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Abstract 
 
This paper addresses an important issue in model combination, that is, model locality. Since usually a global 
linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex sys-
tem, we propose a mixture of local feature models to overcome these weaknesses. The basic idea is to split 
the entire input space into operating domains, and a recently developed feature-based model combination 
method is applied to build local models for each region. To realize this idea, three steps are required, which 
include clustering, local modeling and model combination, governed by a single objective function. An 
adaptive fuzzy parametric clustering algorithm is proposed to divide the whole input space into operating 
regimes, local feature models are created in each individual region by applying a recently developed fea-
ture-based model combination method, and finally they are combined into a single mixture model. Corre-
spondingly, a three-stage procedure is designed to optimize the complete objective function, which is actu-
ally a hybrid Genetic Algorithm (GA). Our simulation results show that the adaptive fuzzy mixture of local 
feature models turns out to be superior to global models. 
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1. Introduction 
 
Models are useful in both explaining systems and pre-
dicting their future behavior. Usually, for a specific sys-
tem there are many different competing models. In this 
situation, the question arises of how to improve model 
performance given all available information. One strat-
egy is to select a single best model among the group of 
competing models. An alternative is to combine multiple 
competing models. In both theoretical and empirical 
work, it has been shown that model combination can lead 
to better models than does selecting a single model. 
However, how to aggregate information contained in 
candidate models and new observations in an efficient 
way is still an open research problem. To this end, Xu 
and Golay [1] proposed a feature-based model combina-
tion method, which, compared to other methods men-
tioned above, makes more efficient use of information 
embedded in candidate models and extra data. 

In this feature-based model combination approach, it 
is assumed the true model can be expressed as 
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where fi(x)  F, the factor set, and wi(x) is its corre-
sponding weight, intensity, or factor loading as in factor 
analysis [2], N is the number of total factors, x is an input 
variable. In a linear case, wi(x) is constant, independent 
of x. Correspondingly, a candidate model, as an ap-
proximate representation of the system, can be expressed 
in a similar way, for example, the kth candidate model 
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where fki(x)  Fk with Fk the set of factors for kth model 
and Nk is the number of factors in Fk. Note that Fk is a 
subset of feature space F. 

Assuming the features fi(x), , are either 
uncorrelated or independent conditional on input x, [1] 
proposes to apply either Principal Component Analysis 
(PCA) [3] or Independent Component Analysis (ICA) [4] 
to extract the features and then aggregates them through 
regression into a new optimal composite model based on 
data 
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where Sc denotes the set of selected factors, and the fac-
tor weights and constant  can be determined based upon 
data. 
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However, there are some weaknesses inherent in this 
approach that limit its application. Among them two 
major issues are the model locality and nonlinearity. As 
shown later it can be unjustified to use a single global 
linear model to describe a complex system over its entire 
domain. In fact, this limitation is inherent in the applica-
tion of the global linear PCA or ICA for feature extrac-
tion, whose weaknesses have been investigated by Ka-
runen and Malaroiu [5] and other authors. 

In order to mitigate these limitations, we propose a 
mixture model of local feature models. Basically, local 
models are built to approximate the complex system 
within operating regimes and then are combined by 
smooth interpolation into a complete global model. The 
split of the input space enable us to characterize the 
nonlinearity of the system although somewhat coarsely, 
and local component analysis produces different sets of 
local features, which lead to different local models. 

The outline of this paper is as follows: in section 2, the 
idea of mixture of local models is proposed and justified 
in terms of different arguments; an adaptive fuzzy para-
metric clustering algorithm is presented in order to split 
the entire input space into sub-domains; and then local 
PCA or ICA is used to extract local features, which con-
stitute local models; finally, a method is proposed to 
piece local models together into a mixture model. In sec-
tion 3, a three-stage optimization algorithm is used to 
implement the procedure. Both an artificial example and 
a physical case are presented in section 4 to demonstrate 
the performance of this new approach. The last section 
summarizes the paper. 
 
2. Mixture of Local Models 
 
In this section, we introduce a mixture of local models in 
order to characterize model nonlinearity and locality. 
Local models are built to approximate the complex sys-
tem locally and then are combined by smooth interpola-
tion into a complete global model. In order to describe 
model locality, we introduce the concept of phase transi-
tion. 
 
2.1. Why Local Models 
 
In general, it is usually preferred to build a single global 
model to describe a system’s behavior over its entire 
input space. However, in reality a model might not be 
able to cover the full range of the input space accurately 
due to high complexity. This can happen because of the 
need to describe the interactions between a large number 
of phenomena that appear within the domain. Rather a 
well-defined model may only be appropriate over a spe-
cific prescribed subspace, namely its operating regime. 
For example, a model, which is fitted quite well to the 

data in a specific region, may be inaccurate when ex-
trapolated to other regions, for example, because some 
assumption underlying a model can only be met in a cer-
tain range of inputs. Typically for a complicated system 
the true model is nonlinear and highly complex and a 
global linear model is far from adequate. 

It is also conceivable that a physical system may un-
dergo different phase changes that are governed by dif-
ferent underlying laws. This phenomenon is regarded as 
phase transition. Meanwhile, the set of important features 
of the system can vary over different domains or the 
same set of features but with varying influences. Both 
cases result in varied local behavior patterns. Corre-
spondingly, this situation can lead to variation of model 
structures, that is, different models over different regions. 
Thus, in the presence of phase transition, it can be diffi-
cult to incorporate the properties of distinct phases into a 
single global model. 

