach 
depends on the number of frames (K). The smaller the 
number of frames, the larger the weight of each frame; 
hence, noise in each frame would be considered more. 
By increasing the number of frame, the weight of each 
frame is reduced; subsequently, the luminance variation 
would considerably generate amount of noise effect on 
the background. 

2.4. The Moving Average Background Modeling 

The moving average background modeling (MABM)  is the pixel (x, y) of k-th background model. 
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improves the LTABM, by employing the following defi-
nition for background model [10]: 
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where W is the moving length. The background is the 
average of recent W captured frames. The weights of the 
last W frames are equal, but it cannot be written in a re-
cursive form, which results in a very high memory re-
quirement. 

2.5. Running Gaussian Averaging Background 
Modeling 

The Running Gaussian Averaging Background Modeling 
(RGABM) approach not only can be used to reduce the 
varying luminance effect and noise, but also can be writ-
ten in a recursive form, as follows [16]: 
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where 1
,

k
x yB   represents the background model in k-1 

previous frames, and   is the background updating 
rate. In this method, the value of   is very important 
and is typically set to 0.05 [18]. 

3. Statistical-Based Background Modeling 
Methods 

In statistical-based background modeling, the probability 
function of background is estimated. This function de-
termines the probability for the belonging of the pixel to 
the background. Despite non-statistical based methods, 
these approaches are suitable for modeling outdoor and 
dynamic scenes. A number of these approaches are re-
viewed in the following subsections. 

3.1. Gaussian Mixture Model 

One of the challenging issues in background modeling is 
to model repetitive motions in the video such as the 
shining water, leaves of a branch, or a waving flag. 
Stauffer and Grimson in [2] have introduced the Gaus-
sian mixture model (GMM) to extract the statistics of 
repetitive moving objects often exist in outdoor scenes. 

This approach employs the finite mixture method [20] 
to estimate the background model. In finite mixture me-
thod,    1, ,i i f x x i n    can be estimated as the 
sum of c weighted kernels as below: 
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wher denotes the weight for the i-th kernele pi , 
1

i
i

p


c

 ,  

pi ≥ 0, a g (x; ind  ) is the probability density function 
with i  as the kernel density parameter. For each n  give
feature vector x, it is considered as the background if 
 f x  . 
In (8), the parameter should be set in a way that a 

hig ensity function be assigned to the samples her value d
be

 

long to the background. This issue causes the back-
ground and foreground pixels be classified with an ac-
ceptable accuracy. 

The authors in [2] have used the EM as a valuable tool 
for optimizing problem. In using the EM technique, the
number of kernel function must be given. In this ap-
proach, an initial estimate for the kernel parameters val-
ues is needed. After that, the parameters are updated fol-
lowing the new data value. The first step is to determine 
the posterior probabilities given by (9). 
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where îj  
xj

represents the estimated posterior prob
ties that  belongs to the i-th kernel, 

abili-

 ˆˆ; ,j i ix    is the 
Normal density function of i-th kernel evaluated at xj 
 , ig x  in (8) was assumed to be Normal with 
 ˆˆ; ,  ˆ

j i ix  f, and  jx  is the finite mixture esti-
m at xj. 

robability in (9) provides the li-
kelihood that a point s to each of the separate ker-
ne

ated 
Indeed, the posterior p

belong
l densities. We can use this estimated posterior prob-

ability to obtain a weighted update of the parameters for 
each kernel. Following the EM algorithm, updated pa-
rameters for the mixing coefficients, the means, and the 
covariance matrices are obtained as bellow [20]: 
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Stauffer and Grimson have used the follo
tionally simplified equations, as they can be implemented 
us

ˆ
T

j ix 

wing computa-

ing recursive technique in programming [2]: 

   1 1 ,k k t kw w p k x               (13) 
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3.2. Non-Parametric Model 

Previous methods assumed that the 
ey need to optimize the 

rs; but optimization is a 

parameters of the 
model are unknown, and hence, th
initial values of kernel paramete
time consuming operation. To overcome this problem, a 
non-parametric model was introduced in [1]. In this ap-
proach, there is no need to optimize the parameters of 
each kernel. For modeling the messy and fast wiggling 
behavior, the model must be updated continuously in 
order to capture the fast changes in the scene back-
ground. 

