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Abstract 
 
The induced temperature, displacement, and stress fields in an infinite nonhomogeneous elastic medium 
having a spherical cavity are obtained in the context dual-phase-lag model. The surface of the cavity is stress 
free and is subjected to a thermal shock. The material is elastic and has an in homogeneity in the radial direc-
tion. The type of non homogeneity is such that the elastic constants, thermal conductivity and density are 
proportional to the nth power of the radial distance. The solutions are obtained analytically employing the 
Laplace transform technique. The numerical inversion of the transforms is carried out using Fourier series 
expansions. The stresses, temperature and displacement are computed and presented graphically. A com-
parison of the results for different theories is presented. 
 
Keywords: Generalized Thermo Elasticity, Nonhomogeneous, Functionally Graded Material (FGM),   

Laplace Transform, Three-Phase-Lag Model 

1. Introduction 
 
The increasing use of anisotropic material in engineering 
application has resulted in considerable research activity 
in this area in recent years. An understanding of thermally 
induced stresses in an isotropic bodies is essential for a 
comprehensive study of their response due to an exposure 
to a temperature field, which may in turn occurs in service 
or during the manufacturing stages. For example, during 
the curing stages of lament wound bodies, thermal str- 
esses may be induced from the heat buildup and cooling 
processes. The level of these stresses may be exceeding 
the ultimate strength.  

The generalized thermoelasticity theories have been 
developed with the aim of removing the paradox of infi-
nite speed of heat propagation inherent in the classical 
coupled dynamical thermo elasticity theory (C-D), see 
Biot [1]. Many new theories have been proposed to take 
care of this physical absurdity. Lord and Shulman [2] (L 
-S) first modified Fourier's law by introducing the term 
representing the thermal relaxation time. The heat equa-
tion associated this theory is a hyperbolic type and hence, 
eliminates the paradox of infinite speed of propagation. 
Following Green and Lindsay [3] (G-L) developed a more 

general theory of thermoelasticity, in which Fourier's law 
of heat conduction is unchanged, where as the classical 
energy equation and Duhamel-Neumann's relations are 
modified by introducing two constitutive constants having 
the dimensions of time.  

Recently, relevant theoretical developments on this su- 
bject are due to Green and Naghdi [4] (G-N) to establish a 
theory of thermoelasticity that permits propagation of the- 
rmal waves at a finite speed, where its evolution equations 
are hyperbolic. An important characteristic feature of this 
theory, which is not present in other thermoelastic theo-
ries, is that this theory does not accommodate dissipation 
of thermal energy.  

Tzou [5,6] proposed the dual-phase-lag (DPL) model, 
which describes the interactions between phonons and 
electrons on the microscopic level as retarding sources 
causing a delayed response on the macroscopic scale. For 
macroscopic formulation, it would be convenient to use 
the DPL mode for investigation of the micro-structural 
effect on the behavior of heat transfer. The physical 
meanings and the applicability of the DPL mode have 
been supported by the experimental results [7]. The 
dual-phase-lag (DPL) proposed by Tzou [7] is such a 
modification of the classical thermoelastic model in 
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which the Fourier law is replaced by an approximation to 
a modified Fourier law with tow different time transla-
tions: a phase-lag of the heat flux q  and a phase-lag of 
temperature gradient  . A Taylor series approximation 
of the modified Fourier law, together with the remaining 
field equations leads to a complete system of equations 
describing a dual-phase-lag thermoelastic model. The 
model transmits thermoelastic disturbance in a wave-like 
manner if the approximation is linear with respect to q  
and  , and 0 ≤   < q ; or quadratic in q  and li- 
near in  , with q >0 and   > 0. This theory is deve- 
loped in a rational way to produce a fully consistent the-
ory which is able to incorporate thermal pulse transmis-
sion in a very logical manner. 

Each of models has been introduced in the literature in 
an attempt to eliminate shortcomings of the classical dy- 
namical thermo elasticity such as: 1) infinite velocity of 
thermoelastic disturbances, 2) unsatisfactory thermoelas-
tic response of a solid to short laser pulses, and 3) poor 
description of thermoelastic behavior at low temperature 
[17]. Attempts to present a theory of thermoelastic waves 
that would be attractive to both the basic and applied re- 
searchers have been continued in the literature to date. 
Also, a stream of papers devoted to theoretical and ap-
plied aspects of the generalized thermoelasticity that 
started with publications on the wave equation for a rigid 
heat conductor in the 1940s has increased greatly to date. 
Although the five theories are not the only ones that have 
been proposed so far, they are, in the authors opinion, re- 
presentative in discussing the subject [17]. 

