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Abstract

In the present paper, the propagation of surface wave in a generalized thermoelastic solid with voids is con-
sidered. The governing equations are solved to obtain the general solution in x-z plane. The appropriate
boundary conditions at an interface between two dissimilar half-spaces are satisfied by appropriate particular
solutions to obtain the frequency equation of the surface wave in the medium. Some special cases are also

discussed.
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1. Introduction

Theory of linear elastic materials with voids is an impor-
tant generalization of the classical theory of elasticity.
The theory is used for investigating various types of geo-
logical and biological materials for which classical theo-
ry of elasticity is not adequate. The theory of linear elas-
tic materials with voids deals the materials with a distri-
bution of small pores or voids, where the volume of void
is included among the kinematics variables. The theory
reduces to the classical theory in the limiting case of vo-
lume of void tending to zero. Non-linear theory of elastic
materials with voids was developed by Nunziato and
Cowin [1]. Cowin and Nunziato [2] developed a theory
of linear elastic materials with voids to study mathe-
matically the mechanical behavior of porous solids. Puri
and Cowin [3] studied the behavior of plane waves in a
linear elastic material with voids. Iesan [4] developed the
linear theory of thermoelastic materials with voids.
Dhaliwal and Wang [5] formulated the heat-flux de-
pendent thermoelasticity theory for an elastic material
with voids. This theory includes the heat-flux among the
constitutive variables and assumes an evolution equation
for the heat-flux. Ciarletta and Scalia [6] developed a
nonlinear theory of non-simple thermoelastic materials
with voids. Ciarletta and Scarpetta [7] studied some re-
sults on thermoelasticity for dielectric materials with vo-
ids. Marin [8-9] studied uniqueness and domain of influ-
ence results in thermoelastic bodies with voids. Chirita
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and Scalia [10] studied the spatial and temporal behavior
in linear thermoelasticity of materials with voids. A theo-
ry of thermoelastic materials with voids and without en-
ergy dissipation is developed by Cicco and Diaco [11].
Ciarletta er al. [12] presented a model for acoustic wave
propagation in a porous material which also allows for
propagation of a thermal displacement wave. Singh [13]
studied the wave propagation in a homogeneous, iso-
tropic generalized thermoelastic half space with voids in
context of Lord and Shulman theory. Ciarletta ef al. [14]
studied the linear theory of micropolar thermoelasticity
for materials with voids. Recently, Aoudai [15] derived
the equations of the linear theory of thermoelastic diffu-
sion in porous media based on the concept of volume
fraction.

Lord Rayleigh [16] investigated the surface wave along
the plane surface of an elastic solid. Chandrasekharaiah
[17] discussed the effect of voids on Rayleigh waves in
an elastic solid with voids and on Rayleigh-lamb waves
in homogeneous elastic plate with voids. Many research-
ers have studied the surface waves in various theories of
thermoelasticity. For example, Chadwick and Windle
[18], Agarwal [19], Sharma and Singh [20], Mayer [21],
Semerak [22], Chandrasekharaiah [23], Sharma et al.
[24], Sharma and Kaur [25] and many others.

The present paper is motivated by the linear theory of
thermoelasticity with voids developed by Iesan [4]. In
Section 2, the governing equations are generalized with
the help of Lord and Shulman [26] theory. In Section 3,
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these equations are solved for general solutions. In Sec-
tions 4 and 5, the particular solutions are obtained and
applied at required boundary conditions to obtain the fre-
quency equation of surface waves in thermoelastic mate-
rial with voids. In Section 6, some limiting cases of the
problem are discussed. In last section, some concluding
remarks are given.

2. Governing Equations

Following, Iesan [4] and Lord and Shulman [26], the
constitutive equations and field equations in terms of the
displacement, volume fraction and temperature, for ho-
mogeneous isotropic generalized thermo-elastic material
with voids in the absence of the body forces, heat sources
and extrinsic equilibrated body forces are

o, =2ue; +3, [ﬂpeM ﬂ®+b<l)] (N

q; + 7,4, = KO, 2)

h =ad, 3)

pn = Pe, +a0®+md 4)

g =-be, —EO+mO (5)

P =g, (6)

Hu; ; (/1+,u) i~ PO, +bD = pii; @)

pCy (®+ro )+ﬁT (ukk+roukk) ®
+mT, (q)+ro ) KO,

a® , —bu, , — O +mO = pyd )

where A,u are Lame’s constants. @ =T-T7, T, is
the temperature of the medium in its natural state as-
sumed to be such that |®/TO|<<1, T is the absolute
temperature, o, are the components of the stress tensor,

e, :%(ul.,j +u N,), u, are the components of the displa-
cement vector, # is the entropy per unit mass, K is the
coefficient of thermal conductivity, 7, is the thermal
relaxation time. «,b,& are void material parameters, m
is thermo-void coefficient, ,B:(3A+2y)a,,a, is the
coefficient of linear thermal expansion, 8, is Kroneck-
er delta, ¢, are the components of heat flux vector, 4
are the components of equilibrated stress tensor, @ is
change in volume fraction field, g is the intrinsic equili-
brated body force and « is thermal constant.

