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ABSTRACT 

With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-
tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to 
combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author 
to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this 
note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a 
steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector 
potential of the looping current conducive to its 3D graph is presented. 
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1. Introduction and Motivation 

In the course of quantifying the flux of a magneto- dy-
namic field of a permanent mobile magnet through a 
certain planar conducting loop, the author needed to 
evaluate its companion static magnetic field. The evalua- 
tion of the latter entails modeling the current distribution 
within the permanent magnet. One such model deals with 
a current confined to the rim of a nut-shaped magnet. 
Other models extensively have been considered as well; 
for a comprehensive detailed analysis see Sarafian [2]. In 
the course of developing these models the author stum- 
bled across a few issues of interest; surprisingly, none 
were addressed in the scientific literature. The lack of 
information was traced to pre-CAS era. Therefore, the 
thrust of this note is to provide the detailed procedure 
based on the application of a CAS such as Mathematica 
evaluating the magneto-static related quantities.  

This note is composed of three sections. In addition to 
Introduction and Motivation, in Section 2, Analysis, we 
extend the current classic theoretical status of evaluating 
the vector potential and its associated magneto-static 
field of a steady looping current conducive to its 2D and 
3D visual displays. In the last section we close the note 
with a few remarks.  

2. Analysis 

In general it is assumed that the electric current is the 
source of the magnetic field. The issue of interest is, “for 
a given current distribution, to evaluate its associated 
magnetic field.” Although in general one may apply 
Biot-Savart law [3] to evaluate the field, in practice one 
encounters mathematical challenges. Hence, in order to 
ease the mathematical difficulties one introduces a “sim-
pler” mathematical object such as potential. Loosely 
speaking, the directional derivative of the potential yields 
the field. The theory of this methodology is classic and 
can be reviewed in detail almost in any upper level un-
dergraduate as well as graduate physics textbooks, e.g. 
[4,5]. For a magneto-static field the potential is a vector; 
it is called vector potential, denoted by A A

　

, and is re-
lated to the magnetic field,    B r A r  ,vector 
r r represents the coordinates of an appropriately chosen 
coordinate system and  is casted accordingly. Denot-
ing the current density by  J r the vector potential is 
given by [4,5], 

   
dk




 
J r

A r r
r r

           (1) 

The integral is evaluated on the volume of the current 
distribution denoted with the volume element d r ; with 
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r  being the observation point vector. The permeability 
of the free space in SI units is 7

0 4 4 10k     . We 
apply this formulation to a steady current i looping in a 
circle of radius a positioned on a horizontal plane cen-
tered about the origin of a coordinate system, see Figure 
1. 

Setting = 0 yields, 

If one chooses a spherical coordinate system, the cur-
rent density distribution J  can be written as, 

      ˆcos r a
1

, , sinr i e
a         J    

ê

   (2) 

Here  is Dirac delta function, and   is the unit vector 
along the polar direction   of the spherical coordinate 
system denoted with the vector  , ,r     r . The de-
nominator of (1) is 

   

 2 2 2 sin sin cos   



  

     

   

r r r r r r

r r rr
 

where we utilized 

 sin cos , sin sin , cosr r r    r  

and  

r '
　

 sin cos , sin sin , cosr r r             r  

The volume element in (1) is  
2d sin d dr r      r d   

Upon substituting these pieces in (1) and integrating over 
 and ddr    we arrive at  , ,A r   . The  dependent 

of the potential is traced to 

 2 2 2 sin cosa r ar       

However, utilizing the symmetry of the current yields a  
independent potential; that is to say irrespective the polar 
angle observation point the potential has the same value. 