Therefore, a single global linear model sometimes 
cannot describe a nonlinear system adequately or capture 
all the local features accurately. In order to deal with this 
nonlinearity and locality, it might be possible to identify 
missing hidden variables needed to characterize nonlin-
earity or phase transition phenomena and create a com-
prehensive complex global model. Such variables are 
called Arrhenius-type terms by Johansen and Foss [6]. 
However, it is usually difficult to find such extra hidden 
variables, not only because it requires greater knowledge 
concerning the system under investigation, but also be-
cause even if we do so, we may obtain an overly com-
plicated global model or even an intractable one. Fol-
lowing the philosophy of divide-and-conquer, an alterna-
tive simpler way to capture the locality is to divide the 
whole input space into several small regions and to per-
form local analysis in each local region, for example, 
classification and regression tree (CART) and use of a 
hierarchical mixture of experts (HME). Local analysis 
leads to simple local models, which try to characterize a 
complicated physical system over a specific regime 
called an operating regime. Then local models are com-
bined into a global composite model. In contrast to a 
global model that is valid over the full range of the input 
space, a local model is valid only in a predefined operat-
ing region smaller than the input space. Typically, local 
models can be considerably simpler because a smaller 
number of phenomena are relevant and their interactions 
are simpler [6]. Therefore, this divide-and-conquer prin-
ciple simplifies the modeling problem by transforming 
the task of modeling a complex system into one of sim-
pler modeling local results can be combined relatively 
easily to yield a satisfactory overall model. 

Typically, in local learning models are constructed as 
linear functions of local features. Then, they are pieced 
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together somehow to form a global linear mixture model 
[7]. Although simpler, this mixture model improves the 
model accuracy because it reduces model bias by speci- 
fying the model more properly. By examining the bias/ 
variance tradeoff for local and global learning, Murray- 
Smith and Johansen [8] show that local learning can be 
viewed as a simple form of regularization, which pro- 
duces models with higher accuracy and greater robust- 
ness than do global learning methods. 

However, as noted by Jordan and Jacobs [9], divide- 
and-conquer tends to increase the model variance. A 
remedy to it is to employ a soft split of the input space. A 
simple version of soft partition is to overlap the operating 
regimes of the local models. Doing this help smooth the 
switching between local models and thereby can reduce 
variance. This will be discussed in more details as we 
proceed. 

It is noteworthy that local models here are different 
from those used in local modeling [10] where a paramet- 
ric function is fitted to data in the neighborhood around a 
query point x. This can be done by locally weighted re- 
gression [11] where the weights in Weighted Least 
Squares (WLS) depend upon the distance from a data 
point to the query point x, or by mixtures of local experts 
[12] where local experts are fitted to all data but not 
equally well in some local regions. A common drawback 
of these local learning methods is the complete lack of 
interpretability of the resultant models.  
 
2.1.1. Phase Transition 
Usually, local models are combined into a global model 
by smooth superposition. The main motivation for this is 
that the system often has some smoothness properties 
between regions, i.e. with the operating point changing 
the phenomena or behavior changes smoothly. However, 
one may occasionally come across processes that change 
abruptly. For example, in fluid dynamics a phase transi- 
tion or flow pattern changes can occur [13]. Below a 
mixture-of-phases model is introduced to characterize a 
phase transition. This leads to use of a mixture of over- 
lapping local models. 

In general, phase transition means a system undergoes 
a discontinuous change in association with continuously 
changing parameters, transforming from one phase to 
another. For example, a liquid flow changes from lami- 
nar flow to turbulent flow as the Ronald number in- 
creases. In the current case, by phase transition we mean 
a system undergoes a qualitative change in its underlying 
local features, thereby leading to the need for different 
local models.  

According to the modern classification scheme, phase 
transitions fall into two broad categories, namely the first 
and second-order phase transitions. Under this scheme, 
phase transitions were labeled by the lowest derivatives 

of the free energy that is discontinuous at the transition. 
First-order transitions exhibit a discontinuity in the first 
derivative of the free energy, or the value of the response 
variable. In contrast, second-order transitions are con- 
tinuous in the value of the response variable but not in 
the second derivative of the free energy.  

In this scheme, first-order transitions are associated 
with “mixed-phase regimes”, where some parts of the 
system have completed the transition and others have not. 
A typical example of this class of transitions is water 
boiling where with the temperature increasing the water 
does not instantly turn into a gas but forms a turbulent 
mixture of water and water vapor. Mixed-phase systems 
are unstable and difficult to study, because their 
dynamics are violent and hard to control. However, 
many important phase transitions fall in this category, 
including the solid/liquid/gas transitions. 

On parallel with soft partition, in the present case we 
can adopt soft phase boundaries, where multiple phases 
coexist. This is consistent with overlapping operating 
regime concept mentioned earlier. In the coexistence 
region, the system can be considered to be a random 
mixture of multiple phases governed by different local 
models. This stochastic mixture model of phase 
transitions helps explain instability within the transitional 
regime, because inside this coexistence region the system 
behaves like one of the distinct phases with specific 
probabilities and where distinct phases are quite different 
in behavior. Therefore, the expected behavior of the 
system is simply a probability-weigthed average of those 
of distinct phases. At the sametime, outside the coexitence 
regime the system is dominated by a single phase. Thus a 
local model can be applied deterministically. This 
statistical mixture model of phase transition is not short 
of physical evidence. For example, Harrington et al. [14] 
reported in liquid-liquid phase transition, the coexistence 
of two different phases inside an unstable region. 

In addition, generally we have no idea in advance 
where and how wide the transitonal regions. Thus their 
domains have to be estiamted based upon data. Con- 
veniently, each transitional region can be represented by 
two parameters, the outset and the end-point of a phase 
transition region. In fact, this parametric model is able to 
characterize both categories of phase transitions, namely 
first-order or second-order transition. If the width of the 
coexistence regime turns out to be nil, it is a first-order 
phase transition; otherwise, it is a second-order phase 
transition. 

Based upon the above argument, the framework of 
mixture of local models is able to model the phase transi- 
tion phenomena via dynamic identification of operating 
regimes. 
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2.2. Adaptive Fuzzy Parametric Clustering 
 
In our local model scheme, the input space is split into 
partitions, which overlap, reflecting the effect of a coex- 
istence region. Each partition corresponds to a distinct 
operating regime, in which the system can be described 
by a local model. In implementing this scheme, the first 
and a key problem is that of how to split the input space. 
This is actually a problem of clustering. For this purpose, 
we propose a supervised clustering algorithm. 

