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Abstract 
 
This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We dis-
cuss the role of some assumptions on the objective functions and feasible domain, the relationship between 
them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to 
remove the concavity assumptions on the objective functions which are usually used in multi-objective 
maximization problems. The results are based on constructing a retraction from the feasible domain onto the 
Pareto-optimal set. 
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1. Introduction 
 
During the last four decades, the topological properties 
of the Pareto solutions in multi-objective optimization 
problems have attracted much attention from researchers, 
see [1-8] for more details. The aim of this paper is to 
present some new facts on compactness, contractibility 
and fixed point properties of the Pareto-optimal and the 
Pareto-front sets, shortly Pareto sets, in a multi-objective 
maximization problem. The authors have tried to remove 
the concavity assumptions of the objective functions 
which are usually used in this optimization problem. 

The standard form of the multi-objective maximiza-
tion problem is to find a variable  1 2, , , m

mx x x x R ,  

1m  , so as to maximize         1 2, , n f x f x f x , f x   

subject to x X , where the feasible domain X  is 

nonempty,  2, , 1,nJ n

R

 is the index set, , 

 is a given continuous function for all 

. 

2n 

:if X 

ni J

Since the objective functions    may conflict  
1

n

i i
f



with each other, it is usually difficult to obtain a global 
maximum for all objective functions at the same time. 
Therefore, the target of the maximization problem is to 
achieve a set of solutions that are Pareto-optimal. His-
torically, the first reference to address such situations of 

conflicting objectives is usually attributed to Vilfredo 
Pareto (1848-1923). 

Definition 1. a) A point x X  is called a 
Pareto-optimal solution if and only if there does not exist 
a point y X  such that  i  if y f x  for all ni J  

and    kkf y f x  for some . The set of 

Pareto-optimal solutions of 
nk J

X  is denoted by 

 f,XPO  and is called a Pareto-optimal set. Its image 

    ,,f PO PFX f  X f  is called a Pareto-front set. 

b) A point x X  is called a strictly Pareto-optimal 
solution if and only if there does not exist a point y X  

such that    iif y f x  for all  and ni J x y . The 

set of strictly Pareto-optimal solutions of X  is denoted 
by  ,X fSPO


 and is called a strictly Pareto-optimal 

set.  
The strictly Pareto-optimal solutions are the multi- 

objective analogue of unique optimal solutions in scalar 
optimization. 

In this paper, let the feasible domain X  be compact. 
It is well-known that  and  ,PO X f   ,X fPF  are 
nonempty,   , ,f PO X SPO X f and   ,PF X f  

 f X  [4]. 
One of the most important problems in multi-criteria 

maximization is the investigation of the topological 
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properties of the Pareto-optimal and Pareto-front sets. 
Information about these properties of the Pareto sets is 
very important for computational algorithms generating 
Pareto solutions [8,9]. Consideration of topological 
properties of Pareto solutions sets is started by [5], see 
also [4,6,9,10]. 

We focus our attention on the compactness, contracti-
bility and fixed point properties of the Pareto sets. Com-
pactness of these sets is studied in [4,6,11]. Contracti-
bility of Pareto sets is considered in [12-14]. Fixed point 
properties of Pareto-optimal and Pareto-front sets have 
been addressed in [7,15]. 

This paper is organized as follows: In Section 2, we 
describe some definitions and notions from topology and 
optimization theory. In Section 3, we study compactness, 
contractibility and fixed point properties of the 
Pareto-optimal and Pareto-front sets. 
 
2. Definitions and Notions 
 
Recall some topological definitions. 

Definition 2. a) The set  is a retract of Y X X  if 
and only if there exists a continuous function  

such that  for all 

:r X Y
 r x x x Y . The function  is 

called a retraction. 

r

b) The set  is a deformation retract of Y X X  if 
and only if there exist a retraction  and a 

homotopy 

:r X Y
 : 0;1H X  X  such that  0H x, x  

and    ,1H x r x  for all x X . 

c) The set  is contractible (contractible to a point) 
if and only if there exists a point  such that 

Y
a Y  a  

is a deformation retract of .  Y 
Definition 3. The topological space  is said to have 

the fixed point property if and only if every continuous 
function  from this set into itself has a fixed 

point, i.e. there is a point 

Y

:h Y Y
x Y  such that  x h x .  

