
Journal of Information Security, 2014, 5, 91-113
Published Online July 2014 in SciRes. http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2014.53010

How to cite this paper: Gueron, S. (2014) Parallelized Hashing via j-Lanes and j-Pointers Tree Modes, with Applications to
SHA-256. Journal of Information Security, 5, 91-113. http://dx.doi.org/10.4236/jis.2014.53010

Parallelized Hashing via j-Lanes and
j-Pointers Tree Modes, with Applications to
SHA-256
Shay Gueron1,2
1Department of Mathematics, University of Haifa, Haifa, Israel
2Intel Corporation, Israel Development Center, Haifa, Israel
Email: shay@math.haifa.ac.il

Received 1 May 2014; revised 1 June 2014; accepted 28 June 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
j-lanes tree hashing is a tree mode that splits an input message into j slices, computes j indepen-
dent digests of each slice, and outputs the hash value of their concatenation. j-pointers tree hash-
ing is a similar tree mode that receives, as input, j pointers to j messages (or slices of a single mes-
sage), computes their digests and outputs the hash value of their concatenation. Such modes ex-
pose parallelization opportunities in a hashing process that is otherwise serial by nature. As a re-
sult, they have a performance advantage on modern processor architectures. This paper provides
precise specifications for these hashing modes, proposes appropriate IVs, and demonstrates their
performance on the latest processors. Our hope is that it would be useful for standardization of
these modes.

Keywords
Tree Mode Hashing, SHA-256, SIMD Architecture, Advanced Vector Extensions Architectures, AVX,
AVX2

1. Introduction
This paper expands upon the j-lanes tree hashing mode which was proposed in [1]. It provides specifications,
enhancements, and an updated performance analysis. The purpose is to suggest such modes for standardization.
Although the specification is general, we focus on j-lanes tree hashing with SHA-256 [2] as the underlying hash
function.

The j-lanes mode is a particular form of tree hashing, which is optimized for contemporary architectures of

http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2014.53010
http://dx.doi.org/10.4236/jis.2014.53010
http://www.scirp.org/
mailto:shay@math.haifa.ac.il
http://creativecommons.org/licenses/by/4.0/

S. Gueron

92

modern processors that have SIMD (Single Instruction Multiple Data) instructions. Currently deployed SIMD
architectures use either 128-bit (e.g., SSE, AVX [3], NEON [4]) or 256-bit (AVX2 [3]) registers. For SHA-256, an
algorithm that (by its definition) operates on 32-bit words, AVX and AVX2 architectures can process 4 or 8 “lanes”
in parallel, respectively. The j-lanes mode capitalizes on this parallelization capability.

The AVX2 architecture [3] includes all the necessary instructions to implement SHA-256 operations efficiently:
32-bit shift (vpsrld) and add (vpaddd), bitwise logical operations (vpandn, vpand, vpxor), and the 32-bit rotation
(by combining two shifts (vpsrld/vpslld) with a single xor/or (vpxor) operation).

The future AVX512f instructions set [3] [5] supports 512-bit registers, ready for operating on 16 lanes. It also
adds a few useful instructions that would increase the parallelized hashing performance: rotation (vprold) and
ternary-logic operation (vpternlogd). The (vpternlogd) instruction allows software to use a single instruction for
implementing logical functions such as Majority and Choose, which SHA-256 (and other hash algorithms) use.
Rotation (vprold) can perform the SHA-256 rotations faster than the vpsrld + vpslld + vpxor combination.

2. Preliminaries
Hereafter, we focus on hash functions (HASH) that use the Merkle-Damgård construction (SHA-256, SHA-512,
SHA-1 are particular examples). Other constructions can be handled similarly. Suppose that HASH produces a
digest of d bits, from an input message M whose length is length (M). The hashing process starts from an initial
state, of size i bits, called an Initialization Vector (denoted HashIV). The message is first padded with a fixed
string plus the encoded length of the message. The resulting (padded) message is then viewed and processed as the
concatenation M||padding = m0||m1||…||mk−1 of k consecutive fixed size blocks m0m1...mk−1.

The output digest is computed by an iterative invocation of a compression function compress (H, BLOCK). The
inputs to the compression function are a chaining variable (H) of i bits, and a block (BLOCK) of b bits. Its output is
an i-bit value that can be used as the input to the next iteration. The output digest (of HASH) is f(Hk−1). We call an
invocation of the compression function an “Update” (because it updates the chaining variable).