Clustering can be considered the most important un- 
supervised learning problem, which is intended to or- 
ganized objects into groups whose members are similar 
in some way. Clustering involves the task of dividing 
data points into homogeneous classes or clusters so that 
items in the same class are as similar as possible and 
items in different classes are as dissimilar as possible. 
Thus, the goal of clustering is to find common patterns or 
similarity.  

The measure of similarity plays an essential role in 
clustering algorithms. Usually, distance is employed as 
the similarity criterion. However, this seems inappropri- 
ate for the current situation. In our scheme, if two points 
in the input space belong to the same phase, they are 
thought of behaving similarly and hence as being in the 
same cluster. From the perspective of local features, 
points in the same cluster have the same underlying local 
features. Furthermore, since currently local features are 
extracted from candidate models through either PCA or 
ICA, similarity in local features is equivalent to similar- 
ity in the separating matrix [15]. Therefore, it is more 
reasonable to cluster data based on the similarity of the 
mixing matrix W, which is equal to the inverse of the 
separating matrix. Because of the similarity of points in 
the same cluster, it is reasonable to treat any cluster in- 
dependent in the course of feature analysis and building 
local models. 

In trying to meet different needs, many clustering al- 
gorithms have been proposed. They can be roughly 
grouped into two classes, namely hard clustering and soft 
clustering.  

Hard clustering assumes exclusive assignment of each 
datum to respective clusters, which means that a specific 
datum belonging to a definite cluster cannot be included 
in another cluster simultaneously. So, hard clustering 
results in crisp clusters, where each data point belongs to 
exactly one cluster. An example of this class is the 
K-means clustering algorithm. Its application is mainly 
in pure local piecewise models such as CART [16]. 

On the contrary the soft clustering, also called over- 
lapping clustering, allows each point to belong to two or 
more clusters simultaneously. Using the two existing 
uncertain reasoning techniques, fuzzy set theory and 
probability theory, this class of clustering algorithms can 

be further divided into fuzzy clustering and probabilistic 
clustering. In fuzzy clustering, fuzzy clusters are identi- 
fied and the data points can belong to more than one 
cluster associated with membership grades, which indi- 
cate the degree to which the data points belong to the 
different clusters. The fuzzy c-means algorithm is one of 
the most widely used fuzzy clustering algorithms, which 
is developed by Dunn [17] and improved by Bezdek 
[18].  

Similar to the fuzzy clustering, in probabilistic clus- 
tering each data point has specific probability of belong- 
ing to a particular cluster. Use of probabilistic reasoning 
is implied by availability of only a restricted amount of 
evidence. A well used probabilistic clustering algorithm 
is the mixture of Gaussians, where the well-known Ex- 
pectation-Maximization algorithm is applied to estimate 
parameters.  

As pointed out in [9], the divide-and-conquer techni- 
que tends to increase the variance. A simple remedy to 
this problem is to apply soft partition. This can be done 
in the current case; and thus, we favor soft clustering. 
Another fact making soft clustering appealing is that 
many systems change behaviors smoothly as a function 
of inputs and soft transition between regimes introduced 
by the fuzzy set representation characterizes this feature 
in an elegant fashion. However, both fuzzy clustering 
and probabilistic clustering cannot be applied directly, 
because fundamentally they measure the similarity based 
on distance and are separated from the modeling process, 
which is inappropriate in our case. Meanwhile, in com- 
parison to probabilistic algorithms, fuzzy clustering is 
more natural and flexible in the current case. Conse- 
quently, we propose a new adaptive fuzzy clustering al- 
gorithm below to identify different phases over the entire 
input space. The characteristics of the new fuzzy clus- 
tering algorithm are described in detail in the following 
discussion.  

1) Fuzzy clustering 
A natural way to interpret overlapping operating re- 

gimes is to apply fuzzy set theory, where an operating 
point can fall into two or more operating regime simul- 
taneously. According to our scheme, in the overlapping 
regions multiple local models might be relevant while 
outside the coexistence regions only one local model, 
called the dominant local model, is valid. The simple 
trapezoidal fuzzy membership function is specifically 
suitable for characterizing such operating regimes. Fur- 
thermore, the choice of a trapezoidal shape membership 
function produces more interpretable local models than 
other functions like Gaussians [15]. 

In order to be consistent with the concept of mixture 
modeling and superposition, a constraint on the fuzzy 
membership functions is imposed, which requires that at 
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ship degree of the mth cluster. This results in smooth 
transition between operating regimes. 

Clusters or operating regimes are represented by fuzzy 
sets. Typical fuzzy clustering with three overlapping 
operating regimes is depicted in Figure 1, where [a,b] 
represents the overlapping region between the cluster I 
and II and likewise [c, d] represents the overlapping re-
gion between the cluster II and III. Any point in the input 
space can belong to multiple clusters with simulta- neous 
memberships. From another practical angle, the mem-
bership can be interpreted as describing how possi- ble 
an observation can be generated by a specific local 
model.  

This type of member functions is consistent with the 
nature of phase transition and able to model both classes 
of phase transition. It also keeps the interpretability of 
each local model corresponding to one cluster. Thus, we 
can argue that this type of member function is a natural 
choice for physical models. 

2) Supervised clustering 
In our fuzzy clustering scheme, the fuzzy membership 

functions are parameterized by the number of clusters 
used and the locations of the splitting points. 

As usual, the main task of fuzzy clustering is to iden- 
tify fuzzy sets characterized by parametric fuzzy mem- 
bership functions. For each cluster, the parameters in- 
clude the location of boundaries and their widths. The 
locations of the boundaries can be chosen such that the 
similarity within a cluster is maximized, while the pat- 
terns of different clusters should be as dissimilar as pos- 
sible. Only so, in each cluster can the system be better 
represented by a local model and the bias decreased.  

The overlap or the width of coexistence region plays a 
major role in smoothing the transition between local 
models. [8] further argues that overlap has a regularizing 
effect in the ill conditioning in a learning problem and 
the level of overlap determines the amount of regularize- 
tion. A high level of overlap leads to a high level of cor- 
relation between neighboring local models and decreased 
transparency of the local models, i.e. compatibility with 
the understanding of a system [6]. A low level of overlap 
results in an abrupt transition between local models. 
Hence, the optimal degree of overlap and softness de- 
pends upon the modeling problem through the objective 
function. 

