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Abstract

In reference [1], for large scale nonlinear equations F(X ) =0, a new ODE solving method was given. This
paper is a continuous work. Here F(X) has gradient structure i.e. F(X)=-Vf(X), f(X) isa scalar

function. The eigenvalues of the Jacobian of F(X ), or the Hessian of f(X), are all real number. So the

new method is very suitable for this structure. For quadratic function the convergence was proved and the
spectral radius of iteration matrix was given and compared with traditional method. Examples show for large
scale problems (dimension N = 100, 1000, 10000) the new method is very efficient.

Keywords: Unconstrained Minimization Problem, Gradient Equations, Quadratic Model, Spectral Radius,

ODE Numerical Integration

1. Introduction

This work is a continuation of [1]. In [1] we solved a
general nonlinear equations by a new ODE method. The
numerical results were very encouraging. For instance, a
very tough problem: Brown’s equation with the dimen-
sion N =100 can be solved easily by the new method.

In this paper we turn our attention to a special function
F(X)=-Vf(X), the ODE

X =-Vf (X) )
is said to have a gradient structure. This structure comes

from seeking a local minimizer in the optimization area:
to seek a point X~ such that f$X*)s f(X) for all

X in some neighbourhood of X", here X =
(%, %, %) isavector, f(X) isascalar function,
\V4i (X): i,i,...7i .

OX, OX, OXy

It is well known that the conditions Vf (X")=0 and
V2f(X") positive semidefinite are necessary for X"
to be a local minimizer, while the conditions Vf (X")=
Oand V*f(X") positive definite are sufficient.
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VZf(X) is symmetric and it is called Hessian matrix
(or Hessian, for short). In term of ODE numerical inte-
gration —V*f(X) is called Jacobian of the right func-
tion —Vf (X).

For a symmetric matrix, the eigenvalues are all real
numbers. If the Hessian is positive definite, that means
the eigenvalues of —V?f (X)) are all negative real num-
bers. That is to say the Jacobian of differential Equation
(1) possesses negative real eigenvalues, so the new ODE
method in [1] is very suitable for this case. (see the sta-
bility region Figure 1 and Figure 2 in [1]).

2. The Method

In [1] for initial problem:

X=F(X
_( ) )
X(O) - xo
a new ODE integration method is as follows:
Xr(:-)l = Xn +Zn
Zn+1 :CO(SF(XS)l)-i-Zn) (3)

Xn+l = Xn +Zn+1

AM


mailto:han_tianmin@yahoo.com.cn
mailto:luoxinlong@gmail.com

528 T.M.HAN ET AL.

here w=h/(h+¢&). >0 is a parameter, h is the
step size. From the initial value X,, calculating Z, =
hF(X,), then for n=1,2,---, we can get sequence
X;, X,,-+-. This method is based on the implicit Euler
method, however, it is entirely different from linearized
implicit Euler method:

1

X, =X, +h(1—h|:'(xn))’ F(X,) (4)

([2] p. 300). The above method is a linear combination of
Newton method and fixed iteration. In optimization area
the adaptive linearized implicit Euler method is identical
to a updating trust region algorithm ([3] p. 205).

Despite Hessian does not appear in the method (3),
however in the process to determine the parameters &,
h, it plays an important role.

3. The Choice of Parameters and the Rate of
Convergence

Because in the neighbourhood of minimal point, the ordi-
nary nonlinear functions approximately emerge quadratic
function properties, so our discussion is carried out for a
quadratic function:

qn(é):f(Xn)+Vf(Xn)T§+%§TV2f(Xn)§ )

minimization problem.

This point of view leads to the following topic:

What is the good choice for parameters ¢ and h to
solve the linear equations:

-V (X,)s =Vf(X,) (6)

In order to simplify the writing symbol, we put

A=V*f(X,), b=-Vf(X,), §=X. The Equation
(6) now is turned into (7):

-AX+b=0 (7

here A is a symmetric positive definite matrix and b
is a vector.

For 2N order vector (X ,Z] )T, the 2N x2N ite-

ration matrix M of the method (3) can be expressed by

_ [I—a)gA a)I—a)gA} ®)

—weA ol —weA

Let the eigenvalue of M be x and the eigenvector
be w=(u",v") . We have

I-wsA ol-weA|lU u
=y ©)
—weA ol —-weA ||V Vv
From (9) we can easily get

-1
v=H"2y

U
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and
a)g[1+“—_1jAu =[1—,u+a)#—_1)u (10)
u H

Equality (10) shows u is the eigenvector of matrix
A, let the corresponding eigenvaluesbe 4, i.e.

