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Abstract

This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We dis-
cuss the role of some assumptions on the objective functions and feasible domain, the relationship between
them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to
remove the concavity assumptions on the objective functions which are usually used in multi-objective
maximization problems. The results are based on constructing a retraction from the feasible domain onto the
Pareto-optimal set.

Keywords: Multi-Objective Programming, Pareto-Optimal, Pareto-Front, Compact, Contractible, Fixed Point,

Retraction

1. Introduction

During the last four decades, the topological properties
of the Pareto solutions in multi-objective optimization
problems have attracted much attention from researchers,
see [1-8] for more details. The aim of this paper is to
present some new facts on compactness, contractibility
and fixed point properties of the Pareto-optimal and the
Pareto-front sets, shortly Pareto sets, in a multi-objective
maximization problem. The authors have tried to remove
the concavity assumptions of the objective functions
which are usually used in this optimization problem.

The standard form of the multi-objective maximiza-
tion problem is to find a variable x(x,X,,---,%,)€R",

m>1, 50 as to maximize f(x)=(f,(x), f,(x), - f,(x))
subject to xe X , where the feasible domain X is
nonempty, J, ={12,---,n} is the index set, n>2,
f.:X >R
ield,.

is a given continuous function for all

Since the objective functions {fi}i":l may conflict

with each other, it is usually difficult to obtain a global
maximum for all objective functions at the same time.
Therefore, the target of the maximization problem is to
achieve a set of solutions that are Pareto-optimal. His-
torically, the first reference to address such situations of
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conflicting objectives is usually attributed to Vilfredo
Pareto (1848-1923).

Definition 1. a) A point xe X is called a
Pareto-optimal solution if and only if there does not exist
a point ye X such that f(y)>f (x) forall ieJ,

and f (y)> f.(x) for some kelJ, . The set of

Pareto-optimal  solutions of X is denoted by
PO(X, f) and is called a Pareto-optimal set. Its image

f(PO(X, f))=PF(X,f) iscalled a Pareto-front set.

b) A point xe X is called a strictly Pareto-optimal
solution if and only if there does not exist a point y e X

such that f,(y)>f,(x) forall ieJ, and x=y.The

set of strictly Pareto-optimal solutions of X is denoted
by SPO(X,f) and is called a strictly Pareto-optimal

set. [

The strictly Pareto-optimal solutions are the multi-
objective analogue of unique optimal solutions in scalar
optimization.

In this paper, let the feasible domain X be compact.
It is well-known that PO(X,f) and PF(X,f) are
nonempty, SPO(X, f)cPO(X, f)and PF(X,f)c
of (X) [4]

One of the most important problems in multi-criteria
maximization is the investigation of the topological

AM


mailto:slavovibz@yahoo.com
mailto:christina.s@gmail.com

Z.D.SLAVOV ET AL 557

properties of the Pareto-optimal and Pareto-front sets.
Information about these properties of the Pareto sets is
very important for computational algorithms generating
Pareto solutions [8,9]. Consideration of topological
properties of Pareto solutions sets is started by [5], see
also [4,6,9,10].

We focus our attention on the compactness, contracti-
bility and fixed point properties of the Pareto sets. Com-
pactness of these sets is studied in [4,6,11]. Contracti-
bility of Pareto sets is considered in [12-14]. Fixed point
properties of Pareto-optimal and Pareto-front sets have
been addressed in [7,15].

This paper is organized as follows: In Section 2, we
describe some definitions and notions from topology and
optimization theory. In Section 3, we study compactness,
contractibility and fixed point properties of the
Pareto-optimal and Pareto-front sets.

2. Definitions and Notions

Recall some topological definitions.
Definition 2. a) The set Y < X is a retract of X if
and only if there exists a continuous function r: X —Y

such that r(x)=x for all xeY. The function r is
called a retraction.

b) The set Y < X is a deformation retract of X if
and only if there exist a retraction r: X —Y and a

homotopy H: X x[0;1] - X such that H(x,0)=x
and H(x,1)=r(x) forall xeX .

c) The set Y is contractible (contractible to a point)
if and only if there exists a point aeY such that {a}
is a deformation retract of Y . [l

Definition 3. The topological space Y is said to have

the fixed point property if and only if every continuous
function h:Y —Y from this set into itself has a fixed

point, i.e. thereisapoint xeY suchthat x=h(x).

Remark 1. Let X and Y be two topological spaces.

