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Abstract

In this paper, a fixed-point theorem has been used to investigate the existence of countable posi-
tive solutions of n-point boundary value problem. As an application, we also give an example to
demonstrate our results.
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1. Introduction

The multi-point boundary value problems arising from applied mathematics and physics have received a great
deal of attention in the literature (for instance, [1]-[4] and references therein). But, by so far, few results are
about the existence of more than five solutions. To the author’s knowledge, there are very few papers concerned
with the existence of countable positive solutions for multiple point BVPS (for instance, [5] and references
therein). In [5], the authors discussed the existence of countable positive solutions of n-point boundary value prob-
lems for a p-Laplace operator on the half-line. Directly inspired by [5], in this paper, by using a fixed-point theo-
rem, we study the existence of countable positive solutions of the following n-point boundary value problems.

u"(t)+a(t) f(u(t)) =0, te(0,1), (1.1)
w(0)=0, u(l):'gaiu(;), (1.2)
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n-2
where a; €[0,+x), 0<Xa<l, 0<§<g<-<é, <1, feC([O,+oo),[O,+oo)).
i=1

a(t): [0,1] > [0,+) and a(t)#0 has countable many singularities in [O%)

This kind of problem arises in the study of a number of chemotherapy, population dynamics, ecology, indus-
trial robotics and physics phenomena. Moreover, many problems in optimal control system, neural network (for
example in BAM neural network) and information systems for computational science and engineering (espe-
cially in Internet-based computing) can be established as differential equation models with boundary condition
(see, for instance, [6] and references therein).

At the end of this section, we state some definitions and lemmas which will be used in Section 2 and Section 3.

Definition 1.1 A map « is said to be a nonnegative, continuous, concave function on a cone P of a real
Banach space E ,if a: P> [0,+oo) is continuous, and

a(tx+(1-t)y) 2 ta(x)+(1-t)a(y)

forall x,yeP and te[01].

Definition 1.2 Given a nonnegative continuous function » on a cone P c E, for each d >0, we define
theset P(y,d)={xeP: y(x)<d}

Lemma 1.1 [7] Let E be a Banach spaceand Pc E beaconein E.Let «, B, y, be three increasing,
nonnegative and continuous functions on P, satisfying for some ¢>0 and M >0 such that

- r0)<p()<a(), <My

for all xeP(y,c). Suppose that there exists a completely continuous operator T: P(y,c)—P and
O<a<b<c suchthat
1) y(Tx)<c,for xedP(y,c).
2) B(Tx)>b, for xedP(B,b).
3) P(a,a)2@,and a(Tx)<a,for xedP(a,a).
Then T has at least three fixed points X, X,, X, € P(y,¢) such that

0<a(x)<a<a(x,), B(x,)<b< B(x), 7(x)<c.

This paper is organized as follows: The preliminary lemmas are in Section 2. The main results are given in
Section 3. Finally, in Section 4, we give an example to demonstrate our results.

2. The Preliminary Lemmas

In this paper, we will use the following space E=C [0,1] and E isa Banach space with the norm-
||u||=5up|u(t)| .Let J=[0,1], we defineacone K<E by
te[O,l]

K= {u eE:u (t) is a non-increasing and nonnegative concave function on J} .

For convenience, let us list some conditions.
(H,) f €C([0,4),[0,4+)) and on any subinterval of J and when u isbounded, f(u(t)) is bounded
on J.

(H,) There exists a sequence {t} such that t

i+1

1 : .
<t <o limt =t !LTa(t):OO’ =12, and

[a(t)dt <+oo.

Lemma 2.1. Let 0<(1—Zaij<0, h(t)eC[0,1] and h(t)>0 on (0,1), then the boundary value

i=1

problem
u"(t)+h(u(t))=0, te(0,1), (2.1)
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u'(0)=0, uu):tjam(é), 2.2)
has a unique solution
U(t)Z—I;(t—S)h(U(S))dS+1 — I (t—s)h(u(s))ds—: a,jj' (&-s)h(u(s))ds

