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Abstract 
The use of Live, Virtual and Constructive (LVC) simulations are increasingly being examined for 
potential analytical use particularly in test and evaluation. In addition to system-focused tests, 
LVC simulations provide a mechanism for conducting joint mission testing and system of systems 
testing when fiscal and resource limitations prevent the accumulation of the necessary density 
and diversity of assets required for these complex and comprehensive tests. LVC simulations con- 
sist of a set of entities that interact with each other within a situated environment (i.e., world) 
each of which is represented by a mixture of computer-based models, real people and real physi- 
cal assets. The physical assets often consist of geographically dispersed test assets which are in- 
terconnected by persistent networks and augmented by virtual and constructive entities to create 
the joint test environment under evaluation. LVC experiments are generally not statistically de- 
signed, but really should be. Experimental design methods are discussed followed by additional 
design considerations when planning experiments for LVC. Some useful experimental designs are 
proposed and a case study is presented to illustrate the benefits of using statistical experimental 
design methods for LVC experiments. The case study only covers the planning portion of experi- 
mental design. The results will be presented in a subsequent paper. 
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1. Introduction 
Live, virtual, and constructive (LVC) simulation is a test capability being pursued by the Department of Defense 
(DoD) to test systems and system of systems in realistic joint mission environments. The DoD was made acutely 
aware of the need for designing and testing systems in a joint environment during the first joint operations con- 
ducted in Operation Desert Storm. Operation Desert Storm highlighted a host of interoperability issues, namely 
that systems across services were incompatible with one another [1]. The Secretary of Defense (SECDEF) re- 
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sponded by mandating a new capability-based approach to identify gaps in services’ ability to carry out joint 
missions and fill those gaps with systems designed with joint missions in mind [2]. Additionally, the SECDEF 
mandated that all joint systems be tested in a joint mission environment so that systems can be exercised in their 
intended end-use environment. This implies that future testing of systems be capability focused [3]. 

In response to the SECDEF’s mandate, the Director of Operational Test and Evaluation (DOT & E) set up the 
Joint Test Evaluation Methodology (JTEM) project. The purpose of JTEM was to investigate, evaluate, and 
make recommendations to improve test capability across the acquisition life cycle in realistic joint environments. 
One result of JTEM’s efforts was the development of the capability test methodology (CTM). CTM is a set of 
“best practices” that provide a consistent approach to describing, building, and using an appropriate representa- 
tion of a joint mission environment across the acquisition life cycle. The CTM enables testers to effectively 
evaluate system contributions to system-of-systems performance, joint task performance, and joint mission ef- 
fectiveness [3]. 

CTM is unique in that it focuses not only on the materiel aspects of the system but also on aspects of doctrine, 
organization, training, materiel, leadership and education, personnel, and facilities (DOTMLPF). The inclusion 
of these joint capability test requirements adds significant complexity to the T&E process. Because of this in- 
crease in complexity, the CTM Analyst Handbook states that future tests will require innovative experimental 
design practices as well as the use of a distributed LVC test environment to focus limited test resources [3]. 

LVC is a central component of CTM due to its ability to connect geographically dispersed test facilities over a 
persistent network and potentially reduce test costs. Figure 1, from the CTM Handbook [3], illustrates the cen- 
trality of LVC to CTM. LVC simulations can scale to different levels of fidelity thus making it well suited to 
experiments across the acquisition life cycle. Simple joint mission environments can be developed using mostly 
constructive entities in the early stages of system development with live and virtual entities added as the system 
matures. Cost is yet another reason that LVC is being pursued as a core test capability. While the cost of LVC 
experiments can be significant, it is often less expensive when compared to joint mission experiments using only 
live assets. Furthermore, LVC simulation can build joint mission scenarios of greater complexity than can be 
assembled at any single DoD test facility. 

 

 
Figure 1. Capability test methodology [3].                                                             
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1.1. Live-Virtual-Constructive Simulation 
LVC simulations consist of a set of entities that interact with each other within a situated environment (i.e., 
world) each of which are represented by a mixture of computer-based models, real people and real physical 
assets [4]. The physical assets often consist of geographically dispersed test assets which are interconnected by 
persistent networks and augmented by virtual and constructive entities to create the joint test environment for 
evaluation. Because they include live, virtual and constructive entities, LVC simulation technology is able to 
create the necessary variety and density of assets representative of a joint environment. 

When viewed as a software system, LVC simulations create an environment where multiple, geographically 
dispersed users interact with each other in real-time via a persistent network architecture [5]. LVC simulations 
consist of a set of entities from three DoD defined classes of simulations: live, virtual, and constructive. In a live 
simulation, real people operate real systems. A pilot operating a real aircraft for the purpose of training under 
simulated operating conditions is a live simulation. In a virtual simulation, real people operate simulated systems 
or simulated people operate real systems. A pilot in a mock-up cockpit operating a flight simulator is a well- 
known example of virtual simulation. In constructive simulations, simulated people operate simulated systems. 