Remark 1. Let X  d Y  b two topological spaces. 
A homotopy between two continuous functions 

an e 

, :f g X Y


 is defined to be a continuous function 

: 0;1H X Y  such that    ,0H x f x  and 

  ,1 H x g x  for all x X . Note that we can con-

sider the homotopy H  as a continuously deformation 
of f  to g  [16].   

Remark 2. From a more formal viewpoint, a retrac-
tion is a function  such that r : X Y    r r x r x  

for all x X , since this equation says exactly that r  
is the identity on its image. Retractions are the topologi-
cal analogs of projection operators in other parts of 
mathematics. Clearly, every deformation retract is a re-

Remark 3. It is known that convexity implies contr -

tract, but in gene e converse does not hold 

ac
tib

rally th [16].   

ility, but the converse does not hold in general. Con-
tractibility of sets is preserved under retraction. This 
means that if set X  is contractible and Y  is a retract 
of X , then set Y  contractible too. 

L  us consid  a multifunction :Y
 is  

Yet er  
empty, co

. Let it be 
upper semi-continuous with a non mpact and 
convex image, shortly we say that   is cusco. 

Definition 4. The topological space Y  is said to have 
the Kakutani fixed point property if and only if every 
cusco :Y Y   has a fixed point, i.e. there is a point 

x Y  such that  x x .   

mark 4. A p eRe roperty is call d a topological property 
if and only if an arbitrary topological space X  has this 
property, then Y  has this property too, w re Y  is 
homeomorphic t

he
o X . Compactness, contractibility and 

the fixed point pro rties (the fixed point property and 
the Kakutani fixed point property) are topological prop-
erties.   

Of c rse, th

pe

ou e topological properties of the Pareto- 
op

d the Kakutani fixed 
po

timal set relate to the topological properties of the 
Pareto-front set, respectively. 

Remark 5. The fixed point an
int properties of sets are preserved under retraction 

[16]. This means that the following statements are true: if 
set X  has the fixed point property and Y  is a retract 
of X , then set Y  has the fixed point p perty too; if 
set 

ro
X  has the K utani fixed point property and Y  is 

a retract of 
ak

X , then set Y  has the Kakutani fixed point 
property too  

Remark 6. e Ka
. 

 Th kutani fixed point property is very 
cl

et be compact. It can be shown 
th

osely related to the fixed point property. If nS R  
has the Kakutani fixed point property, then sin  
continuous function from S  into itself can be viewed as 
a cusco it follows that se S  will also have the fixed 
point property.   

Remark 7. L nS R

ce any

t 

  
 the Kaat set S  having kutani fixed point property is 

equivalent to S  having the fixed point property. Re-
mark 6 has shown that if S  has the Kakutani fixed 
point property, then S  has he fixed point property. 
Now, let : S S

 t
   be cusco, S  have the fixed point  

property a       ,gph S

rem it follows that there is an appro

x y S | y x     . From nd 

Cellina’s Theo ximate 
continuous selection h  of   [17,18]. That is, for each 

k N  there exists a conti us function :kh S S  

   
 nuo

such that    1
, , gph    for kd x h

k
x all x S . 

rop-From the ass xed point p
erty, it follows that each function kh  has a fixed point 

k

ump  has the fition that S  

x S . As a result we get a sequenc e  1k k
x S




  such 
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that      1
, ,x x gph   , i.e. thk kd

k
e point  ,k kx x  

approaches the set  gph  . The set S  is c

implying that there a convergen subsequence 

     11
km k k

x x
 


   such that   0lim m kk

ompact, 

exists t 

 m k 
x x S


   . We 

also see that          
1

, ,m k m kx d x gph
m k

  . But   

is cusco, then gph    

 m k

 0 0,x x

is closed. Taking the lim

g

it as 

k   we have   and obtain 

     ,k m kx ph

 

 lim mk
x 




0

   . This means that 

x S  is a fixed point for  , see also [19]. Finally, we 

t S  has the Kakutan fixed point property.   
We us mR  and nR  as generic finite-dimens a

ve s. I tion

find tha
e 

i 
ion l 

ctor space n addi , we also introduce the follow-
ing notations: for every two vectors , nx y R , 