Au=Au
then A satisfies
we(2u-1)2A=u—p* +ou-o (11)
or
1 —(l+o-20ed) u+o(1-e1)=0 (12)

From (12) we can see that for every eigenvalue 1 of
A there are two eigenvalues ,, of M. Convergence
means | ,|<1. We use the following lemma ([4] p.
799) to prove the convergence:

If b and c are real, then the norm of the roots for
the quadratic equation

A2 -bl+c=0
is less than unity if and only if
lc|<1, [o| <1+c
In our case c=w(l-&1),0<w<1e1>0,b=1+
w—2wed . If 1+ w—-2weA >0, we have the further re-
sult 1+ w—weA >0 and |b|:1+a)—2a)5/1<1+a)—a)g/l
:1+a)(1—g/1):l+c.
If 1+w-2wei <0,

o<g,1<f,wehave
3

choosing ¢ such that

—2—-2w < -4w < -3wel
Rewriting the above inequality in the form
—1-w+2weld <1+ w—wel
then
[+ ®—2wed| <1+ w—wed =1+cC

We also get |b| <1+c.

Thus we complete the proof of the convergence, for
any h,0<h<oo, if only s1<4/3. (|c/<1).

The rate of convergence for the iteration scheme (3) is

determined by S(M), the spectral radius of matrix
M which is defined by

S(M) = max

I<i<N

ﬂl,z(ﬂ’u):(“i i\/Z)/Z

o =1+ o-2wek, A =al-do(l-&k)
i=1,2,---,N

From (12)

here
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We take a guess that
(M) = e (4))

w(A)= %(% +\/A_1)) . Though we cannot prove it
we consider this guess to be very reasonable.
In fact the differential equation
X=-AX+b
has the solution
X(t)=e"(X(0)-X")+ X"
X" =47b. X isthe exact solution of the linear equa-
tions:
AX =b

The terme " (X (0)- X*) is just a linear combination
of the terms e'. As t—o all e >0, but
e >e™ (i=23,--,N). This means the rate of
e " approaching zero is the slowest among all the
e ', Since , is determined by 4, it must be the lar-
gest one (by modulus) for all the 4, (4).

In the following we discuss how to choose (or,h)
making 4 reach its minimum. Reviewing the process

of proof for the convergence, we take ¢ < %% , provi-
N

ded 4, and 4, satisfy/li<%, we have (1-¢4)>0, If
N

A3

A

¢ to make sure that (1-&4)>0.

The problem we are now investigating is, for a fixed
>0 which satisfies (1-&4)>0, how to choose
w(or,h) making the S(M) to be the minimum.

From

is not satisfied, we can choose an even smaller

A =& —bo(1-g) = (1- o) +40°s* 2} —bo’sl,

if o<1 (or h<1), we have A, >0, then (1),
1, (4) arerealand S(M)=4 >0.

In the Equation (12), we consider 24 to be a function
of @ and differentiate it:

dey _ (1-2eh) i —(1=¢h) _(1-264) 1 —(1-5A4)

= 0
do 2 —(1+w-2wek) JA, )

(13)

(notice: 14 =%(a1+\/A—l)), 0<y <L(1-2e4)<(1-

gﬂi) (13) shows that 4 is a decreasing function of the
[0

We now observe the situation in which A, varies
with @. A, (@) isa2nd degree polynomial in @ :
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A ()= (1-4c4, +48° 4} Yo —20+1 (14)

From A, (0)=1>0, A, (1)=-4e4(1-64)<0, we
know A, (@) has one and only one root in the interval
0,1).

We solve Equation (14) A,(»)=0 and get the roots:

.2k A-4(1-dsh, + 4577
a) =
2(1—4521 +4gzzf)

1+ \J4eh —4s* A2 _ 1
1—(,/4,9,11 — 42 A )2 1+ \deh —4e" 4

(In the numerator we take the sign “—”, otherwise "
will be greater than 1)

After A, (") =0, we consider the situation of A, <0.
The Equation (12) has a pair of conjugate complex roots

with modulus |z (4)|= |, (4)| = Jeo(1-£4), which
increase with increasing @ . Therefore |ILL1| reaches its
minimum when ® =", the corresponding value of

S(M) isdenoted by S and we have

S =W (1-¢4) (16)

If the system is ill-conditioned, i.e. A, > A, in order
to compare our method with traditional methods, omit
the factor (1-4,) in (16) and —4£°47" in (15), then
we have approximately

1 1 1
Lryaet, 1+ 16 4 1+2.3F
\'3 Ay N
AR R VRN
o +23Ja (Vaw+1154
(M—O.S?S\/Z]Z

(15)

«2

VA +0575%
(naotice: if b<a then a za_—b)'
a+2b a+b

For Ax=b the Richardson iteration ([5], p. 107)
X=X, +a(b—AXn)
If taking optimal & = 2/(4, +4,) then

N Bt (18)
An+4
From the definition of @ and (15)
* h 1 1
w = = = (19)
h+e l+e/h 14 Jagy —4e20?
We have
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h=— % (20)

Jheh —4e? A

If the system is ill-conditioned, we can simplify (20)
as

e _ e

NN
In order to check the analysis in this paragraph, we

construct a 2-dimension linear equation
AX =b (22)

h= (21)

The entries:
a, =1.5c-0.5d, a, =-0.6c+0.6d

a,, =1.25c-1.25d, a,, = -0.5c+1.5d

The exact solution X" =(1,1)', so b(1)=a, +a,,
b(2)=a, +a,. Wetake X (0)=(05,0.5)".