For describing this model, let 1 2, , , Nx x x  be a re-
cent sample of intensity values for a pixel. The probabil-
ity density function, which indi
va

cates the pixe
d using the 

l intensity 
lue (xt) at time t, can be estimate kernel es-

timator K as following: 
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If we choose our kernel estimator function, K, to be a 
Normal function presents
width of kernel nsity can be esti-
m
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If we assume independency between the diffe
or channels, and each color channel (j-th chann
different kernel bandwidth value of

rent col-
el) has a 
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and the density estimation is reduced
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The pixel xt nsidered as part of foregrou is co nd pixel if 
 Pr tx t  

over the en
wher

 im
e the threshold t is a globa

tire age that can be adjusted to achieve a
de

Since w

e distribution and only few pairs are 
ex

l threshold 
 

sired accuracy.  
e measure the deviations between two consecu-

tive intensity values, the pair (xi, xj) usually comes from 

the same local-in-tim
pected to come from cross distributions. If we assume 

that this local-in-time distribution is Normal  2,  , 
then the deviation (xi – xj) is has also a Normal distribu-
tion with.  2, 2N    Therefore, the standard deviation 
of the first distribution can be estimated as [11]: 

1

0.68 m
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4. Performance Evaluation 

udy we ha

ng obj
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In this st mplemented the above  
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i  
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 the non-statistical b

traction phase. In th
nd coefficient associate  
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 O(K*M*N*d). 

 for each  

ents, covariance m

described
s of mem-
y in back-

rements of
e statisti-

ased 

e updating 
d

xel. 
 for each

pixel, then

ea- sure-

methods to evaluate their performa
ory requirement, consuming time, a
ground modeling. In the following sections, we discuss 
the above factors in each approach. Experimental results 
of the last two factors are also provided. In the evaluation 
process, the video frames are assumed to be gray-scale 
and the size of video frames is (M*N) pixels. 

4.1. Memory Requirement 

In this section, we compare the memory requ
the above described approach
cal-based approaches, afterward
approaches. 

4.1.1. Statistical Approaches 
The GMM algorithm has two phases: the updating phase, 
and the movi
phase, the mean, variance, a
with each kernel (K) are updated. In addition, a number 
of features (d) are considered for each pixel. In the fol-
lowing discussions, the mean, variance, and coefficient 
are verified for a frame of video in using this approach. 
The following assumptions are considered in evaluating 
the memory requirement: 

1) For mean measurement: 
 If dimension of input data is equal to d, then the 

mean vector dimensi
 A number of M*N pixe

frame. 
 The number of kernels is equal to K. 
Consequently, the memory requirement order for mean 

measurement 
2) For covariance measurement: 
 If the number of dimensions is d, then covariance 

matrix is a d*d matrix. 
 The number of kernels are K

K*d*d arrays are required for each pixel. 
According to above statem

ment memory requirement for a single frame is of 
O(M*N*d*d*K). 

3) For coefficient measurement: 
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 As the number of kernels for each pixel is K and 
each kernel 

the updating phase to c  (13)-(17) for each pixel. If 
data dimension is d, ing equal ti nsump-

r of consuming 
tim k*d*d) for each 
pi

 

racy, 
ity of the methods to discriminate ob-

has one coefficient, K coefficients are 

t in coefficient measurement 

 and coefficient for each pixel are stored in the 
m

e kernel 
fu

und as an image. All techniques in 
of memory for pix-

ime consumption of dif-
 techniques. As mentioned 

ting the moving objects are 
 

needed for each pixel. 
 The number of total pixels in a frame is M*N. 
According to the two aforementioned assumptions, the 

order of memory requiremen
is O(M*N*K) for each frame. 

Eventually, it is concluded that the first phase of 
GMM algorithm needs O(M*N*K*d*d) units of mem-
ory. 

The second phase of GMM algorithm extracts the 
moving objects. At this step, the values of mean, covari-
ance,

emory. According to the first phase, the memory re-
quirement for this step is also O(M*N*K*d*d). 

The second algorithm in statistical-based approaches is 
non-parametric background modeling. In this approach, 
memory requirement directly depends upon th

nction. If the considered kernel function has a Normal 
distribution, the number of evaluating samples is equal to 
H, and the extracting feature dimension is equal to d for 
each pixel, then the required memory will have an order 
of O(H*M*N*d*d). 