 

Figure 1. Display of a looping current i circulating a circular 
ring of radius a. The coordinate of the observation point is 

 , ,r   . r

 
2

r,A k ai


 2 2
0

cos
d

a 2 sin cosr ar

 
 


 

 
  (3) 

Equation (3) is evaluated analytically in [5]. Three 
steps a

 

re needed to deduce the output. First, replace 
cos  using the trigonometrical identity 

2 1
cos 2cos ( ) 1 

2
    

In step 2, introduce a new variable 
1

2
  . By ma-

nipulating the integrand we get, 

 
2 2

2

2 2 2 2
0 0

2
r,A 

2 sin

cos 1
d d

1 cos 1 cos

a r ar

k k

 



  
 

 
 
  
   
 

 (4) 

where 



2
2 2

4 sin

2 sin

ar
k

a r ar





 

. In step 3, we recall the 

on of the Complete Elldefiniti iptical integral of the First 
and the Second kind, namely,  

 
2 1

K k
2 2

0

d
1 sink




 

and 



 

 
2

2 2

0

1 sin dE k k  


   

respectively. Then it is a matter of exercis how these e to s
integrals are invariant after replacing sin  with cos . 

Hence, the second term of (4) yields 2 K(k). The inte-
grand of the first term of (4) can be also manipulated as 

 2 2 2 2
2

1
1 1 cos 1 cosk k

k
       and the integra-

tion yields    2

1
2 2K k E k

k
    . Putting t

 arrive at, 

hese pieces 

together we

 

     

22 2

2

4 1
,A r k 

2 sin

2 2

ai
ka r ar

k K k E k


 

 
    

   (5) 

With this analytic expression at hand, we pursue 
evaluating its associated magnetic field. Applying the 
fundamental relationship between the vector potential 
and the field, namely, B = A , in a spherical coordi-
nate system we write, 

ˆ ˆ ˆh e h e
1 r r

r
r

r r

h e

h h h
h A h A h A

   

 
 

   

 
      
 
 

A     (6) 
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where the curvilinear scale factors are  , ,rh h h   
 1, , sinr r 

given in (6) yi
, [6]. Expanding the 3 × 3 
elds the components of the ma

namely, 

dete
gnetic field, 

rminant 

 
 
 

 

 , ,

, 0

rB r rA r
r

B r

 



1
sin ,

sin,
1

r

A r
rB r

  


      

evaluate the vector potential and display its physical fea-
tures. And in subsection Analysis c we display the 3D 
graph of the vector potential as well as the graphic rela-
tionship between the potential and the field. 

2.1. Analysis a 

Utilizing (5 & 7) deploying Mathematica we symboli-
cally evaluate the magnetic field. What follows are the 
needed Mathematica codes. In these codes EllipticK and 
EllipticE are the Mathematica library functions for the 
Complete Elliptic Integrals of the First and the Second 
kind, respectively. 

 



      
 
 



   (7) 

According to (5) the vector potential is an e
function of elliptic integrals. Hence, it is not hard to en-
vision that evaluating (7) is mathematically challenging. 
A thorough search reveals no such calculation has been 
re

xplicit 

   
 2 2

4 in
.; _, _ :

2 in

arS
a kr r

r a arS


 


 

 
 

ported in scientific literature. The classic textbook in 
electromagnetism, “Classical Electrodynamics”, Jackson 
[5] now in its third edition mnemonically refers to the 
components of the field, however does not explicitly 
provide the formulation. Without these explicit compo-
nents it is hard to form an informed opinion about the 
magnetic field. One of the objectives of this note is to fill 
in the gap and complete the formulation of the problem 
at hand. Pursuing this goal in subsection Analysis a we 
utilize Mathematica and show how symbolically this is 
accomplished. In subsection Analysis b numerically we 

 
 

    

2

22 2

4 1
((2 , )

,2 sin

, 2 , ;

a
A r kr r

kr rr a ar

EllipticK kr r EllipticE kr r

  
 

   

 
 

   



 
 

      

,

1 1
in , / /

sin

R

r

B B

S A r rA r Simplify
r r



     


      
    
The radial and the azimuthal components of the 

magnetic field are denoted by  ,RB B . These are:  

     
 

 
 

 
     

 
 

 

2 2
2 2

in
ot 2

2R

arS
B C ar a r EllipticK

a r


2 2

2 2
2 2 2 2 2 2

arcsin
1 2

in 2 in

in in in
2 4 in 1 2 1 2

2 in 2 in 2 in

EllipticE
arS a r arS

arS arS arS
a r S

a r arS a r arS a r arS

 
 

  


  

  
     
    

 
           
              

        
 


   

 
   

 
 

    
 