The matrix A4 has eigenvalues ¢ and d. In our
test we put c=4,=10, d=4 =107, 5=3,4,56.
i.e. the systems have condition number 10°, 10*, 10°,
10°.

In our test problem we known the exact solution X " so
we use|X” (1)~ X(1),| <10 and|X"(2)- X (2) | <10
as a stopping condition.

The methods to compare are Richardson's iteration and
our method, it was named EPS. S, and S, denote the
spectral radius of iteration matrix for each method
respectively. As usual we use NFE stands for the Num-
ber of Function Evaluation. The expected value of the ra-
tio of NFE for these two methods should be InS2/InS1.
The Richardson iteration is entirely equivalent to the
Euler method, so we replace Richardson parameter o
by step size h in Table 1.

From Table 1 we can see that the ratio of NFE for
theoretical expected values are basically consistent with
the real calculation results and the higher the condition
number is, the more efficient for our method EPS.

There is another thing need to mention. For 4, =10°,
EPS method taking h =570.0877, is it possible for so
large step size? In [1] Figure 1 and Figure 2 give the ab-

solute stability region for «=0.01 and «=0.1
(& =ah). Their left end points are —134 and —14. In
our present case ¢=1.3, h=570.0877, « =0.00228,
using the same method we can get the left end point of
the stability region at —585.5. The Max |4|=1.0,
i =1,2, even though we take so large step size, hA, are
still located at the stability region.

4. Numerical Experiment

The outline of our algorithm EPS is the same as des-
cribed in [1]. The differential equations to solve are

X =-Vf(X)=-G(X) (23)
or X=D"(-Vf(X))=-D'G(X) (24)

Usually we like using (24), especially when V*f (X))
is a diagonal dominant matrix. In this case we simply
take £=05

For ODE (1), it is said to have a gradient structure. By
the chain rule, we have ([3], p. 194)

d Nof dx, _ &(of \ 2
1 0r(0)= 3 2S5 S = o ()
(25)

From (25) we see that along any analytic solution of
the ODE, the quantity f (X (t)) decreases in Euclidean
normas t increases.

Different case happens with the present method. Be-
cause in our method, we take very large step size, it will
produce large local error, the numerical solution X,
may go far from the analytic solution X (t,), so we
cannot keep the condition f(X,,,)< f(X,), especially
at the beginning of the calculation.

In some earlier literatures, for example, [6]; using

f(X")-f(X,)<TOL as convergence criteria, but
this rule just applies to the test problems which the X~
was known already. For real problems this criterion is
not suitable, so we take G(X,)|<TOL as our stop-
ping criteria.

Example 1. The Generalized Rosenbrock Function
(GENROSE) ([7], p. 421)

Table 1. 2-Dimension test problem results (4, = 4, =1.0), £=13.

A Stepsize h NFE Ratio of NFE
Richardson EPS Richardson EPS Expect Test
1073 1.998002 18.0278 11057 667 18.1851 16.5722
107 1.999800 57.0088 110517 2071 57.5003 53.3641
107° 1.999980 180.2776 1102675 6433 181.8312 171.4091
*107°8 1.999998 570.0877 5144987 9094 575.0001 565.7562

*Note: for 4, = 107% the Richardson iteration cannot get any result, so we replace 107° by 107° for this case.

Copyright © 2011 SciRes.
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F(X) =1+ 1, (X)

M=z

fo(X)=

[100(xi - xf_l)2 +(1- xi_l)z}

X(0)=(-121,-1.21,1,1,1,--,1)

1l
N

*

X, =(1,1,1,--,1), X, stands for the optimal solu-
tion of unconstrained problem.
The Gradient function:

G(1)= —400xl(x2 —xf)—z(l—xl)
G(i)= 200(xi —xf_l)—400xi (xi+1 —xf)—Z(l—xi) ,
i=23--,N-1
G(N)=200(x, —x{ ,)
The Diagonal of Gradient function
D (1) =1200x; —400x, +2

D(i) =1200x" —400x,,, +202i =2,3,---,N -1.

i+1
D(N)=200

As we did in [1], we divided the calculation process

into three stages and took ¢ =0.5,ToL1=1.0,ToL2=

10723, ToL3=107; h =10, h,=25, h,=5.0. For
N =100,1000,10000, we have the same results:

NFE =228, f =1+ f,
f, =0.1755x107*, ||G| = 0.8771x10°°

Max |X —%| = 0.1174x107".