4.1.2. Non-Statistical Approaches 
The non-statistical approaches of background modeling 
consider the backgro
these approaches need M*N units 
el-data storage except the MABM technique, which 
needs L*M*N entries (L denotes the number of frames). 
Table 1 summarizes the memory requirement for all of 
the techniques discussed above. 

4.2. Time Consumption 

In this section, we compute the t
ferent background modeling
earlier, updating and extrac
the two phases of the GMM algorithm. It is essential in 
 
Table 1. Memory requirement for different background 
modeling approaches. 

Approach Type Algorithm Name Memory Requirements

GMM O(K*M*N*d*d) 
Statistical 

Approaches Non-parametric 
ackground model b

M*N 

LTABM 

L*M*N 

O(K*M*N*d*d) 

BMIT 

IBBM M*N 

M*N 

MABM 

Non-Statistical 
Approaches 

RGABM M*N 

ompute
by assum me co

tion for multiplication and division operations, and ne-
glecting the time consumption for addition and subtrac-
tion operations, then: 

1) In (13), the order of time is O(d*d). 
2) In (14), the order of time is O(d). 
3) In (15), the order of time is O(d*d). 
4) In (16), the order of time is O(1). 
5) In (17), the order of time is O(d*d). 
6) If the model has k kernels, then orde
e for the updating phase would be O(

xel, thus, order of time for each frame will be 
O(M*N*k*d*d). 

We need to use (19) to extract the moving object from 
the video sequences. In this equation, the order of time is 
O(k*d*d) per pixel, therefore the time consumption of 
each frame will be O(k*d*d*m*n). 

In non-parametric method, by considering K and A as 
respectively the number of kernels and the time con-
sumption to compute the belonging of a pixel to each 
kernel, the order of time for each pixel and each frame 
will respectively be O(K*A) and O(M*N*K*A). The or-
der of time for BMIT is a constant, hence of order O(1). 
For background modeling using IBBM, according to (3), 
the order of this function is O(M*N). The LTABM me-
thod uses (15) for background modeling and this function 
contains two multiplications and one addition operation. 
Consequently, the order of time for LTABM will be of 
order O(M*N). MABM algorithm, for constructing the 
model, calculates mean of L frames, hence the time con-
sumption for this method is of order O (L*M*N). Even-
tually the order of time for RGABM method, according 
to (9), is of order O(M*N). 

To intuitively evaluate the time consumption of dif-
ferent background modeling techniques, we applied them 
on a sample video containing 100 frames each with a
dimension of 320 × 240 pixels. The experimental results 
have been provided in Table 2. The results demonstrate 
that the non-statistical methods are faster than statistical 
method; hence, these methods are suitable for real time 
applications. On the contrary, the consuming time of 
statistical methods (in particular, the non-parametric me-
thod) is much more than non-statistical methods; there-
fore, these methods cannot be used for real time applica-
tions. These results confirm the results in [5,10,16]. 

4.3. Accuracy 

The last factor to be discussed in this paper is accu
which is the abil
jects from the background. For computing the accuracy, 
we define two error parameters. The first parameter is 
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Table 2. Time consumption of different techniques in mod-
eling the background of a sample video containing 100 
frames each with a dimension of 320 × 240 pixels. 

Algorithm Type Algorithm Name 
Consuming 

Time 
Order 

GMM 241.773229 s O(M*N*d*d)Statistical 

O(M*N*H*A)

LTABM O

O

Non-statistical 
approach 

approach Non-Parametric 981.430302 

BMIT 9.817173 s O(1) 

IBBM 10.200367 s O(M*N) 

10.253446 s (M*N) 

MABM 14.497409 s (L*M*N) 

RGABM 10.151088 s O(M*N) 

 
false negative (FN), t
sified as backgrou num

ixels. The second parameter is false positive (FP), 

 the approaches in 
m

ound modeling techniques for indoor applications. 

he number of object pixels misclas-
nd pixels over the total ber of ob-

ject p
the number of background pixels misestimated as object 
pixels over the total number of background pixels. Noise 
or illumination changes are the causes of FP error. 