A homotopy between two continuous functions
f,g: X —>Y s defined to be a continuous function

H:Xx[0;1]—>Y such that H(x,0)="f(x) and
H(x,1)=g(x) for all xe X . Note that we can con-
sider the homotopy H as a continuously deformation
of f to g [16]. I

Remark 2. From a more formal viewpoint, a retrac-
tion is a function r: X —Y such that ror(x)=r(x)
for all xe X, since this equation says exactly that r
is the identity on its image. Retractions are the topologi-

cal analogs of projection operators in other parts of
mathematics. Clearly, every deformation retract is a re-

tract, but in generally the converse does not hold [16]. []
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Remark 3. It is known that convexity implies contrac-
tibility, but the converse does not hold in general. Con-
tractibility of sets is preserved under retraction. This
means that if set X is contractible and Y is a retract
of X, thenset Y iscontractible too. []

Let us consider a multifunction ¢:Y =Y . Let it be
upper semi-continuous with a nonempty, compact and
convex image, shortly we say that ¢ is cusco.

Definition 4. The topological space Y is said to have
the Kakutani fixed point property if and only if every
cusco ¢:Y =Y has a fixed point, i.e. there is a point

xeY suchthat xep(x). U

Remark 4. A property is called a topological property
if and only if an arbitrary topological space X has this
property, then Y has this property too, where Y is
homeomorphic to X . Compactness, contractibility and
the fixed point properties (the fixed point property and
the Kakutani fixed point property) are topological prop-
erties. [

Of course, the topological properties of the Pareto-
optimal set relate to the topological properties of the
Pareto-front set, respectively.

Remark 5. The fixed point and the Kakutani fixed
point properties of sets are preserved under retraction
[16]. This means that the following statements are true: if
set X has the fixed point property and Y is a retract
of X, then set Y has the fixed point property too; if
set X has the Kakutani fixed point property and Y is
aretractof X ,thenset Y has the Kakutani fixed point
property too. [

Remark 6. The Kakutani fixed point property is very
closely related to the fixed point property. If S < R"
has the Kakutani fixed point property, then since any
continuous function from S into itself can be viewed as
a cusco it follows that set S will also have the fixed
point property. [

Remark 7. Let S < R" be compact. It can be shown
that set S having the Kakutani fixed point property is
equivalent to S having the fixed point property. Re-
mark 6 has shown that if S has the Kakutani fixed
point property, then S has the fixed point property.
Now, let ¢:S =S be cusco, S have the fixed point

property and gph(¢)= {(x y)eSxS|yegp(x)}. From

Cellina’s Theorem it follows that there is an approximate
continuous selection h of ¢ [17,18]. That is, for each

ke N there exists a continuous function h :S —S
such that d((x,hk(x)),gph((p))<% for all xeS .

From the assumption that S has the fixed point prop-
erty, it follows that each function h, has a fixed point
k

X €S . Asaresult we get a sequence {x} , =S such
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that d((xk,xk),gph((p))<%, i.e. the point (XX )

approaches the set gph(¢). The set S is compact,

implying that there exists a convergent subsequence

{Xr'n(k)}m(k):], C {Xk}k:l such that i!I_I;];]O Xm(k) = )(0 cS . We

also see that d((x;q(k),x;(k)),gph(¢))< . But ¢

1
m(k)
is cusco, then gph(¢) is closed. Taking the limit as

k —>o wehave m(k)— oo and obtain

Em(x;(k),x;(k))z(xo,xo)egph(gp). This means that

X, €S is a fixed point for ¢, see also [19]. Finally, we

find that S has the Kakutani fixed point property. [

We use R™ and R" as generic finite-dimensional
vector spaces. In addition, we also introduce the follow-

ing notations: for every two vectors x,y e R",

X(X, %, % )= V(Y. Yo, Y, ) means x =y, for
all el X(X, %, %) 2 V(Y Yora Ya)
x, >y, for all ieJ, (weakly componentwise order),
X(X, X0 %) > Y(Yis Youeo0 Y, ) Means x>y, forall
ieJ, (strictly componentwise order), and
X(X, X0 %, ) = Y (Vis Yoo Yy ) Means x>y, for all
ied, and x, >y, for some kelJ, (componentwise
order).

means

3. Main Result

As usual, the key idea is to transfer our multi-objective
optimization problem to mono-objective optimization
problem by defining a unique objective function.

We begin with the following definition: define a mul-

tifunction y: X = X by y(x)={yeX|f(y)xf(x)|
forall xe X ; defineafunction s: X - R by s(x)=

> f(x) forall xeX.

j=1 i

Choose x e X and consider an optimization problem
with a single objective function as follows: maximize
s(y) subjectto yew(x).By letting x vary over all

of X we can identify different Pareto-optimal solutions.