This algorithm is called adaptive in the sense that in 
addition to the separators the number of regions is de- 
termined based upon the data. If the number of clusters is 
not large enough, the nonlinearity of the system cannot 
be described adequately. On the other hand, an increase- 
ing number of operating regimes increase the model 
complexity. The overall effect of an increasing number 

of local models depends upon whether the decrease in 
bias is more significant than the increase in variance. 

Thus, the number, location and overlap of the operat- 
ing regimes should be so tuned dynamically as to reach 
optimal values. These are determined by objective func- 
tions. In so doing, it can be ensured that there are ade- 
quate amount of data within each operating regime to get 
a good local model.  

3) Single global objective function 
The goal of modeling processes is to minimize the 

predictive error. Likewise, local modeling also aims to 
minimize the generalization error across the entire input 
space. Both the splitting of the input space and the 
building of local models should be determined by this 
overall goal. Nevertheless, in most previous work such 
as local PCA [19] or local ICA [20], and use of local 
models [7], clustering is treated as a separate optimiza- 
tion problem from local learning and obtaining a global 
mixture. This causes sub-optimality. In this paper, we 
optimize both problems jointly by incorporating them 
within a single objective function, which reflects the 
overall goal of minimizing the global generalization error. 
This goal can be realized by two steps, namely estima- 
tion of clustering parameters given the number of clus- 
ters and estimation of the number of clusters. The first 
step can be done by minimizing the empirical error. 

Until now, we have not discussed how to create local 
models and the global mixture model. Suppose the global 
mixture model to be fg(x, , ), where  denotes the 
clustering parameters,  refers to other local model pa- 
rameters and x is the model input. Therefore, the partial 
objective can be expressed as 

 2

1,
arg min , ,

n

i g ii
y f x

 
 


       (4) 

where (xi, yi) denotes a pair of observations. Note that the 
squared loss is applied, which is equivalent to use of 
MLE method under the assumption of a normal distribu- 
tion of the data. 

From the partial objective function in Equation (1), it 
is seen that the input space is so split as to minimize the 
empirical error. In this sense, this clustering algorithm is 
supervised. 
 

 

Region I Region II Region III

x
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Area 

a          b             c         d

f (x)
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Figure 1. Illustration of the fuzzy clustering concept. 
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Therefore, through a same objective function fuzzy 
clustering is closely connected to the modeling process. 
This is exactly in agreement with [6] that the creation of 
local models should not be separated from the choice of 
operating regimes. In this aspect, it is also in spirit simi- 
lar to Mixture of Experts (MoE), where probabilistic 
clustering is mixed with learning. 

Nevertheless, the partial objective function in Equa- 
tion (1) does not involve the number of clusters, which is 
in fact another important part of our fuzzy clustering. 
This is because a different number of operating regimes 
lead to varied model structures, which cannot be re- 
flected in the empirical error. Following the principle of 
parsimony in model selection, we use a complete object- 
tive function, which incorporates the effect of the num- 
ber of clusters. 

The divide-and-conquer principle reduces the model 
bias by specifying the model structure more properly, but 
the variance is increased at the same time, because with 
an increasing number of local models (increasing model 
structure) more parameters need to be estimated. This 
leads to larger variance on the parameter estimate. This 
phenomenon is well known in the literature of statistics 
as bias/variance tradeoff (see e.g. [21]). On one hand, if 
the input space is split into too many regions, overfitting 
will occur; on the other hand, use of too few regions may 
not capture the structure in enough detail and thus could 
lead to underfitting. The task here is to find out the opti- 
mal balance point within the bias/variance tradeoff given 
a finite number of samples. To this end, generally two 
different strategies can be employed, namely model se- 
lection or regularization. In the current case, our purpose 
is to choose the optimal number of operating regimes, 
and thus model selection appears more appropriate.  

With an increasing number of operating regimes local 
models can fit the data much better, but the model com- 
plexity is also increased, which usually leads to deterio- 
rating generalization. Generally, the higher the model 
complexity is, the smaller the bias but the larger the 
variance. Most model selection criteria realize Occam’s 
razor by penalizing the goodness-of-fit with increasing 
model complexity, thereby minimizing the generalization 
error. Among all model selection methods, the informa- 
tion theoretical criteria like Akaike’s Information Crite- 
rion (AIC) [22] or Bayesian Information Criterion (BIC) 
[23] have a close connection to the maximum likelihood 
method, which seems to many statisticians an advantage. 
As a result, these information criteria can be easily ap- 
plied in many circumstances without any additional 
computation. In addition, some of these information cri- 
teria including AIC and BIC can be justified under a 
Bayesian framework, which is also viewed by many 
statisticians as another big advantage (see [22] and [23]). 

Therefore, in this paper we will only utilize the BIC for 
the purposes of demonstration. 

BIC was first derived by Schwarz in a Bayesian con- 
text with a uniform prior probability on each competing 
model and priors with everywhere positive densities on 
the model parameters  in each model. Choosing the 
model dimensionality with the highest posterior prob- 
ability leads to the BIC criterion of Schwarz [23], 

 ˆBIC 2log logL x k n   ,              (5) 

where  ˆL x   is likelihood function of data x at 
maximum likelihood estimate ̂ , k is the number of 
parameters or model dimension, and n is the sample size. 
Note that the first term on the RHS comes directly from 
the general maximum likelihood and the second term is a 
complexity penalty term. 

Assuming that the errors in data are Gaussian and ho- 
mogeneous over the operating regimes, we can obtain the 
BIC formula as  

 BIC log 2π log 1 log ,n n RSS k       n   (6) 

where RSS is the sum of empirical squared error, i.e.  

