

Two Theorems about Nilpotent Subgroup

Lijiang Zeng

Department of Mathematics, Zunyi Normal College, Zunyi, China E-mail: zlj4383@sina.com Received February 3, 2011; revised March 21, 2011; accepted March 23, 2011

Abstract

In the paper, we introduce some concepts and notations of Hall π -subgroup etc, and prove some properties about finite *p*-group, nilpotent group and Sylow *p*-subgroup. Finally, we have proved two interesting theorems about nilpotent subgroup.

Keywords: Hall π -Subgroup, Sylow *p*-Subgroup, Normalizer, Nilpotent Group

In this paper, we introduced some concepts and notations such as Hall π -subgroup and so on. Using concepts, terms and notations in group theory, we have proved some properties about finite group, nilpotent group and Sylow *p*-subgroup, and proved two interesting theorems about nilpotent subgroup in these properties.

Let π be a set of some primes and the supplementary set of π in the set of all primes be notated π' , When π contains only one prime p we notate π and π' as p and p', When all prime factor of integer n be in π we called n as a π -number, If the order |H| of G's subgroup be a π -number we called H as a π -subgroup.

Definition 1. If *H* be a π -subgroup of *G* and |G:H| be a π '- number, we called *H* as a Hall π -subgroup of *G*.

Lemma 1. A nontrivial finite *p*-group has a nontrivial center.

Proof. Let $p^m = n_1 + \dots + n_k$ be the class equation [1] of the group; n_i divides p^m and hence is a power of p. If the center were trivial, only n_i would equal 1 and $p^m \equiv 1 \pmod{p}$, which is impossible since $p^m > 1$. \Box

Definition 2. A group *G* is called nilpotent [2] if it has a central series [2], that is, a normal series

 $1 = G_0 \le G_1 \le \dots \le G_n = G$

such that G/G_i is contained in the center of G/G_i for all *i*. The length of a shortest central series of *G* is the nilpotent class of *G*.

A nilpotent group of class 0 has order 1 of course, while nilpotent groups of class at most 1 are abelian. Whereas nilpotent groups are obviously soluble, an example of a non nilpotent soluble group is S_3 (its centre is trivial). The great source of finite nilpotent groups is the class [3] of groups whose orders [4] are prime powers.

Lemma 2. A finite *p*-group is nilpotent.

Proof. Let *G* be a finite *p*-group of order > 1. Then Lemma 1 shows that $\zeta G \neq 1$. Hence $G/\zeta G$ is nilpotent by induction on |G|. By forming the preimages of the terms of a central series of $G/\zeta G$ under the natural homomorphism [5] $G \rightarrow G/\zeta G$ and adjoining [6] 1, we arrive at a central series of *G*. \Box

Lemma 3.The class of nilpotent groups is closed under the formation of subgroups, images, and finite direct products.

The proof can be found in Reference [1].

Lemma 4. Let *P* be a Sylow *p*-subgroup [7] of a finite group *G*.

i) If $N_G(P) \le H \le G$, then $H = N_G(H)$.

ii) If $N \triangleleft G$, then $P \cap N$ is a Sylow *p*-subgroup of N and PN/N is a Sylow *p*-subgroup of G/N.

Proof. i) Let $x \in N_G(H)$. Since $P \le H < N_G(H)$, we have $P_x \le H$. Obviously P and P^x are Sylow p-subgroup of H, so $P^x = P^h$ for some $h \in H$. Hence $xh^{-1} \in N_G(P) \le H$ and $x \in H$. It follows that $H = N_G(H)$.

ii) In the first place $|N: P \cap N| = |PN: P|$, which is prime to p. Since $P \cap N$ is a p-subgroup, it must be a Sylow p-subgroup of N. For PN/N the argument is similar. \Box

Lemma 5. Let *G* be a finite group. Then the following properties are equivalent:

i) *G* is nilpotent;

- ii) every subgroup of G is subnormal [8];
- iii) G satisfies the normalizer [9] condition;

Foundation Item: Project supported by Natural Science Foundation (13116339) of China; Natural Science Foundation ([2009]2075) of Science and Technology Department of Guizhou; Natural Science Foundation ([2011]069) of Education Department of Guizhou; Science Research item(2010028) of Zunyi Normal College.

iv) every maximal subgroup [8] of G is normal;

v) G is the direct product of its Sylow subgroups.