This optimization technique will allow us to find the
whole Pareto-optimal set.

In this paper, we will discuss the role of the following
assumptions:

Assumption 1. X is a nonempty, compact and con-
vex set.

Assumption 2. |Arg max(s,z//(x))| =1 forall xeX.
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Assumption 3. If d is a metric in R™, {x} <X

and limd(x,,%)=0, then limd(y,.w(x))=0 for

all y,ew(x).

Assumption 4. f is bijective.

Our aim is to obtain a set of conditions which guaran-
tee the compactness, contractibility and fixed point
properties of the Pareto sets.

Remark 8. Let CI(X) be the set of all nonempty

compact subsets of X . A sequence of sets {A} <

®©
k=1

CI(X) is said to Wijsman converge to AeCI(X) if
and only if for each xe X , l!imd(x,Ak):d(x,A).

See also Assumption 3.

These definitions and assumptions allow us to present
the main theorem of this paper.

Theorem 1. If Assumptions 1, 2, 3 and 4 hold, then:

a) PO(X,f)=SPO(X, ).

b) PO(X,f) and PF(X,f) arecompact.

c) PO(X,f) and PF(X,f) arecontractible.

d) PO(X,f) and PF(X,f) have the fixed point
properties.

In order to give the proof of Theorem 1, we will prove
some lemmas.

Lemma 1. If xe X, xePO(X,f) isequivalent to
) =v (x).

Proof. Let xe PO(X, f) and assume that
{x} =y (x) .
{x} =w(x), it follows that there exists y e (x)\{x}
such that f(y)>f(x). As a result we get that
s(y)=s(x), but xePO(X,f) implies s(y)=s(x)
and f(y)= f(x).Since by assumption f is bijective,
we deduce x=vy ; which contradicts the condition

From the conditions xey(x) and

y ey (x)\{x}. Thus, we obtain {x} =y (x).
Conversely, let {x} =y (x) and assume that

x ¢ PO(X, f). From the assumption x ¢ PO(X, f), it

y e X\{x} such that

f(y)=> f(x). Thus we deduce thaty ey (x)and x=#y,

follows that there exists
which contradicts the condition {x} = (x). Therefore,

we obtain xe PO(X, f).
The lemma is proven.
Lemma 2. If xeX , then Argmax(s,y(x))c

PO(X, f).
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Proof. Let us choose y e Arg max(s,y(x)) and as-
sume that y ¢ PO(X, f ). From the assumption
y e PO(X, f) it follows that there exists ze X \{y}
such that f(z)>f(y) .
zey(x) and s(z)>s(y). This leads to a contradic-

As a result we derive

tion; therefore, we obtain y € PO(X, f).
The lemma is proven.
Now, using Arg max s,y (x)) = PO(X, f)
(Lemma 2) and |Arg max(s,y/(x))| =1 (Assumption 3),

we are in a position to construct a function

r:X - PO(X,f) such that

r(x)= Arg max(s,y(x)) forall xe X, see also Defi-

nition 1 and Lemma 1.
Remark 9. Applying Lemmas 1 and 2 it follows that:

if xePO(X,f),then x=r(x);if xe X\PO(X,f),
then x#r(x).Thismeansthat r(X)=PO(X,f). [
Lemma3. y iscontinuouson X.

Proof. First, we will prove that if {x } <X and

{Yi},, = X area pair of sequences such that
limx, =x, € X and y, ey (x) for all keN, then

k—o0

there exists a convergent subsequence of {yk }:’:1 whose
limit belongs to (X, ).
The assumption y, ey (x,) for all keN implies

f(y,)=f(x) for all keN . From the condition
{Vi}., =X it follows that there exists a convergent
subsequence {q },, ={Y,},_, such that limg, = y, € X .
Therefore, there exists a convergent subsequence
P}, =%}y, such thatq, ey (p)and limp, =X, .
Thus, we find that f (q, )>f (p,) forall ke N . Taking
the limit as k »o we obtain f(y,)> f(x,). This
implies y, ey (X,).

This means that  is upper semi-continuous on X
[20].