  2

1
, ,

n

i g ii
RSS y f x  


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In the current situation, where any data point can fall 
into more than one clusters simultaneously and Gaussian 
errors are heterogeneous over operating regimes, similar 
to the Mixture of Gaussian (cf. [9]) the likelihood func- 
tion can be written as  

   1 1
, , ,

jiM n

i j ji j
L y x L y x


 

 
         (7) 

where M denotes the number of clusters or operating 
regimes, ji refers to the membership of jth data point to 
ith cluster, and Li(,|) denotes the likelihood function 
for the local model of ith cluster. Thus, the log likelihood 
becomes 

   
 1 1

, log ,

log ,
M n

ji i j ji j

l y x L y x

L y x

 

 
 



  
    (8) 

where parameters , including  and , are estimated by 
MLE. 

Assuming that the local models are linear, i.e.  ,i if x   
T ,i x  and the errors are Gaussian, i.e.   , ,j i ix ,ij iN f    

the log likelihood for a local model can be expressed as 

 
 

 
1

2T

21

,

log ,

log 2π log ,
2

i

n
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ji j i jn

ji ji ij
i

l y x

L y x
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(9) 
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and therefore 

 2T
1

ˆ arg min
i

n

i ji jj
y x


 


          (10) 

and the variance for the ith local model can be estimated 
as 

 2T
12

1 1

ˆ

n

ji j i jj i
i n n

jij j

y x WRSS 


ji 
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

 
    (11) 

where the weighted RSS is obtained as  

 2T

1

n

i ji j ij
WRSS y x 


  j

  

1

n

ij
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Substituting the likelihood function to the BIC formula 
produces 

  
 
1 1 1

BIC log 2π log 1

log ,

M n n

ji ji ii j j

k M n

 
  
   



  
 

(12) 

Finally, we obtain the complete objective function as 

  
 

1, ,
arg min log 2π log 1

log ,

M

i jiM

k M n

 
 


   



 



,

1

  (13) 

where M refers to the number of operating regimes and 
the model dimensionality k(M) is a function of it. 

Usually, the penalty term is equal to the number of 
free parameters that need to be estimated based upon the 
data. In the current case model parameters include clus- 
tering parameters and local model parameters. Therefore, 
the model complexity can be evaluated by  

    1
2 1

M

mm
k M M p


           (14) 

where the first term refers to the number of clustering 
parameters specifying the boundary positions and the pi 
denotes the model dimensionality of each local model. 
However, with different number of operating regimes, 
the complexity of the local models does not change in 
terms of model structure and the number of parameters. 
Therefore, for the purpose of choosing the number of 
clusters the appropriate model complexity can be ex- 
pressed as 

   2k M M                   (15) 

Note from the above that the purpose of model selec- 
tion is only to determine the optimal number of operating 
regimes, because the penalty term only depends upon the 
number of free parameters rather than upon their values.  

By the complete objective function, not only does this 
- algorithm determine the regime location, size and 
overlap, but it also determines the number of regimes. 
The number of clusters depends upon the sample size. Its 
upper bound should be such that in each cluster the 

number of data points having non-zero membership 
should be greater than the number of features. Note that 
such an objective function favors parsimonious models 
rather than under or over-parameterized model structures 
obtained by optimizing the number of local models. 
 
2.3. Local Analysis 
 
Similar to the global feature-based model combination in 
[1], local analysis include two steps, namely, extracting 
local features through local component analysis and cre- 
ate local models by aggregation. 
 
2.3.1. Local Component Analysis 
ICA is a successful technique for reducing statistical 
dependence, and hence redundancy, between the candi- 
date models. Dimension reduction is also achieved by 
eliminating a subset of independent components without 
significant loss of information. 

PCA [3,25] is another effective dimension reduction 
technique, which only relies on second order statistics 
and helps remove linear dependencies. As a result, the 
principal components, although uncorrelated, can be 
highly statistically dependent. In contrast, ICA takes into 
account higher order statistics and thus is able to capture 
non-linear dependency. Therefore, ICA can produce a 
more compact representation of the data and outperforms 
PCA in terms of statistical redundancy as well as dimen- 
sion reduction. However, PCA is much easier to use than 
ICA and in some cases where no significant nonlinear 
dependencies are involved, PCA can produce satisfactory 
results. Thus, although in the following we will mainly 
focus on local ICA, the arguments are also directly ap- 
plicable to local PCA. 

Standard ICA still has some limitations, namely its 
linearity and globality. 

First, the standard ICA assume that the data x are a 
linear superposition of independent components s, i.e. 

  t x Ws t                 (16) 

where       T

1 , , ,nt x t x t   x   

and W is the mixing matrix. 

      T

1 , , ,mt s t s t   s

However, it is not general to assume this linearity, 
even though in many cases linear ICA delivers useful 
results. For general nonlinear data structures, it can pro- 
vide only a crude approximation and cannot describe 
nonlinear characteristics adequately. In view of this 
drawback, during the recent years researchers have at- 
tempted to generalize linear ICA to nonlinear ICA, as  

    ,t f tx s              (17) 

where   : mf R R  n  can be an arbitrary nonlinear 
mixing function. 
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Second, the standard ICA tries to describe all of the 
data using a single group of independent component 
called global features. This means that the mixing matrix, 
W, in Equation (16) and the corresponding separating 
matrix are assumed to be the same over the entire region. 
However, usually physical systems have varying charac- 
teristics; and thus, varying mixing matrices in qualita- 
tively different domains of the entire domain. This calls 
for using different local features in each domain in order 
to obtain an efficient representation.  

In order to overcome the limitation of global linearity, 
recently researchers have proposed nonlinear ICA as in 
Equation (14). However, the difficulty of nonlinear ICA 
arises because the solution of nonlinear ICA problem is 
usually highly non-unique (see e.g. [25]) and is computa- 
tionally rather demanding [20]. In order to develop non- 
linear extensions of ICA, we propose to use a local linear 
ICA, in which the data space is first partitioned into dis- 
joint regions and then ICA is performed within each 
cluster. 

Local linear ICA can provide an approximation of 
nonlinear ICA because using the Taylor expansion the 
nonlinear mixing function f() in Equation (14) can be 
approximated locally at any point by linear functions. By 
choosing the number of regions adaptively, the nonlinear 
characteristic can be represented accurately given limited 
observations. At the same time, linear ICA is utilized to 
extract local features within each more homogeneous 
domain. Thus, multiple sets of local features rather than 
global features are produced. 