Allam, et. al. [11] investigated the thermal stress dis-
tributions in a harmonic field for a homogeneous, iso-
tropic infinite body with a circular cylindrical hole based 
on a Green and Naghdi theory. Sinha and Elsibai [10] 
studied generalized thermoelastic interactions for an in-
finite body with a spherical cavity and for an isotropic 
solid sphere. Mukhopadhyay [12] discussed the thermally 
induced vibration in a homogeneous and isotropic un-
bounded body with a spherical cavity using the Green and 
Naghdi model of thermo elasticity without energy dissi-
pation. Mukhopadhyay and Kumar [13] studied the 
thermoelastic interactions in an unbounded elastic me-
dium with a spherical cavity in the context of four dif-
ferent theories of thermoelasticity, namely: the classical 
coupled dynamical thermoelasticity, the extended ther-
moelasticity, the temperature-rate-dependent thermoelas-
ticity and the thermoelasticity without energy dissipation 
in a unified way. Roychoudhuri [14] studied one-dimen- 
sional thermoelastic wave propagation in an elastic half- 
space in the context of dual-phase-lag mode.  

Functionally graded materials (FGMs) are a type of 
nonhomogeneous materials in which the composition 
changes gradually with a corresponding change in the 

properties. FGMs are usually designed to be used under 
high temperature environments. Thermal shock loading 
conditions may be involved with high thermal stresses 
when a sudden heating or cooling happens. As a result, 
thermal fracture problems may be usually met. Therefore, 
it is significant to analyze the transient thermal fracture 
behavior of FGMs.  

Functionally graded material (FGM) as a new kind of 
composites was initially designed as thermal barrier ma-
terials for aerospace structures, in which the volume fra- 
ctions of different constituents of composites vary con-
tinuously from one side to another [15]. These novel non- 
homogeneous materials have excellent thermo-mecha- 
nical properties to withstand high temperature and have 
extensive applications to important structures, such as 
aerospace, nuclear reactors, pressure vessels and pipes, 
chemicals plants, etc. The use of FGMs can eliminate or 
control thermal stresses in structural components [16].  

Laplace transform technique is used to solve the prob-
lem. The main difficulty encountered in solving problems 
of coupled or generalized thermoelasticity theory is that 
of inversion of the Laplace transforms used. This is 
mainly due to the fact that the contour integral of Laplace 
transforms complex inversion formula contains compli-
cated branch points in its integral. The inverse Laplace 
transforms are obtained numerically using a method based 
on Fourier expansion techniques.  

The present paper is organized as follows. Section 2 
describes the formulation of the problem and basic equa-
tions. Section 3 discusses the Laplace transform technique 
and the solution in the transformed domain is obtained 
using a potential function. Section 4 summarizes the in-
verse Laplace transforms using a numerical method based 
on Fourier expansion techniques. The last section is de-
voted to the numerical example for finding the tempera-
ture, displacement and the stress. The numerical results 
are presented graphically and compared it in the different 
theories of thermoelasticity and discussed the differences 
due to the presence of dual phase lags.  
 
2. Mathematical Formulation of the Problem 

and Basic Equations 
 
We consider a nonhomogeneous thermal and mechanical 
material properties in the radial direction infinite solid 
having a spherical cavity of radius a. The surface of the 
cavity is stress free and is suddenly heated and kept at 
constant temperature. We also assume that neither the 
body forces nor the heat sources are acting inside the 
medium.  

We use spherical polar coordinates  , ,r   with the 
origin at the center of the cavity and we consider those 
thermoelastic interactions which are spherically symmet-
ric. It follows that all interactions considered depend on 
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the radial distance r and the time t then only the radial 
component of the displacement  and the nor- 
mal stress components 

 ,u u r t
,rr  

' '
12C e

' '
22C e 

2 22 ,

will appear in the analysis. 
The nonhomogeneous character of the material is dis-
cussed by considering that the elastic constants, density 
and the thermal conductivity are given by some power law 
of variation with radial distance r.  

For a spherically orthotropic thermoelastic solid, the 
constitutive equations will take the following forms:  

  1 ,e b T 

'
23 2C e b T 

'

'

11rr rrC e             (1) 

12 rrC e          (2) 

where  
' ' '
1 11 1 1b C C    ' ' '

2 12 1 22C '
2 23C 2b C      

in which ijC are elastic constants, T is the temperature 
excess over 0 , and 1T  , 2  are the coefficients of linear 
thermal expansion along the radial and tangential direc-
tions.  