Second, we will prove that if {x} <X is a se-
quence convergent to x, € X and Yy, ew(X,), then
there exists a sequence {y,} <X such that
y, €w(x,) forall keN and limy, =y,

As usual, the distance between the pointy, € X and

Copyright © 2011 SciRes.

the set y(x,) = X is denoted by

d, =inf {dis(y,, x)| xew (X )} -
nonempty and compact; therefore, if vy, ez«//(xk), then

Clearly, w(x,) s

there exists yew(x ) suchthat d, =d(¥,y,). There
are two cases as follows: if y, ey(x,), then d, =0
and let y, =vy,; if y,ew(x), then d >0 and let
y, =Y. Thus, we get a sequence {d,} <R, and a

sequence {y,}, , =X such that y, ew(x) for all
keN and d =d(y,,Y,)- Assumption 3 and

lim X, =X, imply that the sequence {d,}  is conver-

k=1
gent and |!im d, =0. Finally, we obtain lim Yo =Y -

This means that  is lower semi-continuous on X
[20].

In summary, w iscontinuouson X .

The lemma is proven.

Lemma 4 [21, Theorem 9.14 — The Maximum Theo-
rem]. Let ScR", ®cR™, h:Sx®—>R a con-
tinuous function, and D:® = S be a compact-valued
and continuous multifunction. Then, the function
h*:® — R defined by is continuous on ®, and the
multifunction D*:® = S defined by

D*(6)={xeD(8)|h(x,0)=h*(6)} is compact-valu-
ed and upper semi-continuous on @ .

Lemmab. r iscontinuouson X.

Proof. As was mentioned before, the multifunction
is compact-valued and continuous on X . Applying
Lemma 6 for S=0=X and D=y, we deduce that
I is an upper semi-continuous multifunction on X .
Obviously, an upper semi-continuous multifunction is
continuous when viewed as a function. This shows that
I iscontinuouson X.

The lemma is proven.

Lemma 6 [21, Theorem 9.31 — Schauder’s Fixed Point
Theorem]. Let h:S — S be a continuous function from
a nonempty, compact and convex set S < R" into itself,
then h has a fixed point.

Lemma 7 [21, Theorem 9.26 - Kakutani’s Fixed Point
Theorem]. Let S<R" be a nonempty, compact and
convex set and the multifunction ¢:S =S be cusco,

then ¢ has a fixed point.

Lemma8. PO(X, f) ishomeomorphic to
PF(X,f).

Proof. It is well-known that every continuous image of

a compact set is compact. In fact, the set X is compact
and the function r is continuous on X . Hence, the set
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PO(X, f)=r(X) is compact. Recalling that the func-
tion f:X — R" is continuous, we deduce that the re-
striction h:PO(X,f)—>PF(X,f) of f

tinuous too. We know that the function h is bijective.
Consider the inverse function

h™:PF(X,f)>PO(X,f) of h. As we proved
above, the set PO(X, f) is compact; therefore, h™ is

continuous too [22]. As a result we find that the function
h is homeomorphism.

The lemma is proven.

Proof of Theorem 1. Applying Lemma 1 we get that
PO(X, f)=SPO(X,f).

From Lemma 5 it follows that there exists a continu-
ous function r:X — PO(X,f) such that r(X)=

PO(X,f) and r(x)=Argmax(s,y(x))forall
x e X . This means that PO(X, f) isaretractof X.

We know that X is nonempty, compact and convex
(Assumption 1), i.e. it is contractible, has the fixed point
and the Kakutani fixed point properties, see Lemmas 6
and 7. This remark allows us to deduce that PO(X, f)
is compact and contractible, has the fixed point and the
Kakutani fixed point properties.

According to Lemma 8 we obtain that the Pareto-front
set PF(X,f) is compact and contractible, has the
fixed point and the Kakutani fixed point properties too.

The theorem is proven.

Remark 10. It is important to note that the
Pareto-optimal and Pareto-front sets are not convex in
general. [

Remark 11. As we have shown in Lemma 6, if an ar-
bitrary set is nonempty, compact and convex, then it has
the fixed point property. In general, it is not difficult to
verify that the Pareto-optimal and Pareto-front sets are
nonconvex, but they are compact and contractible. Thus
among nonconvex sets, compactness and contractibility
do not have direct relationship with the fixed point prop-
erty. There are examples of compact and contractible sets
which do not have the fixed point property. It is not
known what types on nonconvex sets have this property.

is con-

4. Conclusions

We have shown the compactness, contractibility and
fixed point properties of the Pareto-optimal and Pareto-
front sets in multi-objective mathematical programming
when the feasible domain is compact and convex. The
two important facts are that the proof did not use the
concavity assumptions on the objective functions which
are usually used in this optimization problem, and that
the Pareto-optimal and Pareto-front sets are not compact
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and convex in general.

The authors see three directions for future research re-
lated to this article: one would look for general condi-
tions on the objective functions without the assumption
of their concavity; one would analyze specific types of
concave or quasi-concave objective functions; and one
would study the relationship between the first two.
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