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Abstract 
 
In reference [1], for large scale nonlinear equations   = 0F X , a new ODE solving method was given. This 

paper is a continuous work. Here  F X  has gradient structure i.e.   = F X f X ,  f X  is a scalar 

function. The eigenvalues of the Jacobian of  F X , or the Hessian of  f X , are all real number. So the 

new method is very suitable for this structure. For quadratic function the convergence was proved and the 
spectral radius of iteration matrix was given and compared with traditional method. Examples show for large 
scale problems (dimension N = 100, 1000, 10000) the new method is very efficient. 
 
Keywords: Unconstrained Minimization Problem, Gradient Equations, Quadratic Model, Spectral Radius, 

ODE Numerical Integration 

1. Introduction 
 
This work is a continuation of [1]. In [1] we solved a 
general nonlinear equations by a new ODE method. The 
numerical results were very encouraging. For instance, a 
very tough problem: Brown’s equation with the dimen- 
sion  can be solved easily by the new method. = 100N

In this paper we turn our attention to a special function 
   =F fX X , the ODE  

 = fX X                (1) 

is said to have a gradient structure. This structure comes 
from seeking a local minimizer in the optimization area: 
to seek a point *X  such that    *f fX X  for all 
X  in some neighbourhood of *X , here =X  

T
 is a vector,  1 2, , , Nx x x   f X  is a scalar function, 
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It is well known that the conditions  and  * = 0f X

2 *f X  positive semidefinite are necessary for *X  

to be a local minimizer, while the conditions  * =f X  

0 and 2 *

 2 f X  is symmetric and it is called Hessian matrix 
(or Hessian, for short). In term of ODE numerical inte- 
gration  2 f X  is called Jacobian of the right func- 

tion  f X . 

For a symmetric matrix, the eigenvalues are all real 
numbers. If the Hessian is positive definite, that means 
the eigenvalues of  2 f X  are all negative real num- 
bers. That is to say the Jacobian of differential Equation 
(1) possesses negative real eigenvalues, so the new ODE 
method in [1] is very suitable for this case. (see the sta- 
bility region Figure 1 and Figure 2 in [1]). 
 
2. The Method 
 
In [1] for initial problem:  
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a new ODE integration method is as follows:  
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f X  positive definite are sufficient. 
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here  = h h  . > 0  is a parameter,  is the 
step size. From 

h
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= 1,2n
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([2] p. 300). The above method is a linear combination of 
Newton method and fixed iteration. In optimization area 
the adaptive linearized im

I

plicit Euler method is identical 
to a updating trust region algorithm ([3] p. 205)

Despite Hessian does not appear in the method (3), 
. 

however in the process to determine the parameters  , 
h , it plays an important role. 

 
3. The Choice of Parameters and the Rate of  

B  of minimal point, the ordi- 

qu

Convergence 
 

ecause in the neighbourhood
nary nonlinear functions approximately emerge quadratic 
function properties, so our discussion is carried out for a 

adratic function:  

       T 21
=

2
T

n n n nq f f f   X X X     (5) 

minimization problem. 
This point of view leads to the following topic: 
What is the good choice for parameters   and  to 

solve the linear equations:  
h

2 f   =n nf X X            (6) 

 In order to simplify the writing symbol, we put 
 2= nA f X ,  = nb f X , = X . e Equ tion 

(6) now is turned into (7):  
Th a

     

he

= 0 AX b             (7) 

re A  is a symmetric positive definite matrix and b  

For 2N  order vector  
is a vector. 

, the 
TT T,n nX Z 2 2N N  ite- 

ration m of thatrix M  e method (3) can be expressed by  

=
  
    A I A
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From (9 n easily get  

1
=v u  

and  
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1 = 1u u
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Equality (10) shows is the eigenvector of matrix u  
A , l




et the correspondin genval es be g ei u  , i.e.  

=u uA  

then   satisfies  

  22 1 =              

or

    (11) 

  

  2 1 2 1 0              =  (12) 

m  see that for every eigenvalue Fro  (12) we can   of 
A  there are two eigenvalues 1,2  of . Convergence M

means 1,2 < 1 . We use th llowin
ove the convergenc

 and are real, then the norm of the roots for 
the quadratic equation  

e fo
e: 

g lemma ([4] p. 
799) to pr

If b c  

2 = 0b c    

is less than unity if and only if  

< 1, < 1c b c  

In our case  = 1 , 0 < < 1, > 0, = 1c b       
2  . If 1 2 > 0   , we have the further re- 

0sult 1 >    and =1 2 <1b         
 1 1 = 1 c =    . 