The equation of motion in absence of any body forces 
becomes  

 
2

2

2rr u

r r t




 


 rr                (3) 

The non-zero components of strain are 

,
u

e err

u
e

r r


 


               (4) 

then the normal stresses are  

' '
11 12 1

2
,rr

u u
C C b

r r
 

  


'T              (5) 

' ' '
12 22 23 2

u u u
C C C b

r r r 
   


' T

0.

          (6) 

In an attempt to model ultrafast processes of thermoe-
lasticity Tzou (1997) proposed a dual-phase-lag model 
(DPL) ofthermoelasticity in which the MaxwellCattaneo 
equation is replaced by the relation  

.

,q qq t q K T t T t t 
           

     (7) 

Equation (7) together with the energy balance equation 
led to the heat conduction equation  

2
'
1 02

2
2

2

1
1

q E

r

n
t C T b T

t rt

T
t r K

t r rr


               

                     

u
r





     (8) 

where q  and t t stand for the heat flux and temperature 
gradient phase-lags, respectively, rK is the is coefficient 
of thermal conductivity along radial direction, EC  is 

specific heat at constant strain,   is the density .  
Clearly, a DPL model covers the hyperbolic L-S model 

when 0 0qt t  , and 0t  .  
We assume that the functionally graded spherical that 

has nonhomogeneous thermal and mechanical properties 
in the radial direction. In order to incorporate the non-
homogeneity of the material, we assumed to take the 
following forms  

'
0

n n n
ij ij rC r C r K r K  , ,  0 ,         (9) 

where 0 , 0K  and ij are nonzero constants (they are 
the values of in a homogeneous matter when 

C
0n  ). 

Substituting from Equation (9) into Equations (5) and (6), 
we obtain  

11 12

2u u
C

r r 1
n

rr r C b T      
        (10) 

 12 22

u
23 2

n u
r C C C b T

r r       
     (11) 

where  

1 11 1 12 22 ,b C C     2 1 22 23 2C C12b C      

Using Equations (10) and (11), we have from Equation 
(3) the displacement formulation of the equation of mo-
tion  

  

 

2

11 11 12 22 232 2

2

1 1 0 2

2

2 2

u n u u
C C C C C
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2
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                        (12) 
2
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2
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2
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n
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
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            



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    (13) 

The problem is to solve Equations (12) and (13) subject 
to the boundary conditions  

1) Traction-free cavity surface  

 , 0rr a t , t 0                  (14) 

2) The surface of the cavity is considered to be main-
tained at a constant temperature To  

  0,T a t T , t 0                  (15) 

The initial and regularity conditions may be put as 

, 0t ,
T u

T u a r
r r

 
     
 

 , 

   , 0, , 0, atT r t u r t r           (16) 

The following non-dimensional quantities are intro-
duced as  
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Using these non-dimensional variables, Equations (10)- 
(13) take the form (dropping the asterisks for conven-
ience):  
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where 
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m h
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b T K
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3. Solution of the Problem 

Applying the Laplace transform to Equations (18)-(21), 
we get the field equations in the Laplace transform space 
as  

11 12 1

d 2

d
n

rr

u u
r C C b T

r r
     

 
,         (22) 

 22 23 2

12 1

d

d
n C C bu u

r T
r C r b

 
    

 
        (23) 

2
2

2

d 2 d 2

d dd

u n u n u T
s u

r r r r rr

 
   

d
,        (24) 
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2
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u

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where we assume  and  0, 2h m n  

 
 

2
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.
1
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


 


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The boundary conditions in the Laplace transform 
space read 

   1
1, , 1, 0,rrT s s

s
               (26) 

while the regularity conditions are  

   , 0, , 0, atT r s u r s r .          (27) 

Taking 
d

,
d

u
r


  where   is the thermoelastic po-

tential function and introducing it in Equations (24) and 
(25), we find 

 2
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 2 2
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Eliminating from Equations (28) and (29), we get T

     2 2 2 2 2
1 2 1 21 0D D s D D s            (30) 

Introducing  , 1, 2im i   into Equation (30) become 

  2 2
1 2 1 1 2 2 0D D m D D m            (31) 

where  , 1, 2im i   are the positive solutions of the fol-
lowing characteristic equation  

  2 2 2 2 21 0m s m   s            (32) 

In order to transform Equation (31) into a normal 
Bessell equation, a new dependant variable  r is in-
troduced as  

   1 /2nr r    

Then, Equation (31) is rewritten as  

2 2
2

2 2

d 1 d
0, 1, 2,
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   
 

     
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   (33) 

where  
1

2

n 
  

The solution of   in will be the form  

        
2

1 /2

1

n
i i i i

i

r r A K m r B I m r   



      (34) 

where  iK m r and  iI m r are the modified Bessell 
functions of order  of first and second kind respectively. 