The Equations (7) to (9) are written in x-z plane as
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where 7=1+7,—

Now the displacement components u, and u, are
written in terms of potential function ¢ and y as
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Using Equation (14) into Equations (10) to (13), we
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Here Equation (15) is uncoupled, whereas Equations
(16), (17) and (18) are coupledin ¢, ® and O.

3. Solutions

To solve the Equations (16) to (18), we consider

(¢, G),CD) = {5(2),@(2),(13(2)} e"k(x_c'),

Substituting (19) in Equations (16)-(18), we obtain

(19)
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The non-trivial solutions of Equations (20) to (22) ex-
ist if
L,D°+LD*+L,D* +L, =0 (23)
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Let m,m,,m, be the roots of the auxiliary Equation

(23), then the general solutions ¢, ® and ® are
written as
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The general solution w of Equation (15) is written as
w =(Bye ™ + Ble" e, 27)

where, m; =k’ (1_302}
Y7

4. Formulation of the Problem

Let us consider two semi-infinite half-spaces of ther-
moelastic solid with voids in welded contact as shown in
Figure 1. The particular solutions in half-spaces M and
M’ are as follows:

For medium M,
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M [l | B bn]
Thermo-elastic solid|half-space with voids

O > X
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Thermo-elastic solid|half-space with voids
Y
7
Figure 1. Geometry of the problem.
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Similarly, for medium M’

¢¢:(A1¢em]'z+Azreméz +A3/em_§z)eik(x—ct) (32)
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Here, the symbols with primes in the following sec-
tions correspond to medium M'.

5. Boundary Conditions

The boundary conditions at the interface z = 0 are the
continuity of force stress components, displacement
components, heat flux, temperature and volume frac-
tional field, i.e.

0. =0, 0, =0,
0O 00 od oD
= Y e
u, =uy, uy=u/,, =0, d=9".

(36)
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The particular solutions (29) to (35) satisfy the above
boundary conditions if

a a a a a a a a
41 42 43 44 45 46 47 48
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. . . o
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The Equation (37) gives the frequency equation for
surface wave in a generalized thermo-elastic medium
with voids.

6. Limiting Cases

1) If we neglect the void parameters, then the Equation
(37) reduces to

az,u ay a!B az,m azlts azlts 38)
a5 a5 Ay Ay Qs dg
ag Qg Qg Ay A dg
where,
al, =—/1k2+(/1+2,u)m12—ﬂ§1,
al, =—Ak’ +(/1+2,u)m2 B<,, aly =2iukm,,
a14=/1'k2—(/1'+2,u)m1 +p'¢],
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als = 'k’ - (’1 +2ﬂ) P+ 4SS, alg = =2ip'kmy,
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The Equation (38) gives the frequency equation for
surface waves in a generalized thermo-elastic medium.

2) If we neglect thermal parameters, then the Equation
(37) reduces to

by by, by by bs b
by by, by by by by
by by by by by by -0 (39)
by by by by b by
by by, by by by by
by by by by bgs by

where
by, =—=Ak> +(A+2u)m +bn,,
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bg, =1,,b, =115,b4;, =0,
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p— ! —_7
=m;y, b, =ik.

The Equation (39) gives the frequency equation for
surface wave in an elastic medium with voids.
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3) If we neglect void and thermal parameters, then the
Equation (37) reduces to
Ch Gy CG3 Gy
Cy €y €y C
21 22 23 24 — 0 (40)
G G G5 Oy
Cy Cyp Cp3 Cy
where
=—Ak> +(A+2u)m, ¢, ==2ipkm,,
ay = Ak —(A'+2u")Ym?, ¢y = 2ip'km},
. 2 2
2 = —2im gk, ¢y = _xu(k +my )»
¢y =2imp'k,c,, = ,u'(k2 +mf).
C3) =My, Cyy = ik,
3 =myj,cy =ik
g =ik,cp =my,
Cyy = —ik,cpy = my.
The Equation (40) gives the frequency equation for
surface wave in an elastic medium

4) If we remove the upper half-space, then the Equa-
tion (37) reduces to

d11 d12 d13 d14
dy dy d23 dy, -0 (41)
d31 d32 d33 d34
d41 d42 d43 d44

where
dy, ==Ak> +(A+2u)m} - BS, +bny,,
dy, ==k +(A+2u)m; - BE, +bn,,
dyy = —Ak> +(A+2u)m; — BE, +bny,
d\y ==2ipkm,d, ==2ipkm,, d,, = =2ipkm,,
d,, =2iukm,, d,, = —,U(kz +mf)
dy =mg,, dy, =myg,, dy; =my g5, dy =0.
dy =my, dy =myn,, dyy =msn,, dy, =0.

The Equation (41) gives the frequency equation of a
Rayleigh surface wave in a half-space of a generalized
thermo-elastic material with void.

7. Conclusions

The frequency equation of surface waves in generalized
thermoelastic material with voids is obtained. The fre-
quency equation of Rayleigh surface wave is obtained as
limiting case. The theoretical results indicate that the
speed of surface wave depends on various material pa-
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rameters. Present analytical solutions can be used to find
numerically the speed of surface wave for a particular
material modeled as thermoelastic material with voids.
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