If 1 2 < 0,   choosin g  such that 
4

0 < <
3

< 3

, we have  

2 2 < 4       

Re ve ineqwriting the abo uality in the form  

1 2 < 1         

then  

1 2 < 1 = 1 c        

We also get < 1b c . 
Thus we complete the proof of the convergence, for 

any  if only  < 4 3 .  1c , 0 < < ,h h  .  
rg r the iteration scheme (3) is 

ed by 
The r

determin
ate of conve ence fo

  ,S M  the spectral radius of matrix 
M  which is defi  ned by 

   1,2
1 i N

= x iS M ma   

m (12)  

 

Fro

   1,

i

2 = 2i i i     

here  

 2= 1 2 , = 4 1i i i i           

= 1, 2, ,i N  
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 We take a guess that 

   1 1=S M    

   1 1 1 1

1
=

2
     
 

. Though we cannot prove it, 

we consider this guess to be very reasonable. 
quation  In fact the differential e

=  X AX b  

has the solution  

  = et At   * *0  X X X X  

* 1=X A b . *X  is the exact solut
ns:  

ion of the linear equa- 

 is just a linear combination 

of the term

tio

=AX b  

The term At   *0e X X
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 =i 2,3, , N . This means the rate of 
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of for the convergence, we take 

h it um. R ing th

of pro

e pr
4 1

<
3 N




, provi- 

ded 1 and N satisfy 1 3
<

4




, we hav  > 0 , If 
N

e  11

1 3
<

4N




 is not satisfied, we can choose an even smaller 

  to make sure that  11 > 0 . 
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(notice:  1 1 1

1
=

2
    ),   1 10 < , 1 2 < 1    < 1

1  (13) shows that 1  is a decreasing function of the 
 . 

We now observe the situation in which 1  varies 
with  .  1   is a 2nd degree polynomial in  :  

   2 2 2
1 1 1= 1 4 2 1     4          (14)

Fr

 

om  1 0 = 1 > 0 ,    1 1 11 = 4 1 < 0    , we 
 1   has one and only one root in the inknow terval 

(0
 so e Equa e r :  

,1). 
We lv tion (14)  1 = 0  and get th oots
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 *  
will be greater than 1) 

After  *
1 = 0 , we consider the situation of 1 < 0 . 

The E s a pair of conjugate comp  

with modulus 

quation (12) ha lex roots 

     1 1 2 1 1= = 1     
ncreasing 

, which 

increase with i  . Therefore 1  reaches its 
minimum when *=  , the corresponding value  of
 S M  is denoted by *S  and we have  

 * *
1= 1S w               (16) 

s ill-conditioned, i.e.If the system i  1N  ,
 me

 in order 
to compare our method w th traditional thods, omit 
the factor 

i
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e approximatelywe hav   

2*

1 1

2

1 4 16
1 1

3

=
2.3

1

1 1

2

1

1

1 1
= =

2.3

1.15

0.575

0.575

1

N N

N N

NN

N

N

S
  

 

 


 

 

 

 
 

 

 



   
 

 
    

   (17) 

(notice: if  then b a
2

a a

a b a b




b

 
). 

For =Ax b  the Richardson iteration ([5], p. 107) 

n 1 =n n   X X b AX  

 1= 2 N  If taking optimal  then  

* =S 1N

1N
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From the definition of
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We have  
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2 2
1 1

=
4 4

h


  

n simplify (20) 
as  

             (20) 

If the system is ill-conditioned, we ca

1 1

= =
4 2

h
 
 

            (21) 

In order to check the analysis in
construct a 2-dimension linear equation  

e entries:  

d

 this paragraph, we 

=AX b                   (22) 

Th

11 12= 1.5 0.5 , = 0.6a c d a  0.6c d  

21 22= 1.25 1.25 , = 0.5 1.5a c d a c    

The exact solution  T* = 1,1X , so  1 =b a a11 12 , 

  21 222 =b a a . We take  X  0 = 0.5,0.5 . 
T

The matrix A  has 
te

eigenvalues c  and d . In our 
st we put =c 2 = 1.0 , 1= = 0d 1  ,  = 3,4,5,6 . 

3 40 , 510 , 

n *

i.e. the system
. 

 our k

s have condition num

 test problem we 

ber 

e ex

10

nown th act so

, 

lut

1
610

In io X so 

we use    * 1 1 <
n

X X 1010 and   * 2  2 10

n
X X < 10  

ndition. as a stopping co
to d

t was name PS. and  denote the 
 m thod 

respectively. As usual we use NFE stan r the Num- 
be e 

FE for these two met uld 

The methods  compare are Richar son's iteration and 
our method, i d E 1  S
spectral radius of iteration matrix for ch e

S  

ho

2

 ea
ds fo

be 
r of Function Evaluation. The expected value of th ra- 

tio of N hods s  
The Richardson iteration is entirely equivalent to the 
Euler method, so we re

ln 2 / ln 1S S .

place Richardson parameter   
by step size h  in Table 1. 

