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Abstract 
 
We make a connection between quantum phase transitions in condensed matter systems, and supersymmetric 
gauge theories that are of interest in the particle physics literature. In particular, we point out interesting 
effects of the supersymmetric quantum electrodynamics upon the critical behavior of the Ginzburg-Landau 
model. It is shown that supersymmetry fixes the critical exponents, as well as the Landau-Ginzburg para- 
meter, and that the model resides in the type II regime of superconductivity. 
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1. Introduction 

A very well studied model in the condensed matter 
literature is the Ginzburg-Landau (GL) model [1], des- 
cribed by the lagrangian of an Abelian Higgs model 

2 2 42 21
=

4
D m F             (1) 

where   is a complex scalar field charged under the 
abelian gauge field A , with the gauge covariant deri- 
vative and field strength  

=D ieA                   (2) 

=F A A                    (3) 

When 2 > 0m , the gauge symmetry is exact, and the 
model describes a massive complex scalar particle that 
interacts with a massless photon. The electric potential 
between these scalars has the usual Coulomb form, and 
therefore this is referred to as the Coulomb phase. On the 
other hand, when 2 < 0m  the gauge symmetry is spon- 
taneously broken, and in this Higgs phase the model 
describes a massive gauge boson and a massive real sca- 
lar field. The nature of the transition between the Higgs 
and Coulomb phase has been of great interest to the con- 
densed matter community. 

The critical fluctuations in the Ginzburg-Landau model 
of superconductors were studied in [2], while the fixed 
point structure for the GL model was presented in [3]. 

Furthermore, in previous works the authors have inves- 
tigated models in which massless Dirac fermions are 
coupled to the Ginzburg-Landau model [4]. The presence 
of the Dirac fermions is justified by the fact that effective 
microscopic models of strongly correlated electrons 
usualy contain them [5]. The critical exponents can be 
computed as a function of the number FN  of the fer- 
mions, and for increasing FN  the models is driven into 
the type II regime of superconductivity. In particular, for 
the minimum allowed value of the fermion number, 

= 4FN , both values of the   parameter, correspond- 
ing to the ‘T’ fixed point and the ‘SC’ fixed point, are 
found to be above the mean-field GL value 1 2 , in 
contrast to the theoretical [6] and the Monte Carlo num- 
bers [7] in the GL model. In this article we point out that 
the generalization of the Ginzburg-Landau model to a 
supersymmetric one necessarily introduces fermions both 
in the matter and gauge supermultiplets, and that the 
restrictions imposed by the symmetries of the model 
unambigiously determine the critical exponents and the 
Landau-Ginzburg parameter, which is found to be in the 
type II regime of superconductivity. 

Finally, we remind the reader that a) all exactly sol- 
vable models show that not all of the critical exponents 
are independent. In fact they satisfy certain scaling laws, 
supported by all the experimental and numerical results, 
and it can be shown that there are only two independent 
critical exponents. If we take them to be   and  , the 
rest of the critical exponents are given by [8,9]:  
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= 2 D                  (4) 

 = 2
2

D
                (5) 

 = 2                   (6) 

2
=

2

D

D




 
 

                (7) 

where D  is the dimension of the system, and b) in the 
Landau-Ginzburg theory there are two fundamental length 
scales, namely the penetration length   and the cohe- 
rence length 0 . The Landau-Ginzburg parameter   is 
defined as follows  

0




                  (8) 

and it can be shown that < 1 2  corresponds to type 
I superconductors, while 1 2   corresponds to type 
II superconductors. 

2. The Supersymmetric Model and Critical 
Exponents 

Supersymmetric Quantum Electrodynamics (SQED) is an 
abelian gauge theory with the following field content [10]: 

1) One vector multiplet  , ,A
  


 consisting 
of the photon and the photino (in the so-called 
Wess-Zumino gauge), described by a vector and 
a Majorana spinor field.  

2) Two chiral multiplets  ,L L
   and  ,R R

   
with charges = 1LQ  , = 1RQ  , each consisting 
of one Weyl spinor and one scalar field, consti- 
tuting the left- and right-handed electron and se- 
lectron, the matter fields. 

The electron Dirac spinor and the photino Majorana 
spinor are given by  

= ,   = .
L

R

i

i

 
 

 


 

   
      

  
           (9) 

The SQED Lagrangian contains kinetic, minimal cou- 
pling and mass terms and in addition, due to the super- 
symmetry, coupling terms to the photino and quartic terms 
in the selectron fields: 

 
   

S

22 †

† †

22 2 2 22
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=
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2
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      

     

 

   
(10) 

with the gauge covariant derivative and field strength  

= ,D ieQA                 (11) 

= .F A A                   (12) 

It must be noted that the model with just one chiral su- 
permultiplet is anomalous, while the inclusion of a second 
chiral supermultiplet with opposite electric charge renders 
the model anomaly-free, since in this case = 0TrQ . The 
two Weyl spinors combine to form the Dirac spinor of 
the usual spinor electrodynamics in the standard four- 
component formalism. 