Proof. The proof is easy, so we omit it.
By u’(t):—j;h(u(s))dsso, u"(t)=-h(u(s))<0, we know u(t) is decreasing and concave on [0,1].
Then we have

maxu(t)=u(0)= o <L 2.3)
o 1-Xa 1- z a,
tme[g%u(t):u(l): nl_z [nf:a,j; (1—s)h(u(s))ds+le_zlaij'fi (1—§i)h(u(s))dsjzo (2.4)
1— a i=1 i=1

From (2.3), (2.4) and the concavity of u(t) , We can easily get the following lemma.
n-2

Lemma 2.2. Let 0< (1—Zai j <0, if h(t)eC[0,1] and h(t)>00nC[0,1], then the unique solution
i=1

n-2
Ki (1_55})
u(t)of (2.1)-(2.2) satisfies u(t)>0, te[0,1] and ggzlu(t)zi”u",where /1:"1—2k§<1.

[E=N

i=1
For ue K, we define an operator A: K —E by

(Au)(t):—_[;(t—s)a(s)f(u(s))ds+ 1_2 (.f;(l—s)a(s)f(u(s))ds—nz-z“ai'[ji (Lfi—s)a(s)f(u(s))dsj (2.5)

1— a i=1

>

Il
iN

For ueK,then ueE, sup|u(t)| <+0,by (H,), weknow f(u(t)) isboundedon J.
ted
So there exists M, >0, such that

max f (u(s))<M,. (2.6)

sel

It is easy to see that (Au)(t) is decreasing and concave on [0,1]. Then for ue K, we have AueK, that
is
AK c K . .7)
From (H,), (2.3) and (2.6), we have

max (Au)(t) =(Au)(0) <

te[0,1]

< +o0. (2.8)

From (2.7), (2.8), we can get the following lemma.

Lemma 2.3. Suppose (H,) and (H,) are satisfied. Then A:K — K is bounded.

Lemma 2.4. Assume (H,),(H,) are satisfied, then A:K — K is completely continuous.

Proof. From Lemma 2.2, we know A is bounded. If W € K is a bounded subset of K, then AW is uni-

formly bounded on 1 =[0,1].
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For any ueW, t,t, €[0,1], without loss generality, we may assume t, >t, by (2.5), (2.6), (H,), we

have
|<A“><H>—<A“><tz>l - IS(H—s)a(s) f(u(s))ds— [ (1, -5)a(s) f (u(s))
(t 1) a(s) f (u(s))os]+[[ sa(s) T (u(s))as >0

) f(u(s))ds|+

uniformlyas t —t,.

So AW isequi-continuouson 1=[0,1].
At last, by (2.5), (Hz) the Lebesgue dominated convergence theorem and continuity of f , we know

A is continuous. Then by the Arzela-Ascoli theorem, we can getthat A: K — K is completely continuous

3. Main Results

Let 6, e(t.t..),
tions Wlth

6, <r,<1-6, and y,, B, o, be three nonnegative, decreasing and continuous func-

re(u)= max u(t), A (u)=minu(t), & (u)= max u(t).

Obviously, for vue K wehave y,(u)</f, (u)< o (u).
In the following, we let

p:(l—nz_zaijlj': a(s)ds, nz(l—n'_zaiy(gaij; (1-s)a ()dsj

i=1

Thenitiseasytosee p>n.
The main result of this paper is as follows.
., besuchthat 6 e(t.t,.,)

Theorem 3.1. Assume that (H,)-(H,) hold. Let {4},
(k=12-), {a}, . {b},, and {c,} _, besuchthat ¢, <a <Ab <c, and phb, <nc,.

Ck k=1
Furthermore for each natural number k we assume that f satisfies:

(k=12,).

(H,) f(u)<% forall 0<u(t)<c /4;

(H,) f (u)<b—k forall b <u(t)<hb /2
n
(Hy) f(u) <2 forall O<u(t)<a/A.
P
Then the BVP (1.1)-(1.2) has at least three infinite families of positive solutions
{uy}, o {up ), and {uy ), with
0<a (uy )<, <oy (Uy ), Be(Up)<b <B(Uy ). 7 (uz)<c,, for keN.

Proof. From the definition of A, (2.7) and Lemma 2.4, it is easy to see that A: K(y,,¢,) > K, for keN

is completely continuous.
Next we show all the conditions of Lemma 1.2 hold.