From Table 1 we can see that the ratio of NFE for 
theoretical expected values are basically consistent with 
the real calculation results and the higher the condition 
number is, the more efficient for our method EPS. 

There is another thing need to mention. For 1 = 10 6 , 
EPS method taking = 570.0877h , is it possible for so 
large step size? In [1] Figure 1 and Figure 2 give the a  b-

solute stability region for = 0.01  and = 0.1  
 = h  . Their left end  134  and 14points are  . In 
our present case = 1.3 , = 570.0877h , = 0.00228 , 
using the same method we can ft end  

ity region at 585.5
get the le point of

the stabil  . T ax he M = 1.0,i  
= 1,2i , even thou igh we take so large step size, h  are 

still located at the stability region. 
 

merical Experiment 
 
4. Nu

he outline of our algorithm EPS is the same as des- 
ations to solve are  

T
cribed in [1]. The differential equ

   = =f G X X X          (23) 

    1 1or = =D f D G  X X X     (24) 

Usually we like using (24), especially when  2 f X  
is a diagonal dominant matrix. In this case 
take 

we simply 
= 0.5  

For ODE (1), it is said to have a gradient stru  
the chain rule, we have ([3], p. 194) 

cture. By

     
2

2

=1 =1

dd
= = =

d d

N N
i

i ii

xf f
f t f x t

t x t x

      
 X  


(25) 

From (25) we see that along any analytic solution o  
the ODE, the quantity 

f
  f X t  decreases in Euclid

norm as  increases. 

e take ve
or, the numerical solution 

ean 
t

Different case happens with the present method. Be- 
cause in our method, w ry large step size, it will 
produce large local err nX  
may go far from the analytic solution  nX t , so we 
cannot keep the condition    1 <n nf X f X , especially 
at the beginning of the calculation. 

In some earlier literatures, for example, ]; using [6
   * <nf f TOLX X  as conve t 

this rule just applies to the test problems whic
rgence criteria, bu

h the *X  
w
not suitable, so we take

as known already. For real problems this criterion is 
   <nG X TOL  as our stop- 

ping criteria. 
Example 1. The Generalized Rosenbrock Function 

(GENROSE) ([7], p. 421) 

Table 1. 2-Dimension test problem results  Nλ λ2 = = 1.0 , = 1.3ε . 

1  Step size h  NFE Ratio of NFE 

 Richardson EPS Richardson EPS Expect Test 
310  1.998002 18.0278 11057 667 18.1851 16.5722 

2071 5 003 .3641 

1.99 80 76 1102675 6433 181. 91 

57 7 5 56 2 

410  1.999800 57.0088 110517 7.5 53

510  9980 1 .27  8312 171.40

* 610  1.999998 0.087 5144987 9094 75.0001 5.756

       *Note: fo 1 = ic ration ca  any result, so we replr 610  the R hardson ite nnot get ace 1010  by r this case.  510  fo
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1ix   
2

=2i

   0 = 1.2,1, 1.2,1,1,1, , ,1  X  1

 * = 1,1,1, ,1 ,U X *
UX  stands for the optimal solu- 

. 
The Gradient function:  

x

tion of unconstrained problem

     2
1 2 1 11 = 400 2 1G x x x     

       2 2
1= 200 400 2 1i i iG i x x x x x x     , 1i i i

= 2,3,i , 1N   

   2
1= 200 N NG N x x   

The Diagonal of Gradient function  

  2
1 21 = 1200 400 2D x x   

  2
1= 1200 400 202 = 2, , , 1.i iD i x x i N    3 

As we did in [1], we divided the calculation process 
into three stages and took 

  = 200D N  

= 0.5, 1 = 1.0, 2 =ToL ToL  
, 2 = 2.5h , 3 = 5.0h . For 
ve the me results:  

3 510 , 3 = 10ToL 

= 100,1000,100N
; 1 = 1.0h
00 , we ha sa

0= 228, = 1NFE f f  

12
0 = 0.1755 10 ,f  5= 0.8771 10G   

* 7= 0.1174 10 .i ix    
1
Max

i N
x

 

For large scale problem ([8], pp. 1 15) proposed a 
sub-space trust region method STIR. For exam le 1 the 
method gave two results, one was STIR with ex New- 
ton steps, another was STIR with inexact Newton steps. 
The number of iterations were 25, 21 respectively. These 
re

4-
p
act 

sults showed that STIR need to solve 25 or 21 large 
scale linear equations [8]. Compare with our method EPS, 
we just need 228 times gradient function evaluation, and 
no linear equations were needed to solve. 