LVC simulations have the potential to provide experimenters with several benefits not found in purely live 
system tests. First, systems can be tested in robust joint environments at a fraction of the cost of using only live 
assets. Test ranges, threats, emitters, and conceptual next-generation capabilities can be included in the simula- 
tion without purchasing the live asset. These assets are expensive and their specific inclusion could significantly 
increase the cost of a test program using just a live system test. The reduced cost of LVC experiments can some- 
times allow for more runs and consideration of more design factors when cost is the limiting resource. More 
runs using LVC can result in more information than could be obtained in a similar test only utilizing live assets. 

The virtual and constructive elements of LVC give experimenters increased flexibility in designing the expe- 
riment. Statistical experiments are founded on completely randomizing the order of the experiments. Split-plot 
designs provide approaches when complete randomization is restricted. In some situations completely rando- 
mized designs can be used in the LVC instead of the more complex split-plot designs often found in live test 
because the virtual and constructive elements can be easily reconfigured before each run. An important caveat is 
to use caution when changing virtual and constructive elements if humans are active in the experiment; changing 
test conditions too often can lead to operator confusion and introduce bias in the results. 

Another benefit of LVC is that it allows the user to exercise greater control over the test environment. In- 
creased control improves the repeatability of the experiment potentially increasing the precision of the estimate 
of the experimental error used when making statistical statements regarding the results. Reduced experimental 
error also means more precise effect estimates for the active factors in the experiment. With the exception of live 
assets, all entities in the simulation experiment can be controlled with greater precision which allows the analyst 
to scale the fidelity of the model as needed to suit the experimental objective. 

The LVC environment is also fairly easy to instrument. This provides an improved capability to gather data to 
support decisions pertaining to the test objectives. The design team does, however, need to spend time evaluat- 
ing potential measures and implementing only those needed. 

1.2. Change the LVC Paradigm 
The LVC concept was introduced to the DoD by the Joint National Training Center, which was established in 
January 2003 to provide war fighters across all services training opportunities in a realistic joint mission envi- 
ronment [6]. In a training environment, large, complex, noisy environments are preferred because it appropri- 
ately prepares soldiers for the “fog of war”. Further, training outcomes do not always require quantitative-based, 
objective results. For analytical purposes such as test, “fog” is a detriment because it obscures the underlying 
factors that are driving system performance and effectiveness. In test, we want to abstract away certain aspects 
of the representative environment so that we can identify the factors that affect the system in its end-use envi- 
ronment. If LVC is going to be successfully implemented as a core test capability LVC practice will require a 
fundamental shift from the way LVC users currently employ the technology and towards a paradigm in which 
the LVC generates quantitative-based, analytically defendable results. 

If LVC simulation is properly utilized it offers significant test capability to T & E practitioners. Care must be 
taken to ensure that users understand the limitations of LVC or risk collecting meaningless data. Statistical ex- 
perimental design techniques greatly increase the likelihood of collecting useful data and doing so in an efficient 
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manner. Statistical experimental design is a methodical design process that plans, structures, conducts, and ana- 
lyzes experiments to support objective conclusions in complex test environments. Statistical experimental design 
gives experimenters a firm foundation for conducting LVC experiments but its use represents a fundamental 
shift in how LVC is used currently. In Section 2 we give an overview of the experimental design process and a 
summary of designs useful for LVC. In Section 2.2 we discuss additional considerations for conducting experi- 
ments with LVC. Lastly, a case study is presented to illustrate the benefits of experimental design for LVC ex- 
periments in Section 4. 

2. The Statistical Experiment Design Process 
Experimental design is a strategy of experimentation to collect and analyze appropriate data using statistical 
methods resulting in statistically valid conclusions. Statistical designs are quite often necessary if meaningful 
conclusions are to be drawn from the experiment. If the system response is subject to experimental errors then 
statistical methods provide an objective and rigorous approach to analysis. Often in test, the system response is 
measured as a point estimate (such as the mean response) when the individual responses are actually subject to a 
random component. Oversimplifying the system response can often lead to erroneous conclusions because the 
random component of the response is unaccounted for. 

The three basic principles of statistical experimental design are randomization, replication, and blocking [7]. 
Randomization is the cornerstone of statistical methods. Statistical methods require that the run-to-run experi- 
mental observations be independent. Randomization typically ensures that this assumption is valid. Randomi- 
zation also spreads the experimental error as evenly as possible over the entire set of runs so that none of the 
effect estimates are biased by experimental error. A replication is an independent repeat of each factor com- 
bination and provides two important benefits to experimenters. Replication provides an unbiased estimate the 
pure error in an experiment. This error estimate is the basic unit of measurement for determining whether ob- 
served differences in the data are statistically different. More precise effect estimates is another benefit of re- 
plicatoin. In general, the more times an experiment is replicated the more precise the estimates of error will be 
and any inferences pertaining to factor effects will be more informed. 

Blocking is a design technique that improves the precision of estimates when comparing factors. Blocking 
controls the variability of nuisance factors; factors that influence the outcome of the experiment but are not of 
interest in the experiment. To illustrate blocking, consider a machining experiment where two different opera- 
tors are used in the experiment. The operators themselves are not of interest to the experiment but experimenters 
are concerned that any differences between the operators may confound the results and lead to erroneous con- 
clusions. To overcome this, the operators are assigned to two separate blocks of test runs. By assigning the oper- 
ators to blocks any variability between operators can be estimated and those effects removed from the experi- 
mental error estimates, thus increasing overall experiment precision. 