Proof: i) \rightarrow ii) Let G be nilpotent with class c. If $H \leq G$, then $H\zeta_i G < H\zeta_{i+1}G$ since

$$\zeta_{i+1}G/\zeta_iG = \zeta\left(G/\zeta_iG\right)$$

Hence

$$H = H\zeta_0 G \triangleleft H\zeta_1 G \triangleleft \cdots \triangleleft H\zeta_c G = G$$

and *H* is subnormal in *G* in *c* steps.

ii) \rightarrow iii) Let $H \leq G$. Then H is subnormal in G and there is a series $H = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$. If i is the least positive integer such that $H \neq H_i$. Then

 $H = H_{i-1} \triangleleft H_i$ and $H_i \leq N_G(H)$.

iii) \rightarrow iv) If *M* is a maximal subgroup of *G*, then $M < N_G(M)$, so by maximality $N_G(M) = G$ and $M \triangleleft G$.

iv)→v) Let *P* be a Sylow subgroup of *G*. If *P* is not normal in *G*, then $N_G(P)$ is a proper subgroup of *G* and hence is contained in a maximal subgroup of *G*, say *M*. Then $M \triangleleft G$; however this contradicts Lemma 4. Therefore each Sylow subgroup of *G* is normal and there is exactly one Sylow *p*-subgroup for each prime *p* since all such are conjugate. The product of all the Sylow subgroups is clearly direct and it must equal *G*.

 $v \rightarrow i$) by Lemma 2 and Lemma 3.

Theorem 1. Assume that every maximal subgroup of a finite group *G* itself is not nilpotent. Then:

i) *G* is soluble;

ii) $|G| = p^m q^n$ where p and q are unequal primes;

iii) there is a unique Sylow *p*-subgroup *P* and a Sylow *q*-subgroup *Q* is cyclic. Hence G = QP and $P \triangleleft G$.

Proof. i) Let *G* be a counterexample of least order. If *N* is a proper nontrivial normal subgroup, both *N* and G/N are soluble, whence *G* is soluble. It follow that *G* is a simple group.

Suppose that every pair of distinct maximal subgroups of *G* intersects in 1. Let *M* be any maximal subgroup: then certainly $M = N_G(M)$ If |G| = n and |M| = m, then *M* has n/m conjugates [10] every pair of which intersect trivially. Hence the conjugates of *M* account for exactly

$$\frac{(m-1)n}{m} = n - \frac{n}{m}$$

nontrivial elements. Since $m \ge 2$, we have

$$n - \frac{n}{m} \ge \frac{n}{2} \ge \frac{n-1}{2}$$

in addition it is clear that

$$n - \frac{n}{m} \le n - 2 < n - 1.$$

Since each nonidentity element of G belongs to ex-

Copyright © 2011 SciRes.

actly one maximal subgroup, n-1 is the sum of integers lying strictly between $\frac{n-1}{2}$ and n-1. This is plainly impossible.

It follows that there exist distinct maximal subgroups M_1 and M_2 whose intersection I is nontrivial. Let M_1 and M_2 be chosen so that I has maximum order [8]. Write $N = N_G(I)$. Since M is nilpotent, $I \neq N_{M_1}(I)$ by Lemma 5, so that $I < N \cap M_1$. Now I cannot be normal in G; thus N is proper and is contained in a maximal subgroup M. Then $I < N \cap M_1 \leq M \cap M_1$, which contradicts the maximality of |I|.

ii) Let $|G| = p_1^{e_1} \cdots p_k^{e_k}$, where $e_i > 0$ and the p_i are distinct primes. Assume that $k \ge 3$. If M is a maximal normal subgroup, its index is prime since G is soluble; let us say $|G:M| = p_1$. Let P_i be a Sylow p_i -subgroup of G. If i > 1, then $P_i \le M$ and, since M is nilpotent, it follows that $P_i \triangleleft G$; also the since $k \ge 3$. Hence P_1P_i is nilpotent and thus $[P_1, P_i] = 1$ (by Lemma 5). It follows that $N_G(P_1) = G$ and $P_1 \triangleleft G$. This means that all Sylow subgroup of G are normal, so G is nilpotent. By this contradiction k = 2 and $|G| = p_1^{e_1} p_2^{e_2}$. We shall write $p = p_2$ and $q = p_1$.