We use here the following notations:
 ⌈x⌉: floor(x).
 ⌊x⌋: ceil(x) = floor(x + 1).
 S[y: x]: bits x through y of S.
 ||: string concatenation (e.g., 04||08 = 0408).
 HASH: the underlying hash function; HASH = HASH (message, length (message)).
 HashIV the Initialization Vector used for HASH (e.g., for SHA-256 Hash IV = 0x6a09e667, 0xbb67ae85,

0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19; when written as 8 integers).
 compress (H, BLOCK): the compression function used by HASH. It consumes a single fixed sized data chunk

(BLOCK) of the message, a state (H), and updates H (at output) according to a specified algorithm ([2] defines
the compression function for SHA-256).

 M: the hashed message.
 N: the length, in bits, of M.
 L: the length, in bytes, of M (L = [N/8]).
 d: the length, in bits, of the digest that HASH produces.
 D: the length, in bytes, of the digest that HASH produces (D = [d/8]).
 B: the length, in bytes, of the message block consumed by the compression function compress (e.g., for

SHA-256, B = 64).
 j: the number of lanes used by the j-lanes hashing process (in this paper, we discuss only j = 4, 8, 16).
 Q: the size, in bits, of the “word” that HASH uses during the computations (Q = 32 for SHA-256, and Q = 64

for SHA-512).
 W: the size, in bytes, of the “word” that HASH uses during the computations (W = Q/8).
 S: the number of lanes that a given architecture supports, with respect to the word size of HASH (e.g., AVX

architecture has registers (xmm’s) that can hold 128 bits. For HASH = SHA-256, Q = 32, therefore, S = 128/Q
= 4).

 P: the length, in bytes, of the minimal padding length of HASH (for SHA-256, a bit “1” is concatenated, and
then the message bit length (N), encoded as an 8-byte Big Endian integer. Therefore, with SHA-256, we have
P = 9).

S. Gueron

93

3. The j-Lanes Tree Hash
The j-lanes tree hash is defined in the context of the underlying hash function HASH, and j (j ≥ 2) is a parameter.
We are interested here in j = 4, 8, 16. The input to the j-lanes hash function is a message M whose length is N bits.

This message is (logically) divided into k (k ≥ 0) consecutive Q-bit “words” mi, i = 0, 1, …, k − 1 (if M is the
NULL message, then k = 0).

When k ≥ 1, the words mj, j = 0, 1, …, k − 2 (if k − 2 < 0, there are no words in the count) consist of Q bits
each. If N is not divisible by Q, then the last word mk−1 is incomplete, and consists of only (N mod Q) bits.

We then split the original message M into the j disjoint sub-messages (buffers) Buff0, Buff1, …, Buffj−1 as fol-
lows:

Buff0 = m0||mj||mj×2 …
Buff1 = m1||mj+1||mj×2+1 …
...
Buffj−1 = mj−1||mj×2−1||mj×3−1 …
Note if N ≤ Q × (j − 1), then one or more buffers Buffi will be a NULL buffer. If N = 0 all the buffers are de-

fined to be NULL, and will be hashed as the empty message (i.e. only the padding pattern is hashed in that
case).

After the message is split into j disjoint buffers, as described above, the underlying hash function, HASH, is
independently applied to each buffer as follows:

H0 = HASH (Buff0, length (Buff0))
H1 = HASH (Buff1, length (Buff1))
H2 = HASH (Buff2, length (Buff2))
…
Hj−1 = HASH (Buffj−1, length (Buffj−1))
The j-lanes digest (H) is defined by
H = DIGEST (HASH, M, length (M), j) = HASH (H0||H1||H2||…||Hj−1, j × D)
Remark 1: The final stage of the process is called the wrapping stage. It hashes a message with a fixed size

of j × D bytes. The number of updates required is ⌈(j×D+P)/B⌉ that are likely to be serial updates.
Remark 2: The API for a j-lanes hash for a fixed j would be the same as for the underlying hash, i.e. for

SHA-256, the j-lanes implementation could have the following API: SHA256_j_lanes (uint8_t* hash, uint8_t*
msg, size_tlen).