 1 2, , nx x x ,x   1 2, , , ny y y y  m ieans ix y  for 

all ni J ,    1 2, , , 1 2, , ,n nx x x x y y y  eans 

i

y  m

ix y  for i J

 1,

 all  order), 

 2 2, , , , ,n n

n  (wea

 1

kly componentwise

x x x yx y y   means i iy x y  for all  

rder), andni J  (strictly com

 1,

ponentwise o   

  2 1 2, , , , ,n nx x x x y y y y   means i ix y  for all 

ni J  and k kx y
order)

n Result 

 for some nJ  (com entwise 

. 
 

3. ai

k

 transfer our 

pon

 M
 

s usual, the key idea is toA multi-objective 
optimization problem to mono-objective optimization 
problem by defining a unique objective function. 

We begin with the following definition: define a mul-

tifunction : X X  by       x y X | f y f x     

for all x X ; defi ne a function :s X R  by  s x   

 j1

n

j
f x  f

 or all x X . 

Choose x X  and consider an optimization problem 
wi le objth a sing ective function as follows: maximize 

 s y  subject to  y x . By letting x  vary over all 

of X  we can identify different Pareto-optimal solutions. 
This optimization technique will allow us to find the 
whole Pareto-optimal set. 

In this paper, we will discuss the role of the following 
assumptions: 

Assumption 1. X  is a nonempty, compact and con-
vex set. 

Assumption   2. Arg max , 1s x   for all x X . 

Assumption 3  If  0i i
. is a metric in , d  mR x X




  

, then    0kx0 ,lim d y
k

  for  0li ,d x xm 0kk
and 

all  0 0y x . 

Assumption 4. f  
 is to obtain a set 

i e. 
ur aim of conditions which guaran-

point 
pr

s bijectiv
O

tee the compactness, contractibility and fixed 
operties of the Pareto sets. 
Remark 8. Let  Cl X  be the set of all nonempty 

compact subsets of X . A sequence of sets  A
   

1k k

 X  is said to W n converge to Cl ijsma  A Cl X  if 

and only if for each x X ,    lim ,d x A  . ,k d x A
k

o Assumption 3.  
These definitions and ptions allow us t 

the main theorem of this p
Theorem 1.

See als
assum to presen
aper. 

 If Assumptions 1, 2, 3 and 4 hold, then: 
a)    , ,PO X f SPO X f . 

b)  ,PO X f  and  ,PF X f  are compact. 

c)  ,PO X f  and  ,PF X f  are contractible. 

d)  ,PO X f  and  ,PF X f  have the fixed point 

properties. 
rder to giv oof of Th

so mmas. 
In o e the pr eorem 1, we will prove 
me le
Lemma 1. If x X ,  ,x PO X f  is equivalent to 

   x x . 

Proof. Let  ,x PO X f   e that and assum

   x x . From  x x the conditions  and 

   x x , there exists it follows that    \y x x  

such that    f y f x . As a result we get that 

   s y s x , but  ,x PO X f  implies    s y s x  

and    f y   by assumption f x . Since f  is bijective, 

we deduce x y ; which contradicts the condition 

   \y x x us, we obtain   . Th x x . 

Conversely, let    x x  and assume that 

 ,x PO X f . From the assump  ,x P X f Otion , it 

follows that the  re exists y X \ x  such that 

   f y f x . Thus we deduce that  y x and  x y , 

which contradicts the condition    x x . Therefore, 

we obtain  ,x PO X f . 

The lemma is proven. 