A statistical experiment design process for LVC must not only consider the three basic principles of statistical 
experiment design, but also include considerations such as:   
 Models, simulations and assets used in the experiment;  
 Scenarios considered during the experiment;  
 Factors that change each run and how to control those that do not change;  
 The fidelity of models and simulations used; and  
 How human operators might influence results.  

The above complications truly call for an LVC experimental design process. 

2.1. An Experimental Design Process 
To apply statistical methods to the design and analysis of experiments, the entire test team must have a clear 
understanding of the objectives of the experiment, how the data is to be collected, and a preliminary data analy- 
sis plan prior to conducting the experiment. [8] proposes guidelines to aide in planning, conducting, and analyz- 
ing experiments. An overview of their guidelines follow, keep in mind these guidelines pertain only to the de- 
velopment of the experimental plan, not the myriad of other factors that arise when planning and coordinating 
the resources for actual experiments. These guidelines are useful for defining an LVC-experiment design pro- 
cess. 
1) Recognition and statement of the problem. Every good experimental design begins with a clear statement 
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of what is to be accomplished by the experiment. While it may seem obvious, in practice this is one of the 
most difficult aspects of designing experiments. It is no simple task to develop a clear, concise statement of 
the problem that everyone agrees on. It is usually necessary to solicit input from all interested parties: engi- 
neers, program managers, manufacturer, and operators. At a minimum a list of potential questions and prob- 
lems to be answered by the experiment should be prepared and discussed among the team. It is helpful if not 
necessary to keep the objective of the experiment in mind. Some common experiment objectives are given in 
Table 1. 

At this stage it is important to formulate large problems into a series of smaller experiments each answer- 
ing a different question about the system. A single comprehensive experiment often requires the experimen- 
ter to know the answers to many of the questions about the system in advance. This kind of system knowl- 
edge is sometimes unlikely and the experiment often results in disappointment. If the experimenters make 
incorrect assumptions about the system, the results could be inconclusive and the experiment wasted. A se- 
quential approach using a series of smaller experiments, each with a specific objective, is a superior test 
strategy. 

2) Selection of the response variable. The response variable measures system response as a function of 
changes in input variable settings. The best response variables directly measure the problem being studied; 
they provide useful information about the system under study as it relates to the objectives of the experiment. 
Test planners need to determine how to be measure response variables before conducting the experiment. 
The best response variables directly measure the problem being studied. Sometimes a direct response is un- 
obtainable and a surrogate measure must be used instead. When surrogate measures are used test planners 
must ensure that the surrogate adequately measures how well the system performs related to the objectives 
and the system is properly instrumented to capture the surrogate measure information. 

3) Choice of factors, levels, and range. Factors are identified by the design team as potential influences on the 
system response variable. Two categories of factors frequently emerge: design and nuisance factors. Design 
factors can be controlled by either the design of the system or the operator during use. Nuisance factors af- 
fect the response of the system but are not of particular interest to experimenters. Often nuisance factors are 
environmental factors. Blocking is a design technique that can be used to control the effect of nuisance fac- 
tors on an experiment. For more details on techniques that deal with nuisance factors see [7]. 

After choosing the factors it is necessary to choose the number of levels set for each factor in the experi- 
ment. Quantitative factors with a continuous range are usually well represented by two levels but more levels 
often arise in the more complex, comprehensive designs. When factors are qualitative the number of levels is 
generally fixed to the number of qualitative categories. Unlike continuous factors, there is no way to reduce 
the number of factor levels for categorical factors without losing the ability to make inferences on that lev- 
el’s effect on system response. The range of factors levels must also be carefully considered in the design 
process. Factor levels that are too narrowly spaced can miss important active effects while factor levels that 
are too wide can allow insignificant effects to drive the system response. A subject matter expert working in 
conjunction with the statistical experimental design expert is invaluable when choosing the range of factors 
levels to ensure sufficient detectability of effects. 

4) Choice of experimental design. Choosing an experimental design can be relative easy if the previous three 
steps have been done correctly. Choosing a design involves considering the sample size, randomizing the run 
order, and deciding whether blocking is necessary. Software packages are available to help generate alterna- 
tive designs given the number of factors, levels, and number of runs available for the experiment. More 
unique designs like orthogonal arrays and nearly orthogonal arrays can be created with available computer 
algorithms. Some good resources for creating unique designs are given in Section 3. 

 
Table 1. Common objectives for experiments.                                                        

Objective Type of System Rationale for Usage 

System Characterization New System Little understanding how control variables affect system response 

Optimization Mature System Seek control settings for best system response performance 

Robustness Mature System Seek control settings to reduce system response variation from noise 
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5) Performing the experiment. In this step it is vital to ensure that the experiment is being conducted accord- 
ing to plan. Conducting a few trial runs prior to the experiment can be helpful in identifying mistakes in 
planning thus preventing a full experiment from being wasted. While tempting, changing system layouts or 
changing factors during the course of an experiment, without considering the impact of those changes, can 
doom an experiment. 