1A  and 2A are independent of  but depend on r s  and 
are to be determined from the boundary conditions. In the 
case of spherical cavity the solution to be continuous 
every where, we take equal to zero.  iB
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Using the relations between    ,u r T r  and  r , 
and using the recurrence relations of modified Bessell 
functions, we obtain the solution for the displacement 
 u r  and temperature  T r  as follows 
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Substituting the above solutions for  u r  and  T r  
in the relations (22) and (23), we obtain the following 
solutions for rr and  in the form 
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In order to determine the parameters 1A  and 2A , we 
need to consider the boundary conditions (26), we t  ge

   
2 12 2

1
i i i

i

A m s K m
s



  ,           (39) 

         (40) 

Solving (39) and (40), we obtain

   
2

1 1
1

2 0i i i i
i

A L K m m K m  


 

 1A  and 2A  as the 
following 

   1 1 2 2 1

1
2A L K m m K m

s    


2        (41) 

   2 1 1 1 1

1
2A L K m m K m

s   


 


        
        

2 2
1 1 1 2 2 1

2 2
2 2 1 1 1 1 1

2

2

m s K m L K m m K m

m s K m L K m m K m

  

  





 

  
 

2

Substituting the value of

 

 1A  and 2A  from Equations 
(4

deduced from 
ou

1) and (42) yields the displacement, temperature and 
thermal stresses in the transformed space.  

The results for isotropic material can be 
r problem by simply replacing 11 2 ,C     12 ,C   

22 23 ,C C       1 2 3b b 2 t    and   rK K  
win our calculation, here ,   are the Lame's constants, 

t is the coefficient of linear thermal expansion and 
the thermal conductivity for the isotropic material.  

Inversion of the Laplace Transforms 

K
 
. 

o obtain a solution of the problem in physical domain, 

4
 
T
we adopt a numerical inversion method based on a Fourier 
series expansion [9]. In this method, the inverse  g t  of 
the Laplace transform  g s  is approximated by  re- 
lation  

 the

   
1/

1
11 1

e
Re e ,0 ,

2

ct N
ikt t

k

g c ik
g t g c

t t




  
t t       

   

                (43) 
where is a sufficiently large inte

o
N  ger representing the 

number f terms in the truncated infinite Fourier series.  
N  must chosen such that  

1/
1

1

e Re eikt tct ik
g c

t
  

   
   

        (44) 

where 1  is a persecuted small positive number that 
corresponds to the degree of accuracy to be achieved. The 
parameter c  is a positive free parameter that must be 
greater than the real parts of all singularities of  g s . 
Two methods are used to reduce the total error. First e 
Korrecktur method is used to reduce the discretization 
error. Next, the algorithm is used to reduce the truncation 
error and therefore to accelerate convergence. The details 
of these methods can be found in Honig and Hirdes [9]. 
The discretization error can be made arbitrarily small by 
choosing the constant c large enough. The values of c  
and 1t  are chosen according to the criteria outlined in [9]. 
Form la (43) was used to invert the Laplace transforms in 
Equations (35)-(38), given the temperature, stress, and 
displacement distribution numerically.  
 
. Numerical Example and Dis

, th

cussion 

tained in 

u

5
 

ith the view of illustrating theoretical results obW

1         (42) 

where 

the preceding sections, we now present some numerical 
results. The materials chosen for this purpose is single 
crystal of magnesium, the physical data for which is given 
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

2

Numerical calculation are carried out for the tempera-
tu

 of a homoge
mensionless 

va

as  
10 2 10 2

11 12

10 2
23

=5.974 10 N m ,  = 2.624 10 N m

 = 2.17 10 N m , 

C C

C





   

 
 

l0 2 3 3
33 0

0

 =6.17 10 N m ,  = 1.47 10 kg m ,

  = 298 K,  = 0.0202, 

C

T




    
 

6 2 1
l 2 0

3
E

 = = 2.68 10 Nm  deg   = 1.7 10 ,

  = 1.04 10

b b K

C

  


 

re, the displacement, and the stress components along 
the r-direction. The computations were performed for 
one value of time, namely for 0.2t  . For all numerical 
calculations Mathematica pro ing Language has 
been used. The results of the numerical evaluation of the 
thermoelastic stresses variations, displacement and tem-
perature distribution are illustrated in Figures 1-8. The 
computational work has been performed for a suffici- 
ently wide range of values of the nonhomogeneity index 
n, via  0,1,2, 1n   and –2. Moreover  0n   leads to 
the case neous medium. 