2 2 2 2
2 2 2 2

1
3

2 2 2 2
2 2

in in
sc 3 1 2

2 in 2 in

in
2 in 1 2

2 in

arS arS
a r a r C ar

a r arS a r arS

arS
r a r arS

a r arS

 


 








  
      
        

             

 



   
          

 

 
      

     

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

in in
sc 2 2 5 in 1 2

2 in 2 in

in in
2 3 5 4 in 1 2

2 in 2 in

arS arS

sc

B rC EllipticK r a r a a r S
a r arS a r arS

arS arS
EllipticE ar a r arS a r C

a r arS a r arS



 
 

 

 
 

 

   
         

        
   
       

        

 
 





 

 
 

    
 

3

2

2 2
2 2 2 2

1

2 2 2
2 2

in in
2 3

2 in 2 in

in
2 in 1 2

2 in

arS arS
a r

a r arS a r arS

arS
r a r arS

a r arS

 
 








  
     
        

  
      

    
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These expressions are the components of the magnetic 

filed at the position vector . For instance, for the given 
looping current, one intuitively expects that, on the hori-
zontal plane, the radial component of the field to vanish.  
Since the azimuthal component of the field on the hori-
zontal plane practically is along the vertical axis it should 
intuitively direct itself in two opposite vertical directions, 
depending on the point of interest being inside or outside 
of the loop. The latter observation conforms to the basis 
for one of the man made “Right Hand Rules”. For nu-
meric evaluation and for simplicity we consider a loop 
with a one unit radius. Setting the azimuthal angle = 
/2 conform

r

s to the horizontal plane. The next two code 
lines give the value of the radial component of the field 
and the plot of the azimuthal B (vertical Bz) field.  

 . 1., 2 0RB a      

Plot[Evaluate[  . 1., 2B a    ], {r, 0.1, 2}, 
PlotStyle –> {Black,Thick}, AxesLabel –> {“r”, “~B = 
Bz”}, GridLines Automatic]  

According to Figure 2, the field along the azimuthal 
(vertical) direction vanishes for the far points; an ex-
pected result. On the contrary for the points inside the 
ring they have the opposite sign i.e. they are directed in 
the opposite direction. While approaching the center of 
the ring the field behaves in the direction it is displayed.  

2.2. Analysis b 

Graphic display of the potential is missing in the scien-
tific literature; this hinders ones physical insight. Utiliz-
ing Mathematica graphics, we fill in the gap. To accom-
plish this, it is helpful to plot the contours of the potential 
about the ring. Utilizing the symmetry of the ring we plot 
the contours only on the xz-plane. First we change the 
coordinate system from spherical to its associated Carte-
sian coordinate. This requires replacing x = rsin. This 
 

 
Figure 2. Display of the azimuthal B (vertical Bz) compo-

ent of the magnetic field on the horizontal plane of a cur-n
rent, looping in a circular loop of radius one unit. The as-
ymptote of the field occurs at r = a = 1. The field changes 
sign/direction around the rim of the loop. 

also entails reformatting the argument of the elliptical 
integrals. The code reads, 

  2 2 2

4
.; _, _ :

2

ax
a kxz x z

x z a ax
 

  
 

 
  

    

2

22 2 2

4 1
2 ,

,2

, 2 , ;

a
A xz kxz x z

kxz x zx z a ax

EllipticK kxz x z EllipticE kxz x z

  
  

       

 


contourplotExactzoomed = ContourPlot[Axz/.a1, {x, 
0, 2}, {z, –1, 1}, ContourShading False, ContourStyle 
Thick, GridLines Automatic, FrameLabel {“x”, 
“z”}]  

disk=Graphics[Disk[{1,0},0.02]];  
Show[{contourplotExactzoomed,disk}] 
This graph assists in forming an opinion about the po-

lar component of the magnetic vector potential. In other 
words, it shows for the points close to the rim of the ring 
the potential contours are closed loops asymmetrically 
wrapped around the ring. For the points near by the 
symmetry axis, the contours are open; they are almost 
straight lines parallel to the symmetry axis. For the out-
side far points the contours are open curves; e further 

r transitions. 
tableContourN = Table[Show[{ContourPlot[Evaluate 

[Axz/.a 1] n, {x, 0, 2}, {z, –1, 1}, ContourShad-
ing False, ContourStyle Thick, GridLines Automatic, 
Frame Label {“x”, “z”}](*{n, 2.9, 3.1, 0.1}*), disk}], 
{n, 3.15, 2.9, –0.05}] 

 

th
the points are from symmetry axis the curves are less 
bent. 