6) Statistical analysis of the data. If the experiment was designed and executed correctly the statistical analy- 
sis need not be elaborate. Often the software packages used to generate the design help to seamlessly analyze 
the experiment. Hypothesis testing and confidence interval estimation procedures are very useful in analyz- 
ing data from designed experiments. Common analysis techniques include analysis of variance (ANOVA), 
regression, and multiple comparison techniques. A common statistical philosophy is that the best statistical 
analysis cannot overcome poor experimental planning. The important aspect of statistical analysis is to in- 
volve the professional statistician for the analysis. 

7) Conclusions and recommendations. A well designed experiment is meant to answer a specific question or 
set of questions. Hence, the experimenter should draw practical conclusions about the results of the experi- 
ment and recommend an appropriate course of action. The beauty of a well designed and executed experi- 
ment is that once the data have been analyzed the interpretation of the data should be fairly straightforward, 
objective and defendable.  

Coleman and Montgomery [8] give details on the steps of experimental design. Additionally, most texts on 
experimental design, including [7], provide some experimental design methodology. 

2.2. Additional Design Considerations for LVC 
The Coleman and Montgomery [8] guidelines offer comprehensive general guidelines for industrial experiments. 
However, LVC experiments are non-industrial representing a more dynamic process. There are several experi- 
mental design issues that need to be addressed before the benefits of LVC can be fully realized.  
1) Scoping the Experiment. Scoping LVC experiments require more careful treatment than most traditional 

experiments. LVC is flush with capability; users and experimenters can build very large, complex, joint mis- 
sion environments. Experimenters are often enticed to create environments that are more complex than re- 
quired to actually satisfy the experiment’s objective When these LVC environments are used for analytical 
purposes, such as the case in T&E, more discipline must be exercised to ensure the test environment is not 
overbuilt but remains constructed to align with the analytical objectives. LVC has enormous data generation 
capability making the number of possible problems that can be researched significantly larger than that of 
live asset tests. An LVC builder can instrument just about any process included in the environment. Experi- 
menters are faced with vast alternatives to choose from when designing the experiment. This means planners 
have to avoid the temptation to grow the size of the experiment in an attempt to answer all questions, and 
stay focused on investigating those that are most important. 

Over-scoping the experiment not only affects the quality of data garnered from the experiment but also 
leads to delays in experiment execution. LVC simulation developers work off of the requirements supplied 
by the test team; if too many requirements are demanded then developers can become task saturated and un- 
able to deliver the LVC environment in time for the test event. Breaking the experiment up into a series of 
smaller experiments that build on each other can improve the experiment data quality and increase the like-
lihood of meeting test deadlines. When used for training or assessments, increased complexity in the LVC 
environment has become accepted. When used for analytical insight, this same increased complexity can 
ruin any meaningful results. 

2) Qualitative Objectives. Objectives in LVC experiments are often qualitative in nature. LVC is used primar- 
ily for joint mission tests to evaluate system-of-systems performance, joint task performance, and joint mis- 
sion effectiveness. Nebulous qualities such as task performance and mission effectiveness are often difficult 
to define and measure. More often than not there are no direct metrics to quantify system performance and 
mission effectiveness. Questionnaires and opinions are often used. Consequently choosing an appropriate 
response variable is not straightforward. Surrogate measures need to be circumspectly examined to make 
certain that the experiment objectives are actually measured. This may actually require some innovative 
thinking on the part of the design team to build instrumentation into the LVC environment to gather the data 
necessary to support otherwise qualitative assessments of system performance in a system-of-systems con- 
text. 
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3) Mixed Factor Levels and Limited Resources. Joint mission environments are complex often containing 
many mixed-level, qualitative factors with scant resources available. Mixed-level factors refer to multiple 
factors where at least one factor contains a differing number of levels than the other factors. Often mixed- 
level designs require a large sample size making them inappropriate for tests that demand a small sample 
size due to resource constraints. Mixed-level designs can be fractioned into smaller designs but doing so can 
be tedious and independent estimates are not guaranteed for all fractioned designs. For the LVC experiment 
planners, early consideration of these mixed factor problems can lead to changes in experiment focus, objec- 
tives, or even design to accommodate the problem. 

4) Interaction Effects. Unlike most traditional experiments, large simulation experiments can have a signifi- 
cant number of higher order interaction effects (i.e., 3-way or higher factor interactions). When using small 
designs these higher order effects may be aliased with the main effects meaning that the source of the effect 
is difficult, if not impossible to isolate and estimate (the main effect and interaction effect are intermingled). 
Active higher order interactions can wreck the outcome of the experiment unless they are considered and 
appropriately accounted for in the choice of experimental design. The multi-disciplinary experiment design 
team can anticipate these interactions and choose designs for the LVC experiment that avoid the aliasing 
problem. 

5) Noisy Test Environments. The joint mission environment contains copious sources of noise that must be 
prudently considered. Noise in the test environment can be harmful to an experiment if appropriate measures 
are not taken to control it or measure it. Effects that are thought to be important may not appear to be so be- 
cause of over-estimated experimental error. To overcome this problem appropriate statistically-based noise 
control techniques are used in the LVC experiment planning process. Often human operators are the largest 
contributors of noise in the experiment and thus should only be used as necessary in LVC experiments. The 
benefits or necessity of including human subjects in the experiment must outweigh the risk that is assumed 
by including them. This judicious use of the human component in the LVC experiment is likely one of the 
larger paradigm shifts when moving LVC from a training environment to an analytical environment. In- 
creasing system complexity by integrating additional (possibly unnecessary) assets can also increase noise in 
test. 