We have used four frames from two video sequences, 
one indoor and one outdoor, to evaluate accuracy of each 
 

method. The error rate parameters for the indoor video 
sequence are shown in Table 3. The FN results demon-
strate that the lowest error rate belongs to MABM me-
thod; and the accuracy of GMM, LTABM, and RGAM 
methods are not acceptable. The high FN error rates ex-
press that parts of the objects are not extracted success-
fully, thus, extracted objects cannot be used for object 
indexing applications. The FP error rates demonstrate 
that the best result belongs to GMM and RGABM me-
thod, confirming that these methods are relatively safe 
against noisy conditions. The results from Table 3 indi-
cate that BMIT, IBBM, and MABM are more suitable for 
indoor background modeling compared to the other ap-
proaches evaluated in this research. 

Table 4 represents accuracy of

Table 3. Comparing accuracy of different backgr

odeling background of the outdoor video. The FN error 
rates of BMIT, IBBM and MABM methods are very high; 
therefore, the extracted objects using these approaches 
are incomplete. Consequently, these methods may not be 
suitable for real-world applications, which require com-
pletely identified objects. The results in Table 4 indicate 
that the FN error rate in GMM and RGABM are less than 
1%, however these methods have a high FP error rate. 
The results indicate that any of the evaluated approaches  

Frames 

Frame 1 Frame 2 Frame 3 Frame 4 
rage Ave

Methods 

FN  FN  FN  FN  FN FP FP FP  FP FP

GMM 0. 7 0.  0.  0.  0.  0.  0.  0  0 0003 0 0113 7548 0242 7337 0242 3721 .0150

BMIT 0 0.0080 0 0.0253 0.1418 0.0739 0.2095 0.0684 0.0878 0.0439 

IBBM 0 0.0077 0 0.0089 0.1442 0.0412 0.2267 0.0363 0.0927 0.0235 

LTABM 0.

0.

0 00006 0 0.0295 0.6962 0.0267 0.8754 0.0434 0.3929 0.0249 

MABM 0 0.0041 0 0.0194 0.1291 0.0615 0.2135 0.0781 0.0856 0.0407 

RGABM 0 00023 0 0 0.7772 0.0183 0.8690 0.0123 0.4115 0.0077 

 
Table . Com ccura of differe  backg mod chn r ou ppl .  4 paring a cy nt round eling te iques fo tdoor a ications

Frames 

Frame 1 Frame 2 Frame 3 Frame 4 
age Aver

Methods 

FN FP FN P FN FN FP  F  FP FN FP 

GMM 0.  0.  0.  0.  0.  0.  0.  0.  0  0079 9748 0104 7911 0068 9416 0039 0 0073 .6769

BMIT 0.1982 0.1275 0.2316 0.0950 0.2436 0.0664 0.1707 0 0.2110 0.0722 

IBBM 0.1565 0.1619 0.1752 0.0984 0.1874 0.0701 0.1392 0 0.1646 0.0826 

LTABM 0.0174 0.5693 0.0397 0.5921 0.0272 0.6922 0.0187 0 0.0258 0.4634 

MABM 0.1422 0.1551 0.2133 0.1040 0.1860 0.1860 0.1248 0.1248 

RGABM 0.0066 0.8187 0.0121 0.7225 0.0122 0.8265 0.0073 0 0.0096 0.5919 

0.1666 0.1425 
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h r a hi  or  FP is ved
th ara ma to erly  for

u icat

ling methods can be classified into
atistical and non-statistical approaches. 
irst group use statistical concep

. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pent-
land, “Pfinder the Human Body,” 
IEEE Transac is and Machine 

as eithe gh FN  a high , which  concei  
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o

5. Conclusions 

The background mode  
two main groups: st
Approaches in the f ts for 
background modeling. Memory requirement and con-
suming time of these methods are very high; hence, sta-
tistical approaches are not suitable for real time applica-
tions. On the other hand, these methods can be suitable 
for outdoor environment if their parameters be properly 
tuned, because of their safe operation in noise and sud-
den change condition. However, non-statistical methods 
are very easy to implement, and memory requirement of 
these approaches is very low compared to statistical me-
thods. In addition, time consumption of non-statistical 
methods is rather low; consequently, these methods are 
suitable for indoor environments and real-time applica-
tions. 
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