Figure 3 also shows that there is a transition interior 
region where the closed contours break away forming 
open curves. Zooming in this feature we make a series of 
plots animating the contou

 
Figure 3. The contour plots of the vector potential A(x,z) on 
the xz-plane. The dot at the center of the graph is the cross 
section of the current carrying loop. 
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Figure 4. Frames of the contour plots of the vector potential 

 ,A x z  

ing mutation f

on the xz-plane. The frames show the shape shift-

rom the break away configuration to the 
joined contour phase. 
 
In other words, plots shown in Figure 4 are a series of 
individual refined collective contours of Figure . Exe-

2.3. Analysis c 

Applying 

3
-cuting the Mathematica code given at the top of the Fig-
ure 4 animates the plots bringing the transition of the 
plotted graphs to life. 

B = A  we may now visualize the mag-
netic field. The fields are tangent to the potential curves, 
i.e. the contours and the fields are on the same plane. The 
fields are plotted applying Mathematica StreamPlot. In 
doing so first we replace the spherical coordinate system 
with its associated Cartesian coordinate. We then zoom 
in three different areas: the entire region, the region close 
to the center and the region far from the loop. These are 
shown sequentially in Figure 5. 

These plots show the relationship between the poten-
tial and the field. For instance the first graph shows how 
the field in order to sustain its tangential alignment re-
orients itself; compare this feature vs. the field for the 
points close to the rim and the ones close the center. One 
readily may observe useful features analyzing the second 
and the third graphs as well.  

literatur

pherical coordinate system. 

We further our analysis by displaying three 3D graphs
for the vector potential Figure 6; these are also missing in 

e. These surfaces are formed by revolving a hand 
full of potential contours displayed in Figure 3 about the 
symmetry axis in the s

 

 
Figure 5. The black curves are the vector potential on the 
xz-plane. The field lines are shown with vectors. 

tableSpherical3DN = Table[SphericalPlot3D[Ar/.a 
1.,{, 0, }, {, 0, }, Mesh False, PlotStyle 
Directive[Hue[0.2r], Opacity[0.7], Specularity[White, 
10], ImageSize600,PlotRange {{–1, 1}, {–1, 1}, 
{–5, 5}}]], {r, 0.01, 3, 0.5}] 

Copyright © 2011 SciRes.                                                                               JEMAA 
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Figure 6. 3D plots of the vector potential resulting from 
revolving the 2D contour plots of the potential about the 
symmetry axis of the ring. 

 
In many words, the magnetic vector potential is a 3D 

function. For the best scenario its 2D profile utilizing 
Mathematica contour plot is depicted in Figures 3 and 4. 
Here in Figure 6 we have displayed its 3D actual being 
conducive to a better understanding of the problem at 
hand. This is missing in scientific literature.  

tance 

3. Conclusions 

Traditional methodology of mathematical physics with 
the advent of Computer Algebra System (CAS) has gone 
through a quantum transition. CAS can assist and mini-
mize the tedious longhand symbolic calculations requir-
ing time consuming efforts that once hindered the explo-
ration of new horizons. Numeric computation of issues of 
interest as well as their accompanied graphs utilizing 
CAS is a norm of mathematical physics. Consequently, 
the authors of scientific academic textbooks are encour-
aged to utilize CAS to present results. An example of 
how these features are culminated conducive to a com-
prehensive research project is presented in this note. The 
author systematically following the traditional steps of 
mathematical physics has tackled a topic of interest util-
izing a CAS such as Mathematica bringing the project to 
fruition. The details discussed in this project are an ex-
ample demonstrating how Mathematica plays an essen-
tial role exploring new features not yet reported in scien-
tific literature. The entire project including the text is 
completed utilizing the latest version of Mathematica, V 
8.0.1 [7]. A thorough literature search has been com-
pleted by the author; since this project is a novel concept 
without previous studies, he is unable to augment the 
reference list beyond its current status. 
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