6) Human System Integration. HSI principles should be applied to LVC experiments since LVC is a software 
system that requires extensive human interaction. Madni [9] states that HSI practices propose that human 
factors be considered an important priority in system design and acquisition to reduce life-cycle costs. Fur- 
thermore, he states that each of the seven HSI considerations is necessary to satisfy operational stakehold- 
ers needs. We would add that HSI principles should be applied across all T&E activities where humans in- 
teract with software systems and offer some HSI considerations for T&E when human-software system in- 
teraction is central to the experiment, as is often the case with LVC. HSI considerations for LVC-based T&E 
activities ensure that:  
a) The right tradeoffs have been made between the number of humans included in the experiment and the 

quality of data required.  
b) Including joint human-machine systems in the experiment supports the objectives with human-machine 

systems only included when the experiment’s analytical requirements can still be satisfied.  
c) The design of the experiment circumvents the likelihood of excessive experimental error caused by hu- 

man-machine systems by using appropriate experimental noise control techniques.  
d) Data planning and analysis takes into account the additional variability introduced when humans adapt to 

new conditions or respond to contingencies (e.g., consider and avoid human learning invalidating the ex- 
perimental results).  

Human System Integration is native to the systems engineering process from a design point of view but 
foreign to T&E activities. For LVC experimentation to be effective, HSI considerations must be included 
across all test planning activities; such HSI considerations for LVC experimental planning are left for future 
research. 

7) Improved Test Discipline. An LVC environment is extremely flexible. Assets can be added, deleted or 
modified, in some cases, quite easily. Given its strong history in training and demonstration events, LVC 
experimenters often “tweak” the LVC based on early results. Changing the LVC system mid-way through a 
randomized experimental design changes the fundamental assumptions of subsequent experiments from 
those already completed. In other words, the experimental design is compromised and no amount of statis- 



C. L. Haase et al. 
 

 
2160 

tical analysis can save poor designs. 
8) Experimental Design Size. Unfortunately, there may be the belief that large, complex LVC experiments can 

answer any questions pertaining to the system (or systems) of interest. While the LVC may seem to address 
such questions, answering quantitatively those questions would require far too many experimental runs; 
LVC experiments have run budgets like any other experimental event. Fortunately there are a range of re- 
duced sample size experimental designs quite applicable to LVC experimentation. Some are fundamental, 
usually covered in basic training guides. Others are more advanced but powerful in their ability to obtain 
meaningful results. The experimental design goal is how to achieve compromise in the final design choice to 
achieve sufficient coverage of test objectives while achieving desired levels of statistical power in the design 
as a function of some agreed to level of significance.  

3. Some Useful Experimental Designs for LVC Applications 
The LVC environment offers many unique capabilities to T&E. However, to use LVC results in the analytically 
rigorous manner required by T&E necessitates that experimental designs be scrutinized to ensure they satisfy the 
objectives of the LVC-based joint mission tests. Several advanced designs seem well suited to the LVC test en- 
vironment: orthogonal arrays, nearly orthogonal arrays, optimal designs, and split-plot designs. The first three 
designs can be used in experiments that allow full randomization while the split-plot designs are useful when 
there are restrictions on randomization. 

An array is considered orthogonal if every pair of columns in the array is independent. This is accomplished 
by making each level combination in each column occur equally often [10]. Orthogonality improves our ability 
to estimate factor effects. To illustrate the usefulness of OAs, consider an experiment with a three-level factor 
and four two-level factors where testing resources only allow for 12 runs. A full factorial (all combinations of all 
factor levels) design requires 48 runs (3 × 24) and fractioning the design into a smaller, useful design would be 
very complicated. An orthogonal array can be constructed with 12 runs and will generate independent estimates 
of each of the 5 main effects. Table 12.7 in [11] contains many mixed-level orthogonal arrays for the interested 
reader. 

At times orthogonal arrays cannot sufficiently reduce the run size while accommodating the necessary num- 
ber of factors. A design team can relax the orthogonality requirement and reduce the experiment run size through 
the use of a nearly orthogonal array. A drawback to nearly orthogonal arrays is that the estimates of the effects 
are somewhat correlated (i.e., loss of independence when orthogonality was relaxed) making the data analysis 
somewhat more difficult [10]. Several researchers such as [12]-[14] have constructed nearly orthogonal arrays 
using algorithmic approaches with nice results. 

Optimal designs are another excellent way to construct mixed-level designs. Optimal designs are nearly or- 
thogonal designs optimized to some design criterion. Statistical software packages help create optimal designs 
making them a convenient choice for experimenters faced with mixed-level factors and limited resources. The 
D-optimal criterion (arguably the most widely used) measures the overall degree of orthogonality of the design 
matrix. The G-optimal criterion measures the extent that the maximum prediction variance for regression para- 
meters is minimized. The G-optimal criterion is useful if a regression model is built from the experimental data 
to be used to make predictions about the system response. There are other optimal designs but not as pertinent to 
LVC experimentation in our view (see [15] for a cursory introduction to these other designs). 