Therefore, local ICA can overcome some weaknesses 
of linear ICA while avoiding the problems associated 
with general nonlinear ICA. Local ICA usually works in 
conjunction with a suitable clustering algorithm, which is 
responsible for partitioning the data space into clusters. 
For example,[20] proposed to use k-means clustering 
algorithm, and [15] suggested using fuzzy c-varieties 
clustering [18], which partitions the data space based on 
the similarity of the mixing matrix. 

In our case a different adaptive fuzzy clustering is 
proposed (see section 2.2), which is embedded in local 
modeling process rather than standalone. Given cluster- 
ing, PCA or the Fast ICA algorithm [4] is applied in each 
cluster to extract local features. It seems more appropri- 
ate to employ weighted ICA based upon fuzzy member- 
ships, because even intuitively the points having smaller 
fuzzy memberships, in the coexistence region for exam- 
ple, should have smaller influence upon feature extrac- 
tion. However, since the coexistence regions are not so 
wide, for simplicity we apply the standard algorithms in 
each cluster. 
 
2.3.2. Build Local Models 
Once local features are extracted, we can proceed to con- 

struct local models, each pertaining to one of the over- 
lapping operating regimes of the input space. Since each 
local model is only relevant to one cluster, it is reason- 
able to train local models using data points belonging to 
that cluster. Thus, before building local models, all ob- 
servations need to be first assigned to their respective 
fuzzy clusters. This constitutes a fuzzy multi-category 
classification problem. Because the membership func- 
tions j(x) of all fuzzy clusters are known from the step 
of clustering, the classification task is simply to evaluate 
the membership of each data point in all clusters, that is, 
to obtain the result 

  ,ij j ix                  (18) 

which specifies the influence of each data point in build- 
ing local models pertaining to the different operating 
regimes. 

The creation of local composite models follows the 
same method as in [1]. They are built by multiple linear 
regression models, 

   1
,

p

m mj mj
f x h x


  j

m

           (19) 

where hmj(x)’s refer to local features in the m-th fuzzy 
operating regime. 

Taking into account the varied influence of the data 
points, the parameters in local models can be estimated 
by weighted least squares as 

  2

1
arg min ,

m

n

m ij ii
y f x


 


       (20) 

which further encourages the locality of local models. 
Local feature selection is an integral part of building 

local models. The purpose of feature selection is to 
eliminate non-informative features and noise and remove 
redundant information, thereby reducing model dimen- 
sionality. Since the multiple linear regression method is 
used in constructing local linear models, feature selection 
is actually a variable selection problem. Feature selection 
results in parsimonious models, which are known to 
yield improved generalization. 

From the above, it is easy to see that the act of build- 
ing of each of the local models is separated from that of 
the others, except for the effects of overlapping domains. 
Thus, local feature selection can be also performed sepa- 
rately in each operating regime. As a result, the local 
feature selection only depends upon the empirical errors 
of each of the observations falling into a certain cluster. 
 
2.4. Combine Local Feature Models 
 
Once local models are built for all clusters, they can be 
combined into a global mixture model, or so-called oper- 
ating based model according to [26], based upon our 
phase transition model. 
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Based upon the fuzzy membership functions, the final 
global mixture model can easily be formulated as a fuzzy 
weighted average model as 

 

x

f (x)

a b 

Region II Region I

f1(x) f2(x) 

 

     1
,

M

g mm
f x x f x


  m

j

          (21) 

where the fuzzy membership function m(x) characterizes 
the operating regime of the m-th local model fm(x). Each 
local ICA model can be expressed as 

   1
,

p

m mj mj
f x h


  x              (22) 

(a) Local models 

where hmj(x) denotes j-th local featur for m-th cluster and 
mj is its corresponding regression coefficient, and p de- 
notes the number of features. 

 

fg(x)

f (x)

Region II Region I

a b 
x  

In the current case a simple trapezoidal membership 
function is applied to represent the fuzzy operating re- 
gimes and for any point x a constraint is imposed such 

that , so the mixture of local models   1
1

M

mm
x




turns out to be simple. If for given point x, which is out- 
side the unstable phase transition regions, some m(x) = 1, 
the m-th local model fm(x) is dominant and thus fg(x) = 
fm(x); otherwise, if x is inside a transition region two  
different phases characterized by two different local 
models coexist. Based upon our stochastic modeling of 
phase transition, the mixture model fg(x) can be con-
structed by a weighted linear superposition of local mod-
els having nonzero membership as, 

(b) Global mixture model 

Figure 2. An example with two operating regimes with cor- 
responding local and global models. 

 
optimize the number of operating regimes, the locations 
of boundaries as well as parameters in local models. This 
is analogous to use of adaptive regression splines with 
free knots (cf. [27,28]). Splines are piecewise polynomial 
functions that are constrained to join smoothly at points 
called knots. In particular, a free-knot spline is a spline 
where the knot locations are considered parameters to be 
estimated from the data. Freeing the knots greatly im- 
proves the spline’s approximating power [29]. However, 
it poses a very difficult problem, that is, estimating the 
optimal number of knots and their locations, which is 
similar to our problem. 

         .g i i j jf x x f x x f   x       (23) 

An example of two operating regimes is shown in 
Figure 2. 

From the above example, it can be seen that the global 
mixture model is continuous. In fact, this is true as long 
as the width of the coexistence region is not equal to zero, 
because, for example, 

           1 1 2 2 1 ,g a a a a a af x x f x x f x f x     (24) 

where 1(xa) = 1 and 2(xa) = 0. 
Nevertheless, in general the first derivates are not con- 

tinuous. This is because with trapezoid membership 
functions we have the result  

         
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ax f x x f x

c f x f x f x

 

 
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 

  

  (25) 

But, there are important differences between them. 
First, our model is more flexible without smoothness 
constraints, which, on the other hand, leads to use of 
more free parameters. Second, in our model the regres- 
sors nonlinearly depend upon the boundary locations 
while for splines regressors are fixed as polynomials. 
Therefore, we expected that the current optimization 
problem is even more difficult than that of free-knot 
splines.  where  1 ax c    and  2 ax c  . 