Lemma 2. If 



x X , then   Arg max ,s x   

 ,PO X f . 
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x  and as-

sum

Proof. Let us choose   Arg max ,y s 

e that  ,y PO X f

 


,

. From the assumption 

y PO X f  it follows that there exists  \z X y  

such that    f z f y  derive 

 z x  and 
. As a result we

 s z 

fore, 

s y . This leads to a con

we obtain  ,

tradic-

tion; there y PO X f . 

The lemma is 

sing 

proven. 

Now, u    Ar ,g max ,s x PO X f   

(Lemma 2) and   Arg max , 1s x 

n to constru

 (Assumption 3), 

w ct a function e are in a positio

 ,r : X PO X f  such that 

 r x  Arg max   ,s x  for all x X , see also Defi-

nition 1 and Lemma 1. 
ying LemmaRemark 9. Appl s 1 and 2 it follows that: 

if  ,x PO X f , then  x r x ; if  ,x X \ PO X f

then  
 , 

x r x . This me    ans that ,PO X f .   r X

Lemma 3.   is continuous on X .  

Proof. at if  First, we will prove th   1k k
x X




  

 such that 

and

nces

 

 y X


are a pair of seque
1k k
  

lim kk 0x x X   and 


 k ky x  f r allo , then  k N

f   1
y


there exists a convergent subsequence o k k

 whose 

 to  0limit belongs x . 

ion The assumpt  k ky x  for all k implies 

 
N  

 k kf y f x  for all k N . From ondition 

 ky X
   it 

the c

exists a convergent 

q 
1k

bsequence  1 1

follows that ther

 k k su

e 

su
k k

q y
 

 
 ch that lim kk 0y X . 

e exists nvergent subsequence 

k


such that  k kq p and 0lim kp x

Therefore, th

  kp
 

er

1 1k k
x

 

a co

k
 . 

Thus, we find that    k kf q f p  for a  

the limit as k   we obtain    0 0

ll k N . Taking

f y f x . This 

implies 0 0y x . 

This means that 


  is upper se uous mi-contin on X  

[20]. 

Secon  prd, we will ove that if   1k k
x X




  is a se-

qu toence convergent  0x X  and  0 0y x , th  

there 

en

exists a seque that nce   1k
y X




  suck h 

 k ky x  for all k N  and lim
k

As usual, the distanc een the X

0ky y . 

e betw  point 0y  and 

the set  kx X   is denoted by  

    0 ,s y x | x .ink kd x  f di  Clearly,  kx  is 

nonempty and compact; therefore, if  0 ky x , t hen 

there exists  kŷ x  such that d d

o cases as

 0,y y . Thk ˆ ere 

are tw  follows: if 0  ky x , the 0n kd   

and let 0ky y ; if  0 ky x , then nd let 

k
ˆy y

 kd 0  a

 . Thu a sequence s, we get   1k k
d


R

  and a 

sequence   1k k
y X




  such that  k ky x  f  

k N

 or all

  and  0 , ky . Ass

lim kk

kd d y umption 

0

3 and 

x x


  imply that the sequence 

gent and 

  1k k
d




 is conver-

lim 0kk
d


 . Finally, we obta 0yin lim

k ky  . 

s meansThi  that   is lo s onwer semi-continuou  X  
[20]. 

In summary,   is continuous on X . 

eo -
, n-

The lem en. ma is prov
h

, a

Lemma 4 [21, T rem 9.14 – The Maximum Theo
rem]. Let nS R mR  , :h S R  a co
tinuous function nd :D S  be co

unction. Th , 
a mp

en th
act-valued 

an e function d continuous multif
: Rh*   defined by is continuous on  , and the 

multifunction D* : S ine def d by 

        D* x D | h ,x h*     is compact-valu- 

ed and upper semi-continuous on  . 
. r  is continuous on 

 

Lemma 5 X . 
Proof. As was mentioned before, the multifunction   

is com  and continuous pact-valued on X . Applying 
Lemma 6 for S X    and D  , we deduce that 

r  is an uppe  semi-continuous m ltir u f on onuncti  X . 
isObviously, an upper semi-continuous multifunction  

continuous when viewed as a function. Th  shows that is
r  is continuous on X . 