Split-plot designs are used when there are restrictions on experiment run randomization that prevent the use of 
a completely randomized design. Randomization restrictions make a completely randomized design inappro- 
priate and can lead the experimenter to erroneous conclusions if the responses are analyzed in a manner incon- 
sistent with the design and execution of the experiment [16]. In split-plot designs, hard-to-change factors are as- 
signed to a larger experimental unit called the whole plot while all other factors are assigned to the subplot. Each 
of the whole plot and subplot carry an error component that must be estimated. Split-Plot designs are thus more 
difficult to analyze than completely randomized designs because of this more complicated error structure. See 
[16] for more details on split-plot designs. 

There are of course many other classes of designs that may be applicable to LVC experimentation for T&E. 
The three classes discussed above provide, in our opinion, a broad range of options the LVC experimental de- 
sign team should consider. Final design choices must be appropriate to the specifics of the LVC experiment 
planned. Use of orthogonal and nearly-orthogonal array designs is discussed in the subsequent case study. 
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4. Conducting a Data Link Experiment with LVC1 
Currently there are aircraft that can only receive Link-16 communications from Command and Control (C2) as- 
sets in denied access environments. The Multifunctional Advanced Data Link (MADL) is a technology that 
would allow aircraft to transmit to other friendly forces in a denied access environment. The Air Force Simula- 
tion and Analysis Facility (SIMAF) was tasked with assessing the suitability of the MADL data link for aero- 
space operations in a denied access environment using a distributed LVC environment [17]. The experiment will 
connect two geographically separated virtual aircraft simulators and augment them with constructive entities to 
make up the complete joint mission environment. Two separate test events are funded with enough resources to 
conduct two weeks of testing for each event. The experiment is characterized as a factor screening experiment 
aimed at gaining insight into the usefulness of the MADL network. Additionally, we want to ascertain which 
factors affect MADL usability in a denied access environment. Aircrew are in short supply with only two air- 
crew available per week per test phase. This case study focuses on the planning process for this LVC experiment. 
The experiment execution, data analysis, and conclusions will be discussed in a subsequent paper. 

4.1. MADL Data Link 
MADL allows aircrews to use voice communication in denied access environments and introduces two other 
capabilities: text chat, and machine-to-machine communication as shown in Table 2. To effectively transmit 
communications in a denied access environment the data link must not greatly increase the vulnerability of the 
aircraft to enemy air defenses. To prevent detection during communication, MADL transmits a narrow beam of 
data between aircraft. With MADL, each aircraft in the network is assigned as a node in the communication 
chain. To communicate with specific aircraft the subsequent traffic may go direct to that aircraft or be delivered 
to the aircraft through other aircraft nodes. This network structure can create latency, even failure, in message 
delivery. Suppose aircraft A, B, and C are linked via MADL and aircraft A wants to communicate with aircraft 
C. If aircraft B transmits at the same time as aircraft A then aircraft B “steps on” A’s transmission and the mes- 
sage never reaches aircraft C. In other instances, if an aircraft in the network is in an unfavorable geometry at 
the time of transmission, the MADL chain is broken and the message could be lost. These two issues are of par- 
ticular interest in the study and can be studied in a controlled manner using the LVC environment. 

A simple scenario with an aircraft operating in a denied access environment includes: command and control 
aircraft operating, friendly fighter forces performing combat air patrol, and targets inside the denied airspace. 
Figure 2 depicts a notional MADL operation sufficient to support our discussion. The potential exists for the 
aircraft or other fighter aircraft to encounter enemy aggressors at any point in the denied airspace. Current oper- 
ational procedures have the aircraft following pre-planned routes that minimize the probability of detection by 
enemy integrated air defense (IADS). An experiment objective includes determining if communicating in the 
denied access environment is useful enough to justify acquiring such capability. This represents an ideal exam- 
ple of using computing power to ascertain the operational effectiveness of proposed upgrades without investing 
in changes to the weapon systems. 

4.2. Defining Experiment Objectives 
The first task in an experimental design process is to clearly define the problem to be studied. Defining a clear, 
agreed upon problem statement for the LVC experiment was the most difficult task in the design process. Four 
to five months were spent defining the problem statement because influential members of the planning team 
were focused on defining the requirements for the LVC test environment instead of the data link problem being  

 
Table 2. MADL capabilities.                                        

Level Available Communication Capability 

1 Voice Only 

2 Voice and Text 

3 Voice, Text, and Machine-to-Machine 

 

 

1This case study is an actual event with specific weapons systems unnamed. 
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Figure 2. Notional LVC representation of a joint operation network in a denied access envi- 
ronment [18].                                                                  

 
investigated; the test should drive what LVC provides. This distraction slowed the progress of the planning 
phase appreciably, but is really attributable to the paradigm shift associated with using LVC for new purposes. 
After much deliberation, two related objectives were chosen, one for each phase of the test program. 

1) Phase I: Assess the usefulness of data messages passed on the MADL network assuming a perfect network 
configuration and performance.  

2) Phase II: Assess the usefulness of the MADL network given a realistic level of degraded network perfor- 
mance.  