The model contains both bosons and fermions, with 
equal masses and degrees of freedom within each multi- 
plet. The form of the interactions, as well as the values of 
the couplings, are completely determined by the symme- 
tries. It is interesting that there is just one coupling con- 
stant, namely the electric charge e . We have the usual 
types of interaction that one encounters in the usual field 
theory, namely quartic interaction for the scalars, Yukawa 
coupling, and the gauge (electromagnetic) interaction. 
We thus know that the theory is renormalizable. In fact, 
here we have just a wave function renormalization both 
for the vector and the chiral multiplets due to supersym- 
metry [11], and furthermore the beta function for the elec- 
tric charge is determined by the photon self-energy and 
wave-function renormalization due to gauge invariance 
[12]. 

The investigation regarding the critical behavior is ac- 
cording to the following program: a) Perform a one-loop 
analysis to compute the relevant counterterms that elimi- 
nate the unwanted divergencies, b) determine the beta- 
function for the electric charge  e , as well as the 
anomalous dimensions for the scalars ,m   , c) find the 
fixed points from the condition  * = 0e , and finally d) 
compute the critical exponents ,   using the well- 
known formulas [4,13]  

*= 2                     (13) 

 *

1
=

2 1 m




              (14) 

where the anomalous dimensions, as well as the beta 
function are given by [14]  

  =
  




              (15) 

ln1
=

2

Z
 





             (16) 

=m

m

m






               (17) 

with   the renormalization mass scale, and 2= 4πe  
the fine-structure constant. Note that our definitions for the 
anomalous dimensions are slightly different than [4,13]. 
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We start from the photon self energy, that will allows 
to compute the electric charge beta function    . The 
relevant loop-diagrams are shown in Figure 1. We have 
the same diagrams as in the usual spinor and scalar 
electrodynamics. The electric charge beta function has a 
contribution from a Dirac spinor and a contribution from 
two complex scalars. At one loop and using dimensional 
regularization [15] (the space-time dimension 4   

= 4D  , then take the limit 0   and isolate the 
divergent part 1/  ) one obtains the result 

 
2

, =
π

               (18) 

Next we turn to the scalar field self-energy. The 
relevant diagrams can be shown in Figure 2. We have 
the three usual diagrams from scalar electrodynamics, plus 
a new one with the Yukawa coupling with the Dirac 
electron and the photino Majorana fermion. For the sca- 
lar field wave-function renormalization we find the result 
(in the Lorentz gauge)  

2

2

5
= 1

8π

e
Z 

              (19) 

Now it is a straightforward algebraic task to compute 
the anomalous dimensions and then the critical exponents. 
We thus obtain our final results (for = 3D  or = 1 )  

= 2.5                   (20) 

 
 

 
(a) 

 

 
(b) 

   

 
(c) 

Figure 1. Feynman diagrams for the photon self-energy 
with the usual spinor and scalar electrodynamics interac- 
tion vertices. 
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

L L
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L  
L

   
(c)                           (d) 

Figure 2. Feynman diagrams for the scalar self-energy with 
(a) the quartic, (b) the single photon, (c) the two-photon, 
and (d) the Yukawa interaction vertices. 
 

1
= 0.17

6
                 (21) 

Our results for  e  and   agree with the 
corresponding formulas of [16] at one loop. In [4] there 
are FN  massless fermions, and two coupling constants 
with two different beta functions. The authors in [4] have 
found two fixed points (tricritical and superconducting), 
and that the number of massless fermions must be at 
least four. The   critical exponent is always negative, 
while the   critical exponent is always positive, and for 
both exponents the absolute value is a number around 0.5 
when FN  is small. In our supersymmetric version of 
the model, there is just one massive fermion, since super- 
symmetry requires that there are equal number of 
fermionic and bosonic degrees of freedom, and with the 
same masses. There is only one coupling constant, namely 
the electric charge e , and thus just one beta function, 
and a single infrared stable fixed point. Despite this, there 
is also here a quartic self-interaction potential for the 
scalar field, where the coupling is fixed by supersym- 
metry, and it is given in terms of the electric charge. 
Furthermore, we find also a negative   critical ex- 
ponent and a positive   exponent, with values not too 
different from the ones obtained in [4] for small FN . 