It is well known that ordinary Newton method is very 
sensitive for the initial value. For this example  =N  

100,1000,10000 all the    40 = 0.1054 10 .G X  Or- 
dinary Newton method to be converged needs 375 itera- 
tions and get the * 6( ) = 0.7389 10G x  . 

In order to improve the initial value, we use EPS me- 
thod making   < 1G X  (after 33 function evalua , 

wton m nitial 
value 

tions)
then turns to Ne ethod. For the present i

X  to get the convergent result needs 229 Newton 
iterations. If we further improve the initial value, making 

  < 0.5G X  (after 128 function evaluations) only two 

ewton steps we getN  can   * 8= 0.3878 10G X   
19

0 = 0 .2996 10f 
Exam  The C unction (CHAIN- 
OOD , p. 42

. 
ple 2.

) ([7]
hained 

3)  
Woof f

W
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0 1 3 2= 100 1 90i i i i i

i J

f x x x x x  
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     2 2 2

2 1 3 1 31 10 2 0.1 ,i i i i ix x x x x    
         

Where N  is a multiple of 4 and 5, , 3J N = 1,3,  . 
The Gradient function:   

     2
1 2 1 11 = 400 2 1G x x x x     

   2  2 1 2 42 = 200 20 2G x x x x      2 40.2 x x  

     2
1= 760 4 1i i i iG i x x x x    

     2
1 11 = 380 20 2i i i iG i x x x x  1    

   1 1 1 30.2i i i ix x x x       1 320 i ix x  0.2  2 , 

= 3,5, ,i N  3  

   2
1N N NG N x x x    1  12 1 Nx    1 = 360

     2
1 2= 180 20 2N N N NG N x x x x    

 20.2 N Nx x   

The diagonal of Gradient function  

  2
1 21 = 1200 400 2D x x   

 2 = 220.2D  

  2
1= 2280 760 4i iD i x x    

 1 = 420.4, = 3,5, , 3D i i N   

  2
11 = 1080 360 2N ND N x x    

  = 200.2D N  

As ([7], p. 423) did, for = 8,N   0 = 3, 1, 3,X     
oblem ave the solu- 1, 2,0, 2,0  

tion 
the unconstrained pr  h

 ,1,1,1,1,1 . 
thod, take 

* = 1,1,1UX
Use EPS me 31 = 1, 2 = 10 ,ToL= 0.5,ToL   

53 = 10 ,ToL  h
evaluations

1 = 5,
 we get 

2 30, = 15h h ; after 572 function = 1
5( ) = 0.3395 10 ,G X 

0 =f  
120.5253 10 .

*
U

 Despite we get the approximate solution 
X , but for s

thod does no
uch 

t sh
a small dimension

ow the superiority expect t
 problem EPS m

he simp
e- 

licity. 
But we are interested in large scale problems. 

For unconstrained (ChainWood) problem, 
, with three different start p

=N  
oints 100, 1000, 10000

 0X , we get three different results:  
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1)   0 = 3, 1, 3, 1,    X  

Take 3 5, 3 = 10 ,ToL   

1 =h 5.

2,0, , 2,0

= 0.5, 1 = 1.0, 2 = 10ToL ToL
1 0h , after 811 function eva- 

10000 , we get same appro-
f the minimal value of fu

5.0 , 2 = 10.0h , 3 =
ns, for = 100,1000,N  

nction 0= 1 =f f
luatio
ximation o   
1 13.808 = 14.808 . 

0 = 3, 1, 3, 1,0,0, ,0,0    X  

The parameters are the same as (1), for = 100N , 
after 857 function evaluations, we have f f

2)   

0= 1 =  
101  0.18824 10 . For = 1000,10000N  after 856 f  

 we get the same result 0= 1 =f f
un-

ction evaluations,   
109438 10 . 

   0 = 0, 1,0, 1,0,0, ,0,0   , 
1 0.1

X3)  0X  is the 
me

this 
sa

arameters are 
 as [8]. 

The p  
= .0, = 0.5. For = 100N , 

after 628 fun e have 0= 1 =f f

31 = 5.0, 2 = 10 , 3 =ToL ToL ToL

3, = 15h
aluations, w

5
1 210 , 2.0, = 10.0h h

ction ev   
1 3.5743 = 4.5743 , it is exactly consistent with STIR. 

whHowever, SBMIM 
co ged to 46.713. For

ich STIR wanted to compare with, 
 = 1000N , 10 , [8] did not nver 000

give t erge. Ou
ons con
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