Phase I assesses whether the message content and message delivery capabilities of MADL are useful to air- 
crews in prosecuting targets in denied access airspace. Sub-objectives include determining which factors affect 
the usability of MADL for aircrews and find out which message delivery capabilities are preferred. Following 
phase I, the set of MADL messages and capabilities will be evaluated with useful messages and capabilities car- 
ried forward to phase II. The messages and capabilities deemed not useful will be dropped from the test set. The 
objective of phase II is to evaluate the usability of MADL messages and capabilities in a realistic environment 
when network degradation is present (as will likely occur in actual operations). 

Breaking the test into two phases is important because it ensures that factor effects are easily identifiable in 
the data analysis. Consider what would happen if only phase II of the experiment were conducted and the de- 
graded network makes the system so cumbersome that aircrew give it an unfavorable rating. This test method 
makes it more difficult to tell whether the MADL messages and delivery capabilities are problematic or whether 
poor network service is the problem. Experimental design helps to focus and clarify the objectives and the data 
required to achieve the objective. 

4.3. Choosing Factors of Interest and Factor Levels 
The factors of interest came primarily out of the requirements for the LVC test environment. Initially MADL 
and the vignettes (operational environment scenarios for the test) were the only two factors proposed for the 
study. This created an overly simplistic model for study especially when you consider that several other test 
conditions were to be varied across runs. Such a simplistic yet changing model of the experiment would have 
yielded results with factor effects confounded with hidden effects. Analytically, no defendable insights could 
come from such an experiment. Accidental factor confounding is not uncommon if statistical experimental de- 
sign issues are ignored. Unfortunately, subsequent analyses may proceed without knowledge of the confound- 
ing. 

Statistical experimental design was re-emphasized at this point in the planning process. Brainstorming re- 
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sulted in an initial set of 10 (Table 3) factors with further consideration reducing the set to 4 factors for phase I 
and 6 factors for phase II, given in Table 4 and Table 5, respectively. Additionally, one of the MADL factor le- 
vels was dropped from the test requirements. Besides MADL as the factor of interest, the operational context 
(vignettes), ingress route, target location, and aircrew were included as factors in phase I of the experiment. The 
three latter factors were not of primary interest but were chosen to prevent learning effects in the aircrew during 
the experiment and its biasing of the outcome. The routes and target locations vary systematically while the air- 
crew factor is considered a blocking effect. These statistical techniques help guard the experiment against exces- 
sive noise introduced by human operators influencing the final results. 

In phase II, two additional factors, node position and quality of network service, are added to the phase I de- 
sign. The additional factors allow a measure of the variation caused by the degraded network. The rule of thumb 
for choosing factors of interest is to consider adding any setting or test condition changed from run to run as a 
factor of interest in the experiment. 

 
Table 3. Proposed factors of interest.                                  

Factors Levels 

MADL 4 

MADL Node Position 2 

Quality of Service 2 

Vignettes 4 

Route 2 

Target Location 2 

Aircrew 2 

Size of Enemy Air 2 

Position of Enemy Air 2 

Size of Friendly Air 2 

Position of Friendly Air 2 

 
Table 4. Final set of factors of interest for phase I.                        

Factor Level 

MADL 3 

Vignettes 4 

Route 2 

Target Location 2 

Aircrew 2 

 
Table 5. Final set of factors for phase II.                                

Factor Level 

MADL 3 

Vignettes 4 

Route 2 

Target Location 2 

Aircrew 2 

Node Position 2 

Quality of Service 2 
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4.4. Selecting the Response Variable 
Selecting an appropriate response variable is never easy and can be particularly troublesome in an LVC experi- 
ment where many test problem statements are qualitative in nature. Quite often LVC tests employ user surveys 
to assess qualitative aspects and thus aircrew surveys were proposed for the current test. However, an LVC can 
collect system state data quite easily. Such state data, if properly defined provides potential insight into the po- 
tential benefits of improved system capabilities. In other words, state data can be correlated to qualitative meas- 
ures, such as aircrew surveys, to develop quantitive measures on qualitative aspects. The approach agreed upon 
was to use the aircrew survey as a primary response variable with the system state data collected to cross-check 
and verify aircrew responses and perceptions of the system capabilities. 

4.5. Choice of Experimental Design 
LVC test requirements can be dynamic; the current case was no exception. Since an LVC offers a tremendous 
flexibility to expand the test event, unlike comparable live test events, the temptation is to continue to expand 
the LVC. Due to the ever-changing nature of the test requirements, several experimental designs were consi- 
dered at various stages in the design process. As requirements were refined, more information about the size and 
scope of the experiment, the number of virtual and constructive simulation entities, environmental constraints, 
and aircrew availability came to light. A few of the designs that were contemplated are discussed below along 
with the rationale for considering that design. 

A 16-run 4 × 4 factorial design was initially considered. The design was discounted as overly simplistic be- 
cause it ignored potentially important environmental factors. A split-plot design was then considered since the 
experiment involved a restricted run order. The experimental design team was concerned that completely ran- 
domizing MADL capabilities would confuse operators due to large changes in available capability from one 
level to another. To avoid potential operator confusion the team considered a restricted run order where the run 
order is chosen by fixing MADL at a particular level then randomizing the run order for the remaining factors. 
Once all runs have been completed for a given level of MADL, a new MADL level is chosen and the process is 
repeated until all test runs have been completed for all MADL levels. Such randomization restriction makes the 
use of split-plot analysis an imperative. [16] shows that analyzing restricted run order experiments as completely 
randomized designs can lead to incorrect conclusions, a conclusion echoed in [19]. 