 The difficulty lies in some undesirable characteristics 
of the complete objective function in Equation (13). In 
order to illustrate its properties, we can substitute fg (x, , 
) in Equation (21) and rewrite it as 

3. Three-Stage Optimization Algorithm 
 
For our problem under investigation, we need to jointly 

    2

1 1 1
arg min min min log , , ( ) log .mn M p

i m i mj mj ii m jM
n y x h x k M
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    n            (26) 
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First, it is a complex nonlinear function of the bound- 
ary locations, because the membership functions and the 
local independent components depend nonlinearly upon 
 and they appear inside the square.  

Second, it is non-differentiable partly because of the 
non-differentiable membership function. Furthermore, 
the explicit dependence of the local features, or equiva- 
lently the separating matrices, on the fuzzy clustering 
parameters  cannot be known. Because of this non- 
differentiability, all gradient-based optimization algo- 
rithms such as steepest descent, Newton-Raphson method 
and conjugate gradients methods will fail. However, 
some numerical searching algorithms are still applicable.  

Finally, the objective function is not strictly convex or 
concave but has many local optima. This can be seen by 
applying the “lethargy” theorem introduced by Jupp [27]. 
Similar to free-knot splines [27], the existence of multi- 
ple optima in the objective surface is related to the sym- 
metry introduced by the exchangeability of the boundary 
parameters. For example, in a simple case with two clus- 
ters the objective surface is symmetric along any normal 
to the line defined by two equal parameters. Conse- 
quently, the derivative along the normal at the intersect- 
tion to the equal-parameter line is equal to zero. This 
property, called “lethargy” by [27], results in many sta- 
tionary points and ridges along lines or planes in the pa- 
rameter space where two or more parameters coincide. 

This property results in the failure of all local optimi- 
zation algorithms including gradient-based methods, line 
search and hill climbing, because they easily fix upon 
local optima, the locations of which depend upon the 
different initialization. 

In order to overcome this problem, global optimization 
algorithms including simulated annealing and genetic 
algorithms should be applied instead. 

These are some interrelated reasons that make it so 
difficult to locate the global optimum. Since there are 
many local optima in the objective surface, use of good 
starting parameter values is essential for finding the 
global optimum. Unfortunately, this is usually difficult. 
One possible way is to construct starting values based 
upon data. First, we sort the inputs x and split the input 
range to segments s1 through sn-1. Clearly, every parame- 
ter i can be formulated within each one of the segments. 
Then, the entire parameter space of the vector  will be 
divided into (n-1)2M-2 pieces of subspaces. If we pick an 
initial value for  within each subspace, we will eventu- 
ally find a local optimum within that subspace. Compar- 
ing all of these local optima will give us an approximate 
global optimum. However, because we cannot make sure 
there is only one local optimum within each subspace, 
the globality of the best identified optimum is not guar- 
anteed. Furthermore, this procedure is computationally 

very expensive because there are O(nn/k) possible initial 
values in total. 

Originally developed by Holland [30], genetic algo- 
rithm (GA) is a global stochastic search algorithm, which 
is less susceptible to getting fixed upon local optima than 
are gradient search methods. On the other hand they tend 
to be computationally expensive. In practice, genetic 
algorithms work very well on mixed (continuous and 
discrete), combinatorial problems. For example, Pittman 
[31] suggests using GAs to optimize the knot locations in 
adaptive splines. 

Here we propose a similar hybrid genetic algorithm, 
which combines global optimization together with a local 
search. It is different from that in [31] in that a distinct 
genetic chromosomal representation and correspondingly 
different genetic operators are defined. Furthermore, in 
this scheme GAs are only used to identify good starting 
values for the local search rather than the global opti- 
mum. Doing this significantly reduces the required 
computational time arising from the slow convergence of 
GAs.  

On the whole, following a strategy of problem split- 
ting, the optimization problem can be solved through 
three stages. 

First, we optimize the local model parameters given 
fuzzy clusters. In order to encourage competition and 
locality of local models, we can approximate the original 
objective function with a slightly different one 
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The only difference between the two objective func- 
tions arises in the coexistence regions. For convenience,  

let’s denote   1
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    (28) 

where the second term is usually small within the coex- 
istence regions. 

In fact, another advantage of this change is that it 
makes the optimization problem much easier, because 
the membership function is moved out of the square op- 
erator. Moreover, with this change local models can be 
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  

built independently from each other (being consistent 
with section 2.3.2) 

At this stage the local model parameters  can be op- 
timized as functions of , which can be easily done by 
WLS as described in section 2.3. 

Second, we need to identify the best fuzzy clustering 
given the number of clusters, by rewriting the sub-opti- 
mization problem as 

   
 
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1 1
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(29) 

where  with  1 2, , M     2

min 1 2 2 1 2 2 maxM Mx x         . 

Note that under the assumption of Gaussian errors the 
fuzzy clustering parameters are actually quantified by the 
Maximum Likelihood Estimator. Nevertheless, a well- 
known problem with MLE is the danger of overfitting. 
For a simple example, suppose we have two operating 
regimes and the number of data points falling in the first 
regime is equal to the number of candidate models and 
all others fall in the other. In this case, the data can be 
fitted perfectly in the first regime and a little better in the 
other regime than in the single regime case. Therefore, as 
a result the maximum likelihood is increased dramati- 
cally, but the resultant model most likely becomes worse. 

In order to overcome this pitfall, we apply the cross- 
validation approach of using the testing likelihood in 
place of maximum likelihood. Correspondingly, the sub- 
optimization problem can be expressed as 
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(30) 

where the subscribe t denote the out-of-sample test. 
The sub-objective function Ft() in Equation (28) has 

all of the unpleasing properties mentioned earlier. In or- 
der to address this challenge, we will propose using a 
hybrid optimization algorithm combining GAs with 
multi-dimensional hill climbing. 