1<i<N

For large scale problem ([8], pp. 14-15) proposed a
sub-space trust region method STIR. For example 1 the
method gave two results, one was STIR with exact New-
ton steps, another was STIR with inexact Newton steps.
The number of iterations were 25, 21 respectively. These
results showed that STIR need to solve 25 or 21 large
scale linear equations [8]. Compare with our method EPS,
we just need 228 times gradient function evaluation, and
no linear equations were needed to solve.

It is well known that ordinary Newton method is very
sensitive for the initial value. For this example (N =
100,1000,10000) all the |G (X (0))| = 0.1054x10". Or-
dinary Newton method to be converged needs 375 itera-
tions and get the ||G(X*)|| =0.7389x107°°.

In order to improve the initial value, we use EPS me-
thod making |G (X )| <1 (after 33 function evaluations),
then turns to Newton method. For the present initial
value X to get the convergent result needs 229 Newton
iterations. If we further improve the initial value, making
”G (X )H <0.5 (after 128 function evaluations) only two

Copyright © 2011 SciRes.
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Newton steps we can get HG(X) =0.3878x10°°
| fo| = 0.2996%107*.
Example 2. The Chained Woof function (CHAIN-

WOOD) ([7], p. 423)
f(X)=1+f,(X)

()= 2[100(x., ) (1) #9035

ield

+(1-x,,, )" +10(x

i+1

T X3 — 2)2 + 0'1( Xiyg — Xis3 )2 ]

Where N isamultipleof4and J ={1,3,5,--,N -3}.
The Gradient function:

G (L) = ~400x, (%, —x7 ) ~2(1-x)
G(2)=200(x, =% )+20(, +%, —2)+ 0.2(x, - X,)
G(i) = —760x; (Xi+1 _Xiz)_4(l_xi)
G(i+1):380(xi+1—xf)+20(xi_l+xi+l—2)
—0.2(X_y = X1 )+ 0.2(Xi — Xiyg) +20(X

i=3,5--,N-3
G(N —1) = —360xy 4 (X —Xq1) —2(1-Xy 1)

+ X3 _2) '

i+1

G(N)=180(xy =X} ;) +20(Xy , +Xy —2)
—0.2(Xy_, — Xy )
The diagonal of Gradient function
D (1) =1200x? — 400X, + 2
D(2) = 220.2
D(i) = 2280x} - 760x,,, +4

i+1
D(i+1)=420.4, i=35,,N-3
D(N —1)=1080x}_, —360x, +2
D(N)=200.2

As ([7], p. 423) did, for N =8, X (0)=(-3,-1,-3,
—1,—2,0,—2,0) the unconstrained problem have the solu-
tion X; =(1,1111111).

Use EPS method, take ¢ =0.5,ToL1=1,ToL2=10",
ToL3=10", h =5, h, =10,h, =15; after 572 function
evaluations we get ||G(>Z)|| =0.3395x10°, f, =
0.5253x107'2. Despite we get the approximate solution
X, , but for such a small dimension problem EPS me-
thod does not show the superiority expect the simplicity.
But we are interested in large scale problems.

For unconstrained (ChainWood) problem, N =
100, 1000, 10000 , with three different start points
X (0), we get three different results:
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1) X (0)=(-3,-1,-3,-1,-2,0,---,—-2,0) (the original)

Take &£=0.5 ToL1=1.0, ToL2=107, ToL3=10",
h, =5.0, h, =10.0, h, =15.0, after 811 function eva-
luations, for N =100,1000,10000, we get same appro-
ximation of the minimal value of function f =1+ f; =
1+13.808 =14.808.

2)Xx(0)=(-3,-1,-3,-1,0,0,---,0,0)

The parameters are the same as (1), for N =100,
after 857 function evaluations, we have f =1+ f;=
1+0.18824x107"°. For N =1000,10000 after 856 fun-
ction evaluations, we get the same result f =1+ f; =
1+0.19438x107"7.

3) X(0)=(0,-1,0,-1,0,0,---,0,0), this X (0) is the
same as [8].

The parameters are TolL1=5.0,ToL2=10"3 ToL3=
10°,h =2.0,h, =10.0,h, =15.0, ¢ =0.5. For N =100,
after 628 function evaluations, we have f =1+ f;=
1+3.5743=4.5743, it is exactly consistent with STIR.
However, SBMIM which STIR wanted to compare with,
converged to 46.713. For N =1000, 10000, [8] did not
give the results because SBMIM did not converge. Our
method EPS, after 652, 659 function evaluations con-
verged to the same result 4.5743.
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