Future use of LVC for test is quite likely to examine impacts of new methods or technology and such exami- 
nations affect the design. In the current setting, the MADL-voice-only option was removed as a factor, run sep- 
arately, and used as a baseline for performance measurement. The rest of the design, now smaller given the re- 
moval of a factor, was completely randomized. A replicated, 12-run orthogonal array, shown in Table 6, was 
chosen for phase I. Four additional, replicated runs are completed using voice only to provide a baseline capa- 
bility for comparison. The orthogonal array is a good option for factor screening experiments since it provides 
estimates of each of the main effects and select interactions of interest. 

Phase II will add two more factors to the experiment making an orthogonal array unusable for a sample size 
of 12. This led to choosing a nearly orthogonal array (NOA) with replicates. The NOA used for phase II is 
shown in Table 7. If phase I reveals that some factors are inactive then those factors may be dropped from phase 
II and orthogonality in the design could potentially be restored since Phase II will involve fewer factors. 

5. Conclusions 
LVC offers the T&E community a viable means for testing systems and system-of-systems in a joint environ- 
ment. However, the added capability is not without cost and a shift in the paradigm of LVC use. Planning joint 
mission tests using LVC is a challenging endeavor and requires careful upfront planning. The nature of LVC 
experiments requires experimenters to decide what should be studied in the experiment when defining the objec- 
tives. There is a strong lure toward unnecessary complexity in LVC that entices experimenters to tackle exces- 
sively large tests with a misplaced hope that many questions about the system can be addressed simultaneously 
in that one large experiment. Experimenters need to be aware of this lure and exercise good test discipline by 
structuring LVC experiments to gain system knowledge incrementally thereby ensuring sound test results. This 
experimental design method is easily manageable for planning, executing, and analyzing data and builds system 
knowledge piece by piece. 
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Table 6. Run matrix for phase I test in standard order.                                               

Run MADL Vignette Route Target Location 

1 1 1 2 2 

2 1 2 1 2 

3 1 3 1 1 

4 1 1 2 1 

5 2 1 1 1 

6 2 2 2 2 

7 2 3 1 2 

8 2 2 2 1 

9 3 1 1 2 

10 3 2 1 1 

11 3 2 2 1 

12 3 3 2 2 

 
Table 7. Run matrix for phase II test in standard order.                                              

Run MADL Vignette Route Target Location Node Position Quality of Service 

1 1 1 2 2 2 2 

2 1 2 1 2 1 1 

3 1 3 1 1 1 2 

4 1 1 2 1 2 1 

5 2 1 1 1 1 2 

6 2 2 2 2 1 1 

7 2 3 1 2 2 1 

8 2 2 2 1 2 2 

9 3 1 1 2 1 1 

10 3 2 1 1 2 2 

11 3 2 2 1 1 2 

12 3 3 2 2 2 1 

 
LVC test environments have many sources of random error. Considering and exploiting statistical experi- 

mental design techniques allow for objective conclusions when the system response is affected by random error. 
The system response variable should be chosen based on how well that measure relates to the experiment objec- 
tives. The response variable should measure this relation as directly as possible. Direct measurements are unob- 
tainable in many LVC experiments so surrogate measures should be devised and examined for suitability. The 
factors of interest should be chosen from the set of environmental and design parameters that are thought to have 
an effect on the system response. A good rule of thumb when choosing factors is to consider including any test 
parameter that will be varied across the runs. Additional design considerations for LVC experiments were pro- 
posed to deal with the nuances of LVC. The additional design considerations are by no means exhaustive and 
should be updated as new challenges are encountered in LVC. 

The reported data link experiment demonstrates how experimental design techniques can be used to ultimate- 
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ly better characterize the performance and effectiveness of a new system in a joint environment generated by 
LVC. The application of experimental design principles uncovered substantial mistakes in test planning and im- 
proved the overall test strategy by using an incremental test approach. Important factors that were initially 
missed were added to the system as a result of using statistical experimental design. Noise control techniques 
were used to improve the quality of the data collected. These techniques added necessary complexity to the ex- 
periment but improve data quality. The experiments also showed how innovative experimental designs, such as 
orthogonal and nearly orthogonal arrays, effectively accommodate the large, irregular factor space with limited 
test resources that are typical of most LVC experiments. 

The experimental designs proposed were accepted by the study team. Events prevented the actual conduct of 
the experiment but the experience of following a systematic experimental design process yielding the specific 
experimental designs was invaluable to the entire team. The improved quantitative focus on the response varia- 
ble coupled with the executed experiment would have helped meet the study objectives. 

Future LVC experiments can benefit greatly from using such statistical experimental design techniques. This 
paper did not address the myriad technical issues involved in realizing an LVC environment. Much of the work 
(and finding) in LVC focuses on solving these technical issues. Our focus in this paper is the design of the expe- 
riment that uses the LVC to generate results used in analytical settings. We understand technical issues can af- 
fect system responses and we understand that experimental design choices can affect LVC system technical as- 
pects. We leave this discussion to future work for now. 

Disclaimer 
The views expressed in this article are those of the authors and do not reflect the official policy or position of the 
United States Air Force, Department of Defense or the US Government. 
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