Example 1: Consider a message M with N = 4096 bits, and the hash function HASH = SHA-256 that oper-
ates on 32-bit words (Q = 32). Here, k = ⌈4096/32⌉ = 128. For j = 8 we get

Buff0 = m0||m8||m16 …||m120
Buff1 = m1||m9||m17 …||m121
Buff2 = m2||m10||m18 …||m122
Buff3 = m3||m11||m19 …||m123
Buff4 = m4||m12||m20 …||m124
Buff5 = m5||m13||m21 …||m125
Buff6 = m6||m14||m22 …||m126
Buff7 = m7||m15||m23 …||m127

where each one of the eight buffers is 512 bit long.
Example 2: Consider a message M with N = 2913 bits, and HASH = SHA-256 (Q = 32). Here, k = ⌈2913/32⌉

= 92. Since 2913 mod 32 = 1, the last word, m91, consists of only a single bit. For j = 8, we get
Buff0 = m0||m8||m16 …||m80||m88
Buff1 = m1||m9||m17 …||m81||m89
Buff2 = m2||m10||m18 …||m82||m90
Buff3 = m3||m11||m19 …||m83||m91
Buff4 = m4||m12||m20 …||m84
Buff5 = m5||m13||m21 …||m85
Buff6 = m6||m14||m22 …||m86
Buff7 = m7||m15||m23 …||m87
Here, |Buff0| = |Buff1|=|Buff2| = 384 bits, |Buff3| = 353 bits, |Buff4| = |Buff5| = |Buff6| = |Buff7| = 352 bits.

S. Gueron

94

Example 3: Consider a message M with N = 100 bits, and HASH = SHA-256 (Q = 32). Here, k = ⌈100/32⌉ =
4. Since 100 mod 32 = 4, the last word, m3, consists of only 4 bits. For j = 8, we get

Buff0 = m0
Buff1 = m1
Buff2 = m2
Buff3 = m3
Buff4 = NULL
Buff5 = NULL
Buff6 = NULL
Buff7 = NULL
Here, |Buff0| = |Buff1| = |Buff2|=32 bits, |Buff3| = 4 bits, |Buff4| = |Buff5| = |Buff6| = |Buff7| = 0 bits.
Remark 3: Similarly to the serial hashing, the j-lanes hashing can process the message incrementally (e.g.,

when the messages is streamed). Since the parallelized compression operates (in parallel) on consecutive blocks
of j × B bytes, it needs to receive only the “next j × B bytes” in order to compute an Update.

4. The j-Pointers Tree Hash
An alternative way to define j “slices” of the message M, is to provide j pointers to j disjoint buffers Buff0, ...,
Buffj−1, of M, together with k values for the length of each buffer. In this case, it is also required that Ʃi length (Buffi)
= length (M).

In this case, the j-pointers tree hash procedure would be the following. Compute the j hash values for each of
the disjoint buffers:

H0 = HASH (Buff0, length (Buff0))
H1 = HASH (Buff1, length (Buff1))
H2 = HASH (Buff2, length (Buff2))
...
Hj−1 = HASH (Buffj−1, length (Buffj−1))
Produce the output digest
H = HASH (H0||H1||H2||…||Hj−1, j × D)
Remark 4: In a software implementation, the API of the j-lanes function is the same as the API for any other

hash function (see Remark 2).The function computes the buffers and their length internally. On the other hand,
the API to a j-pointers hash requires a pointer to each buffer and its length, to be provided by the caller. For
example:

SHA256_4_pointers(uint8_t* hash, uint8_t* buff0, size_tlen0, uint8_t* buff1, size_tlen1, uint8_t* buff2,
size_tlen2, uint8_t* buff3, size_tlen3)

or, alternatively:
SHA256_j_pointers(uint8_t* hash, uint8_t** buffs, size_t*lengths, unsigned int j)

5. The Difference between j-Pointers Tree Hash and j-Lanes Tree Hash
The j-pointers and the j-lanes tree modes are essentially the same construction, and the difference is in how the
message is viewed (logically) as j slices. The j-lanes tree mode has a performance advantage when implemented
on SIMD architectures because it supports natural sequential loads into the SIMD registers: each word is natu-
rally placed in the correct lane (see Figure 1).

The j-pointers tree mode expects the data to be loaded from j locations. It is more suitable for implementa-
tions on multi-processor platforms, and for hashing multiple independent messages into a single digest (e.g.,
hashing a complete file-system while keeping a single digest). Of course, a j-pointers tree can also be used on a
SIMD architecture, but in that case it requires “transposing” the data in order to place the words in the correct
position in the registers. This (small) overhead is saved by using the j-lanes tree mode.