Forany ueK,itiseasytosee 7, (u)<p (u)<ea (u).FromLemma 2.2, we have

7 ()= max u(t)>inf u(t)= A(t)[u], so [u<27y (u)

e t<1-6 os<ts<1

3.1)

First, we choose uedK(y.c,), then we have y, (u)= r?a}xgku(t)zu(rk)zck. From u(t)<|u| and
fy <t<l-

<|ul<A™u(r)=2"c,, for teJ.Thenwith (H,), itimplies that f(u)<c—“,for
Yol

(3.1), wecanget 0<u(t)<
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teld.

¢, J,a(s)ds
So 7 (Au)= max (Au)(t)=Au(r)<(Au)(0)<X*=2—F—=c,
fi <t<1-6 P 1— a
i=1
Therefore, the first condition of Lemma 1.2 satisfies.

Next, we select ued(f,,b.). Then B (u)= min u(t)=u(r,)=b,, we have u(t)>b, for g <t<r,.

O <t<re

Again from u(t)<|u|, and Lemma (2.2) we can get that

(1) <Jul < 27u(5) =b, /2.

Then b, <u(t)<b/,for g <t<r.By (H,),wehave f(u)>b—",f0r O <t<r,.
n
So, there has

n

This implies the second condition of Lemma 1.2 is satisfied.
Finally, we only need to show the third condition of Lemma 1.2 is also satisfied.

We select u(t)=a,/2,for teJ.Obviously, u(t)eK(e,a),hence K(e,a,) isnonempty.

vu(t)ed(ey,a,), we have ak(u):gkr<rt13>59ku(t)=u(9k)=ak. Also from u(t)<[ul| and Lemma (2.4), we

canget O<u(t)<[u|<2au(g,)=2"a,, for teJ.Thenfrom (H,),we have f(u)<a—k.
Yol

2

G <t<1-6¢ pry

So a, (Au)= max (Au)(t):(Au)(ek)g(Au)(0)<%k[l—

-1
aij j: a(s)ds=a,.
Then all the conditions of Lemma 1.2 are satisfied. From Lemma 1.2, we get the conclusion in Theorem 3.1.

4. Example

Now we consider an example to illustrate our results.
Example 4.1. Consider the boundary value problem

x"+a(t) f(u(t))=0, te(01), (4.1)
1 (1
"(0)=0, u(l)==u|=], 4.2
w(0)=0. u@=3u(5] 42)
Then the BVP (4.1)-(4.2) can be regarded as a BVP of the form (1.1)-(1.2) in E = C[O,l]. In this situation,
1
a=¢ :E-
2 i
et =2 -2 vl poroy Lo icgn
3 4 8 k:14(|( +1)

Consider the function a(t): [0,1] - [0,+x), a(t):ia- (t), te[0,1], where

i=1
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1 t,, +1;
- 0<t <L 1
i (t,,+t) T
il’ %St<ti,
St —t)z
ai(t): (\/7) ) )
—21’ ti<t§i_lT+i,
5(1:—1:')5
0, ﬂ<t<1.
1 1 n°
t t = t t— + =—+1< +o0.
fya(t ZI (1 ( 5(i+2)2 s(i+1)° ) 12

It is easy to know (H,) satisfies.
Let 6 e(t.t.,), 6 <r <1-6,, {6},

k=1

be such that 6, e (t,t.,) (k=12,),

{a}, . {b},, and {c},, besuchthat c,,, <a <Ab <c.and pb, <nc, (k=12-).

Thiswith 2<1 p>p impliesthat St <2 op <G 3 B & (o100,
A 4 A p n op
:_k, 0<u(t)sa7",
)
—a,

o GO-212)C R .
Let f(u)=4 =| =+ ) —< <u(t)<h,,

2l p (b -2 ak) A

%[b_uc_k} u(t) > b,

nop

Obviously, (H,), (H,), (H;) are satisfied, and it is easy to prove that (H,) is also satisfied. So all the
conditions of Theorem 3.1 are satisfied, thus the BVP (4.1)-(4.2) has at least three infinite families

of positive solutions {Uy } . {Uy},, and {uy},_ satisfying

0<a, (uy)<a, <oy (Uy), Be(Uy)<be <B(Uy). 7 (uz)<c,, for keN.
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