Figures 1-4 elucidate the variation of di

gramm

lues of displacement, temperature, and thermal stresses 
distributions with respect to radius r for different values 
of  0,1,2, 1n   and –2. Figure 1 give the variation of 
the with observation distance for different 
values of n , It is seen that displacement takes positive 
values and radually increases until it attains a peak val-
ue at a particular location in close proximity to the cavity 
surface and then diminishes rapidly with increasing dis-
tance. Figure 2 represents the graph of temperature T 
versus r. It is noted that near the region of the cavity, T is 
maximum and it decreases with the increase of r, as it 
should occur in the real situation. Figure 3 represents the 
graph of radial thermal stress rr

displacement 

 g

 versus radius r. Also 
stress in each of the all cases is found to vanish on the 
boundaries, which agrees with the theoretical boundary 
condition. It is clear that for fixed t it decreases with the 
increase of r, which is physically plausible. Figure 4 is 
plotted to show the variation of hoop stress  versus r 
for different values of n , from the graph it lear that 
the maximum values o  occur near the surface of the 
cavity and its magnitude decreases with the increase of r, 
keeping t fixed. 

Figures 5-8 sh

is c
f

ow the displacement, temperature, radial 
stress and hoop stress distributions for three different 
values of the parameters q and  . These computations 
were carried out in the coupled theory ( q = 0   ), in 
Lord-Shulman theory ( 0,  q 0= 0 t   the 
generalized theory of the osed by Tzou 
( q 0

) and in
prmoelasticity pro

   ). The numerical values of the temperature, 
di t components and stress components are 

obtained and represented graphically for these theories. 
 

splacemen

6. Conclusions 

he problem of investigating the thermoelastic stresses,  
 
T

0.16

0

0.04

0.08

0.12

1 1.2 1.4 1.6 1.8

0n 

2n 

1n  

2n  

u

r

u

1n 
n = 0 

r

 
Figure 1. Variation of displacement with respect to rad us i
for fifferent values of nonhomogeneity parameter n. 
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Figure 2. Variation of temperature with respect to radiu
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s 
for different values of nonhomogeneity parameter n. 

-1.6

-1.2

-0.8

-0.4

0

1 1.2 1.4 1.6 1.8

rr r

0n 

r

–0.4

–0.8 n = 0 

1n 

2n 

1n

–1.2

 

2n  

 

Figure 3. Variation of radial stress with respect to radi s 
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Figure 4. Variation of hoop stress with respect to radius for 
different values of nonhomogeneity parameter n. 
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Figure 5. Variation of displacement with respect to radius 
for different values of phase-lags. 
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Figu s 
for different values of phase-lags. 
 

nally graded orthotropic hollow sphere. Under thermal 
shock loading on the stress free boundaries of the hollow 
sphere the problem is studied using dual-phase-lag model 
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Figure 7. Variation of radial stress with respect to radius 
for different values of phase-lags. 
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F . Variation of hoop stress with respect to radius for

f generalized thermoelasticity. The thermophysical pa-

permits some concluding 
re

 be observed that the phase lags effect plays a 
sig

d theory and dual- 
ph

ement and tempe- 
ra

eory (L-S), 
co

phenomenon of finite speeds of propagation is 
manifested in all these figures. This is expected, since the 
thermal wave travels with a finite velocity. 

igure 8  
different values of phase-lags. 
 
o
rameters are assumed to vary as the power-law exponent 
of the radial coordinate.  

The analysis of the results 
marks:  
1) It can
nificant role on all distributions.  
2) The difference between couple
ase-lag (DPL) model is very clear.  
3) The thermoelastic stresses, displac
ture have a strong dependency on the nonhomogeneous 

parameter n, so to design an FGM, the importance of the 
parameter must be taken into consideration.  

4) The difference between Lord-Shulman th
upled theory and dual-phase-lag (DPL) model is rather 

small.  
5) The 

r
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