The lemma is proven. 
Lemma 6 [21, Theorem 9.31 – Schauder’s Fixed Point 

Theorem]. Let :h S S  be a continuous function from 

a nonempty, compact d convex set nS R  into itself,  
th

 be

 an
. en h  has a fixed point

Lemma 7 [21, Theorem 9.26 - Kakutani’s Fixed Point 
Theorem]. Let S R  a nonempty, compact and 
convex set and the multifunction : S

n
S  usco, 

then 

 be c

  ha  fixed point. s a

Lemma 8.  ,PO X f  is homeomorphic to 

 ,PF X f . 

Proof. It is well-known th
a com pact. In fact, the 

at every continuous image of 
p set act set is com X  is compact 

and th  is continuous one function r  X . Hence, the set 
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   ,X f r mpact. Recalling that PO X  

tion : n

is co the func-

f X R  is 

str

 continuous, we deduce that the re-

iction    : , ,h PO X f PF X f  of f  is con-

tinuous too. We know that the function h  is bijective. 
Consider the in e function 

 ,PO X f  of h . As we proved 

abov  ,O X f  is compact; therefore, 1h

vers

 1 : ,h PF X f 

e, the set P   is 

continuous to d that  function 
h  is homeomorphism. 

The lemma is proven. 
ing L ma 1 we get that 

 , ,PO X f S . 

From Lemma 5 it follows that there exists a continu-
ous function  : ,r X PO X f  such that 

o [22]

Proof of Theorem 
PO

. As a result we fin

1. Apply em

 X f

 the

 r X   

 ,X f  and   Arr x PO   g max s, x for all 

x X . This means that  ,O X f  P is a retract of X . 

We know that X  is nonempty, compact and convex 
(Assumption 1), i.e. it is contracti le, has the fixed point 
and the Kakutan erties, see Lem  

b
xed point prop
allows us to deduce

i fi
and 7. This k 

mas 
 

6
 remar t tha  ,X f

d the

nvex in

ractibility 

x. 
se th

nctions which 

PO
pact and contractib  fixed point an
ni fixed point prop

 

[6

is com
Kakuta

ge
emark 11. 

the
ve

do

concavity assump

le, has the
erties. 

sets 

 ge

, compactness a

ain is comp
 are that the proo

tions on the objective

 
Vol

According to Lemma 8 we obtain that the Pareto-front 
set  ,PF X f  is compact and contractible, has the 
fixed point and the Kakutani fixed point properties too. 

The theorem is proven. 
Remark 10. It is important to note that the 

Pareto-optimal and Pareto-front are

n

act and The
f t u e

ship between the first two. 
 

iza-
tion,” Springer, Berlin, 2003. 

r Optimization: Theory, Applications, and 
inger, Berlin, 2004. 

ican Mathematical Society, 

onvex Optimization,” 

ptimization with Quasi-Concave Functions,” 

: The-

 n

d c

di
 fu

ot co

neral, it is not difficult to 

ont

conve
d no

 
[9]

neral.   
R As we have shown in Lemma 6, if an ar-

bitrary set is nonempty, compact and convex, then it has 
Ca

 fixed point property. In
rify that the Pareto-optimal and Pareto-front sets are 

nonconvex, but they are compact and contractible. Thus 
among no onvex setsnc

 not have direct relationship with the fixed point prop-
erty. There are examples of compact and contractible sets 
which do not have the fixed point property. It is not 
known what types on nonconvex sets have this property.  

 
4. Conclusions 

We have shown the compactness, contractibility and 
fixed point properties of the Pareto-optimal and Pareto-  
front sets in multi-objective mathematical programming 
when the feasible dom
two important facts

 
 

Conc

are usually used in this optimization problem, and that 
the Pareto-optimal and Pareto-front sets are not compact 

and convex in general. 
The authors see three directions for future research re-

lated to this article: one would look for general condi-
tions on the objective functions without the assumption 
of their concavity; one would analyze specific types of 
concave or quasi-concave objective functions; and one 
would study the relation
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