6. Counting the Number of Updates
The performance of a standard (serial) hash function is closely proportional to the number of Updates (U) that the
computations involve, namely

S. Gueron

95

Figure 1. The j-lanes tree mode natural data alignment with SIMD architectures (here, with
128-bit registers (xmm’a) as 4 32-bit words).

 (1)

In Equation (1), each Update consumes B additional bytes of the (padded) message, and the number of bytes
in the padded message is at least L + P (with no more than a single block added by the padding).

For the j-lanes hash (with the underlying function HASH), the number of serially computed Updates can be
approximated by

 (2)

Note that some of the j-lanes Updates are carried out in parallel, compressing min(S, j) blocks per one Update
call. Equation (2) accounts for parallelizing at most min(S, j) block compressions, thus contributing the term
⌈L/(min(j,S) × B)⌉, plus one Update for the padding block. A padding block is counted for each lane, although,
depending on the length of the message, some Updates are redundant. The wrapping step cannot be parallelized
(in general) and adds ⌈(j × D + P)/B⌉ serial Updates to the count.

Example 4: Suppose that HASH = SHA-256, and consider a message of 1024 bytes. The standard SHA-256
function requires ⌈(1024 + 9)/64⌉ = 17 Updates. We compare this to the count of j-lanes Updates for a few val-
ues of j:

For the AVX2 architecture (Haswell architecture [3]) we have D = 32, B = 64, P = 9, S = 8. This implies that
the 8-lanes SHA-256 (j = 8) is optimal. It requires ⌈1024/(8 × 64)⌉ + 1 + ⌈(8 × 32 + 9)/64⌉ = 8 Updates.

For the AVX architecture (Sandy Bridge architecture), we have S = 4, so, j = 4 is the optimal choice for this
setup, and the 4-lanes SHA-256 (j = 4) requires ⌈1024/(4 × 64)⌉ + 1 + ⌈(4 × 32 + 9)/64⌉ = 8 Updates. Of course,
it is possible to use the 8-lanes SHA-256 on this architecture, but we can only parallelize 4 Updates using the
xmm registers. Therefore, the 8-lanes SHA-256 (j = 8) on the AVX architecture (where S = 4) requires ⌈1024/(4
× 64)⌉ + 1 + ⌈(8 × 32 + 9)/6⌉ = 10 Updates.

S. Gueron

96

Figures 2-4 show the number of Update calls (some are parallelized). As seen on Figure 2, when the number
of lanes is limited by the SIMD architecture, the total number of Updates for the different choices of j, varies
only by the number of Updates that are required by the final wrapping stage.

Figure 2. The number of serially computed Updates re-
quired on a SIMD architecture supporting 4 lanes (e.g.,
AVX on a Sandy Bridge architecture), for different mes-
sage lengths and different choices of j.

Figure 3. The number of serially computed Updates re-
quired on a SIMD architecture supporting 8 lanes (e.g.,
AVX2 on a Haswell architecture), for different message
lengths and different choices of j.

Figure 4. The number of serially computed Updates re-
quired on a SIMD architecture supporting 16 lanes (AVX512f
—a future architecture), for different message lengths and
different choices of j.

0

10

20

30

40

50

60

70

0 512 1024 1536 2048 2560 3072 3584 4096

N
um

be
r o

f c
al

ls
 to

 "
U

pd
at

e"

Message size in bytes

j=4 j=8
j=16 SHA-256 serial

0

10

20

30

40

50

60

70

0 512 1024 1536 2048 2560 3072 3584 4096

N
um

be
r o

f c
al

ls
 to

 "
U

pd
at

e"

Message size in bytes

j=4 j=8
j=16 SHA-256 serial

0

10

20

30

40

50

60

70

0 512 1024 1536 2048 2560 3072 3584 4096

N
um

be
r o

f c
al

ls
 to

 "
U

pd
at

e"

Message size in bytes

j=4 j=8
j=16 SHA-256 serial

S. Gueron

97

However, in Figure 4, we see the differences when the choice of j = 16 becomes the most efficient for mes-
sage sizes of 4 KB and up, requiring the fewest Updates. For 4 KB messages, both j = 16 and j = 8 require 14
Updates, j = 4 requires 20 updates and the serial SHA-256 requires 65 Updates.