3. Supersymmetry Breaking and the   
Parameter 

So far we have not seen any superpartners yet, and thus 
supersymmetry must be broken. In this section we shall 
discuss spontaneous breaking of supersymmetry, follow- 
ing [17], within the framework of the Fayet-Iliopoulos 
mechanism [18]. In an abelian  1U  supersymmetric 
gauge theory an extra term is allowed by the symmetries, 
the so called Fayet-Iliopoulos term, D , where D  is 
the auxiliary field in the vector supermultiplet, and   is 
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a new parameter with mass dimension two. If 1 2, ,F F D  
are the auxiliary fields in the off-shell formulation of the 
supersymmetric theory, the scalar potential is given by  

2 * *
1 1 2 2

1
=

2
D F F F F             (22) 

and the auxiliary fields satisfy the following equations of 
motion  

*
1 2 = 0F mA                (23) 

*
2 1 = 0F mA                (24) 

 * *
1 1 2 2 = 0

2

e
D A A A A            (25) 

where now the scalar fields are denoted by 1 2,A A  in- 
stead of ,L R  . Supersymmetry is broken since there is 
no solution that leaves = 0 . Upon substitution the 
scalar potential takes the form  

 

2 * 2 *
1 1 2 2

22 * *
1 1 2 2

=
2 2 2

1

8

e e
m A A m A A

e A A A A

           
   

 



    (26) 

We can see that there are two possibilities, namely that 
2 > 2m e  or 2 < 2m e . In the first case the 1 =A  

20 = A  minimizes the potential, the form of which is 
shown in Figure 3(a). The supersymmetry is sponta- 
bneously broken but the gauge symmetry is exact. The 
theory describes two complex scalar fields with masses  

2

2

e
m


  and 2

2

e
m


 . The rest of the fields, namely  

the photon  , the photino  , and the two fermions 

1 2,   retain their masses. In particular, the photino is the 
massless goldstino. In the second case the 1 =A 20 = A  
no longer minimizes the potential, the form of which is 
shown in Figure 3(b). This time both the supersymmetry 
and the gauge symmetry are broken simultaneously. The 
minimum corresponds to 1 2= 0, =A A v , where the 
vacuum expectation value v  is determined from  

2 2
2 = 0

4 2

e v e
m

   
 

           (27) 

This model describes a vector field and a scalar field 
of mass 2e , a complex scalar field with mass 

22m , a massless goldstino, and two spinor fields with  

mass 2

2

e
m


 . The Landau-Ginzburg parameter 

therefore is easily computed to be  

1.41
= = 1

2
s

v

m

m
              (28) 

which is larger than 1 2 , and we thus have a type II  

 
(a) 

 
(b) 

Figure 3. (a) The scalar potential versus 2A  in the 
2 > 2m e  case (in arbitrary units). Supersymmetry is spon- 

taneously broken, but the  1U  gauge symmetry is exact. 
(b) As in (a) but in the 2 < 2m e  case. Here, both super- 
symmetry and  1U  gauge symmetry are spontaneously 
broken. 
 
superconductor. It is interesting to see again that our 
value of the Ginzburg parameter is comparable to the 
value obtained in [4] at the superconducting fixed point 
and for = 4FN . Therefore, we conclude that super- 
symmetry provides the kind of lagrangian studied in [4], 
and that the values of the Ginzburg parameter and of the 
critical exponents are similar to the ones obtained in [4], 
without a second coupling constant   for the scalar 
quartic self-interaction, and without many fermions. 

4. Conclusions 

We have proposed and analyzed a supersymmetric 
extension of the Landau-Ginzburg theory, which is es- 
sentially the supersymmetric version of quantum electro- 
dynamics. The model describes the interaction of a Dirac 
fermion and two complex scalar fields with the photon 
and its superpartner, the photino, which is a Majorana 
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fermion. All the couplings in the model are given in 
terms of the electric charge. It is interesting that there is a 
quartic self-interaction coupling for the scalar fields even 
in the absence of a coupling  . Within the one-loop 
renormalization program we give the expression for the 
wave-function renormalization, and according to the 
standard prescription we compute the critical exponents 

,   from the beta function and the anomalous dimen- 
sions. Finally, we have discussed spontaneous supersym- 
metry breaking a la Fayet-Iliopoulos mechanism. There 
is a case in which both supersymmetry and gauge sym- 
metry can be broken at the same time. The photon ac- 
quires a non-vanishing mass, and the Landau-Ginzburg 
parameter is computed. We find that its value corre- 
sponds to type II superconductors. Our values of the 
Ginzburg parameter and of the critical exponents are 
similar to the ones obtained in [4], without many fer- 
mions and without the introduction of a second coupling 
constant for the scalar quartic self-interaction. 
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