iii) Let there be a maximal normal subgroup M with index [6] q. Then the Sylow p-subgroup P of M is normal in G and is evidently also a Sylow p-subgroup of G. Let Q be a Sylow q-subgroup of G. Then G = QP. Suppose that Q is not cyclic. If $g \in Q$, then $\langle g, P \rangle \neq G$ since otherwise $Q \approx G/P$, which is cyclic [6]. Hence $\langle g, P \rangle$ is nilpotent and $\langle g, P \rangle = 1$. But this means that [P,Q]=1 and $G = P \times Q$, a nilpotent group. Hence Q is cyclic. \Box

In an insoluble group [3] Hall π -subgroups, even if they exist, may not be conjugate: for example, the simple group **PSL** (2, 11) of order 660 has subgroups isomorphic with D_{12} and A_4 : these are nonisomorphic [10] Hall $\{2,3\}$ -subgroups and they are certainly not conjugate. However the situation is quite different when a nilpotent Hall π -subgroup is present.

Theorem 2. Let the finite group *G* possess a nilpotent Hall π -subgroup *H*. Then every π -subgroup of *G* is contained in a conjugate of *H*. In particular all Hall π -subgroups of *G* are conjugate.

Proof. Let *K* be a π -subgroup of *G*. We shall argue by induction on |K|, which can be assumed greater than I. By the induction hypothesis a maximal subgroup of *K* is contained in a conjugate of *H* and is therefore nilpotent. If *K* itself is not nilpotent, Theorem 1 may be applied to produce a prime *q* in π dividing |K| and a Sylow *q*-subgroup *Q* which has a normal complement *L* in *K*. Of course, if *K* is nilpotent, this is still true by Lemma 5.

Now write $H = H_1 \times H_2$ where H_1 is the unique Sylow *q*-subgroup of *H*. Since $L \neq K$, the induction hypothesis shows that

$$L \le H^g = H_1^g \times H_2^g$$

for some $g \in G$. Thus $L < H_2^g$ because *L* is a *q'*-group. Consequently $N = N_G(L)$ contains $\langle H_1^g, K \rangle$. Observe that $|G:H_1|$ is not divisible by *q*; hence H_1^g is a Sylow *q*-subgroup of *N* and by Sylow's Theorem $Q \leq (H_1^g)^x$ for some $x \in N$. But $L = L^x$ and, using $L \leq H_2^g$, we obtain

$$K = QL = QL^{x} \le H_{1}^{gx} H_{2}^{gx} = H^{gx}$$

as required. \Box

References

- M. Osima, "On the Induced Characters of a Group," *Proceedings of the Japan Academy*, Vol. 28, No. 5, 1952, pp. 243-248. doi:10.3792/pja/1195570968
- [2] J. D. Dixou, "The Structure of Linear Groups," Van Nostrand Reinhold, New York, 1971, pp. 189-201.
- [3] M. Aschbacher, "Finite Group Theory," Cambridge University Press, New York, 1986, pp. 174-188.

- [4] C. W. Curtis and I. Reiner, "Methods of Representation Theory," Wiley, New York, 1981, pp. 177-184.
- [5] J. E. Roseblade, "A Note on Subnormal Coalition Classes," *Mathematische Zeitschrift*, Vol. 90, No. 5, 1965, pp. 373-375. doi:10.1007/BF01112356
- [6] C. F. Miller III, "On Group Theoretic Decision Problems and Their Classification," *Annals of Mathematics Studies*, No. 68, Princeton University Press, Princeton, 1971, pp. 112-134.
- [7] M. F. Newman, "The Soluble Length of Soluble Linear Groups," *Mathematische Zeitschrift*, Vol. 126, No.1, 1972, pp. 59-70. doi:10.1007/BF01580356
- [8] B. Li and A. Skiba, "New Characterizations of Finite Supersoluble Groups," *Science in China Series A: Mathematics*, Vol. 51, No. 5, 2008, pp. 827-841.
- [9] W. Guo and A. Skiba, "X-Permutable Maximal Subgroups of Sylow Subgroups of Finite Groups," Ukrainian Mathematical Journal, Vol. 58, No. 10, 2006, pp. 1299-1309.
- [10] W. Guo, K. Shum and A. Skiba, "X-Semipermutable Subgroups of Finite Groups," *Journal of Algebra*, Vol. 315, No. 1, 2007, pp. 31-41. doi:10.1016/j.jalgebra.2007.06.002

564