7. The j-Lanes Hash and the j-Pointers Hash with Different IVs
The Merkle-Damgård construction uses one d-bit IV to initialize the computations. For j-lanes hashing, one might
prefer to modify the IVs and this section proposes a method to achieve that.

Define j + 1 “Prefix” blocks (“Pre”) as follows:
9 0 0,1 ,B NCHAR

iPre j i type HASH i j− −= = … (3)

where
 j is encoded as a 32-bit integer in little-endian notation.
 i in the “index” of the lane, and is encoded as a 32-bit integer in little-endian notation. The values i = 0, …, j

− 1 are used for the lanes, and the value i = j is used for the wrapping step.
 type is a single byte with the value 0x0 for a j-lanes hash, and 0x1 for a j-pointers hash.
 HASH is the name of the underlying hash function, encoded as a string of ASCII characters. For SHA-256

we write HASH = “SHA256” or, as ASCII, 0x53, 0x48, 0x41, 0x32, 0x35, 0x36 (encoding “S” = 0x53, “H”
= 0x48, “A” = 0x41 etc.).

 The number of characters (NCHAR) in the string that indicates HASH should be such that NCHAR + 9 ≤ B.
The Prefix blocks are prepended to the j + 1 hashed messages, and modify the “effective” IV that is being

used. In other words, the j-lanes algorithm executes the following computations:
H0 = HASH (Pre0||Buff0, length (Buff0) + B)
H1 = HASH (Pre1||Buff1, length (Buff1) + B)
H2 = HASH (Pre2||Buff2, length (Buff2) + B)
...
Hj−1=HASH (Prej-1||Buffj-1, length (Buffj−1) + B)
H = HASH (Prej||H0||…||Hj−1, j × D + B)
Remark 5: SHA-256 allows hashing a message of any length less than 264 bits. In the j-lanes/j-pointers mod-

es, the length of the message should be less than 264 − 512 bits.

Pre-Computing the IVs
The Prefix blocks do not need to be re-computed for each message. Instead, the j + 1 IV values can be pre-
computed by:

() compress Hash , Pre ; 0,1 ,i iIV IV i j= = … (4)

Note that the Prefix blocks can also be viewed as a modification of HASH, to use the new IVs instead of a
fixed IV. For convenience, denote the hash function that uses IVi by HASH’i. In that case the SHA-256 padding
shall still accommodate the length of the prefix block.

With this notation, the j-lanes hashing can be expressed in terms of HASH’ by:
H0 = HASH’0 (Buff0, length (Buff0))
H1 = HASH’1 (Buff1, length (Buff1))
H2 = HASH’2 (Buff2, length (Buff2))
...
Hj−1 = HASH’j−1 (Buffj−1, length (Buffj−1))
H = HASH’j (H0||H1||H2||…||Hj−1, j × D)
Figure 5 shows the values of the prefix blocks and the new IVs (for HASH = SHA-256).
Remark 5: the following alternative can be considered, for saving the space of storing j + 1 IV values. In-

stead, use a single (new) IV value for all the j + 1 hash computations. We fixed one value of idx, namely idx = j
+ 1, and define the j-lanes hash by:

H0 = HASH’j+1(Buff0, length (Buff0))
H1 = HASH’j+1(Buff1, length (Buff1))
...

S. Gueron

98

Figure 5. An example for the Prefix blocks and the IVs generation for the 4-lanes SHA-256 hash function.

Hj−1 = HASH’j+1(Buffj−1, length (Buffj−1))
H = HASH’j+1(H0||H1||H2||…||Hj−1, j × D)
Figure 6 shows the values of the prefix block and the new IV (for HASH = SHA-256) for the alternative.
Test vectors for j-lanes SHA-256 with j = 4, 8, 16 are provided in the Appendix.

8. Performance
This section shows the measured performance of j-lanes SHA-256, for j = 4, 8, 16, and compares it to the per-
formance of the serial implementation of SHA-256. The results are shown in Figure 7 and Figure 8.

Clearly, the j-lanes SHA-256 has a significant performance advantage over the serial SHA-256, for messages
that are at least a few kilobytes long. The choice of j affects the hashing efficiency: for a given architecture,
j-lanes SHA-256 with j > S is slower than j-lanes SHA-256 with the optimal choice of j = S, due to the longer
wrapping step. However, the differences become almost negligible for long messages.

S. Gueron

99

Figure 6. An example of the Prefix block and the (single) IV generation, for the 4-lanes, SHA-256 hash function,
for the variant that uses only one modified IV.

Figure 7. Performance of SHA-256 j-lanes compar-
ed to the serial SHA-256 implementation, Intel Archi-
tecture Codename Sandy Bridge (S = 4).

Figure 8. Performance of SHA-256 j-lanes compared
to the serial SHA-256 implementation, Intel Architec-
ture Codename Haswell (S = 8).

9. Conclusions
This paper showed the advantages of a j-lanes hashing method on modern processors, and provided information
on how it can be easily defined and standardized.

The choice of j is a point that needs discussion. If a standard supports different j values, then the optimal
choice can be selected per platform. This, however, could add an interoperability burden, and we can imagine
that a single value of j would be preferable. In this context, we point out that Figure 2 and Figure 3 (theoretical
approximations) are consistent with Figure 7 and Figure 8 for j = 4 and j = 8 (actual measurements). Therefore,
Figure 4 can be viewed as a good indication for what can be expected when using j = 16 on the future archi-
tectures that would introduce the AVX512f architecture (supporting S = 16). Furthermore, j = 16 allows better
parallelization on multicore platforms. Consequently, our conclusion is that if only one value of j is to be speci-
fied by a standard, then the choice of j = 16 would be the most advantageous.

0
2
4
6
8

10
12
14
16
18

1,024 4,096 7,168 10,240 13,312 16,384

Cy
cl

es
/B

yt
e

Message size
j=4 j=8 j=16 SHA-256 serial

0
2
4
6
8

10
12
14
16
18

512 3,584 6,656 9,728 12,800 15,872

Cy
cl

es
/B

yt
e

Message size
j=4 j=8 j=16 SHA-256 serial

S. Gueron

100

References
[1] Gueron, S. (2013) A j-Lanes Tree Hashing Mode and j-Lanes SHA-256. Journal of Information Security, 4, 7-11.
[2] FIPS (2012) Secure Hash Standard (SHS), Federal Information Processing Standards Publication 180-4.

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
[3] Intel (2013) Intel® Architecture Instruction Set Extensions Programming Reference.

http://software.intel.com/en-us/file/319433-017pdf
[4] ARM (2013) Neon, ARM. http://www.arm.com/products/processors/technologies/neon.php
[5] Reinders, J. (2013) AVX-512 Instructions, Intel Developer Zone.

http://software.intel.com/en-us/blogs/2013/avx-512-instructions

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://software.intel.com/en-us/file/319433-017pdf
http://www.arm.com/products/processors/technologies/neon.php
http://software.intel.com/en-us/blogs/2013/avx-512-instructions

S. Gueron

101

Appendix: Test Vectors
The test vectors provided below use the same 1024 bytes message (M) that is defined by (Figures 9-12).
uint8_t M[1024];
for (int i = 0; i < 512 ; i++) {M [i * 2] = i >> 8; M [i * 2 + 1] = i & 0 × ff;}

Figure 9. The message M used for the test vectors.

S. Gueron

102

S. Gueron

103

Figure 10. Test vector for SHA-256 4-lanes.

S. Gueron

104

S. Gueron

105

S. Gueron

106

S. Gueron

107

Figure 11. Test vector for SHA-256 8-lanes.

S. Gueron

108

S. Gueron

109

S. Gueron

110

S. Gueron

111

S. Gueron

112

S. Gueron

113

Figure 12. Test vector for SHA-256 16-lanes.

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide
range of academic disciplines. SCIRP serves the worldwide academic communities and contributes
to the progress and application of science with its publication.

Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either
submit@scirp.org or Online Submission Portal.

mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper

	Parallelized Hashing via j-Lanes and j-Pointers Tree Modes, with Applications to SHA-256
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. The j-Lanes Tree Hash
	4. The j-Pointers Tree Hash
	5. The Difference between j-Pointers Tree Hash and j-Lanes Tree Hash
	6. Counting the Number of Updates
	7. The j-Lanes Hash and the j-Pointers Hash with Different IVs
	Pre-Computing the IVs

	8. Performance
	9. Conclusions
	References
	Appendix: Test Vectors