After performing both global and local optimization 
procedure, a group of good candidate solutions are ob- 
tained, from which the solution with the smallest Ft() 
can be easily chosen as the optimal one. 

The last stage is to choose the optimal number of local 
models (a model selection problem). Since we require 
that in each operating regime the number of data points 
must be greater than the number of local features, there- 
fore there exists an upper bound for the number of local 
models, Mm, which is much smaller than the sample size 

n. Thus, this optimization problem can be expressed as  
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In order to determine the optimal number of clusters, 
we repeat the first two stages of our procedure for M 
ranging from 1 to Mm, and finally we choose the optimal 
value that corresponds to the minimal model selection 
criterion value in Equation (29). In practice, a forward 
stepwise process can be utilized, which increases the 
value of M from 1 and stops when the model selection 
criterion value increases. 
 
3.1. Real-Coded Genetic Algorithm (GA) 
 
In order to apply an actual-coded genetic algorithm to 
facilitate the search for a global optimum, we need to 
design problem-specific fitness functions and operators. 

The first crucial issue of using a GA is to define a 
proper fitness function, which indicates the quality of a 
candidate solution. Usually, GA works by maximizing 
the fitness, but here we intend to minimize the objective 
function or equivalently to maximize the likelihood. 
Therefore, the fitness function can be constructed from 
the objective function as 

         fitness Max ,k j
t tF F   k     (32) 

where Ft() is the objective function in Equation (32), 
   Max j

tF   stands for the maximum  tF   in a 
population and   fitness k  refers to the fitness of the 
k-th individual chromosome. 

The definition of fitness significantly influences the 
convergence behavior. For example, in the early stage 
few “super individuals” tend to dominate the selection 
process leading to premature convergence, whereas later 
when the population is less diverse, the simulation tends 
to lose focus [32]. Therefore, in practice we would like 
to apply a more general and flexible fitness function by 
scaling and shifting, i.e., as 

          fitness Maxk j
t tb a F F    k  (33) 

where the scaling factors a and shifting factor b are so 
adjusted adaptively during simulation avoid premature 
convergence early and to encourage later convergence. 
In our simulation, we choose b to be the minimum fitness 
and a to be the reciprocal of the average fitness. 

As for selection, we utilize the fitness-weighted rou- 
lette wheel method, which is conceptually equivalent to 
giving each individual a slice of a roulette wheel equal in 
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area to the individual’s fitness. The wheel is spun and the 
ball comes to rest on the wedge shaped slice, by which 
means the corresponding individual is selected. There- 
fore, the probability for a chromosome to be chosen is 
proportional to its fitness. A pair of “parents” is selected 
by spinning the wheel two times to reproduce a pair of 
“children” via recombination and mutation. 

Notably, the GA success is also sensitive to the nature 
of the recombination and mutation operators. For exam- 
ple, it is found that general, fixed, problem-independent 
recombination operators often break partial solutions and 
cause slow convergence. In order to avoid such problems, 
we design problem-specific crossover and mutation op- 
erators. 

The recombination strategy that we applied is the 
one-point arithmetic crossover. Let the parents be 

 1 11 1, , LP P P   and  2 21 2, , LP P P  , respectively. 
Then, the two offspring are obtained as  

 
1

1 max 1
1 2 2

max 2

,

,

i

i t
t i t

t

P

C x P
P P P

x P


    

i t

i t
      (34) 

and 

 
2

2 max 2
2 1 1

max 1

,

,

i

i t
t i t

t

P

C x P
P P P

x P


    

i t

i t
      (35) 

where t is a random integer number among 1, 2, ···, L. 
This crossover operator is so designed that it guaran- 

tees that the resulting children are still ordered sequences 
of real numbers within a valid range, and the number of 
clusters is maintained. In fact, this treatment is especially 
suitable for chromosomal representations of ordered se- 
quences of real numbers.  

The crossover rate (i.e. the probability that crossover 
occurs) is generally around 0.5, and in this paper we set 
it at 0.6. 

The mutation operator is defined as an addition of a 
normally distributed factor with mean value 0 (i.e. 

i iD D    ) where Di is an original parameter and iD  
is the mutated one,  is a normally distributed random 
number, i.e. N(0,2), where the value of 2 is tunable.  
plays a similar role of the step size in a line search. In 
this study, we choose 

max min ,
3

x x

n



                 (36) 

where n denotes the sample size. 
[33] suggested that the optimal mutation rate, i.e. the 

probability that mutation occurs for a single gene in a 
chromosome, is approximately (S  L1/2) –1, where S is the 
population size and L is the length of the chromosome. 

Here we follow this rule. 
Since the current optimization problem is constrained 

by the requirement xmin < 1  2 < ··· < 2M-1   2M-2 
  xmax, in addition to the selection, crossover and muta- 
tion operators, we need another check operator in order 
to create a new valid child chromosome. 

A valid chromosome has to satisfy some constraint. 
First, a chromosome must be an ordered sequence of real 
numbers within the range [xmin, xmax]. Also, the number 
of data points falling into each cluster must be greater 
than the number of local independent components. 

If there is no crossover and mutation, a chromosome is 
simply copied to the next generation.  

The stopping rule for the current iterative case is rela- 
tively simple, as our purpose is to search for promising 
initial inputs for a local optimization algorithm. Thus, 
when we observe that the convergence of GA becomes 
very slow we stop it.  

In summary, the main steps of the GA are the follow- 
ing:  

1) Build an initial population of S chromosomes ran- 
domly selected within [xmin, xmax]; 

2) Calculate the fitness of each chromosome; 
3) Select chromosomes from the parent generation to 

reproduce a child generation: 
i) Select two parent chromosomes, 
ii) Generate a random number between [0,1].(If it 

is smaller than the crossover rate, recombine them by 
one-point arithmetic crossover; otherwise, enter the next 
step); 

iii) Generate a random number between [0,1]. (If it 
is smaller than the mutation rate, perform mutation on a 
gene in a chromosome. Repeat this for each gene in both 
chromosomes). 

iv) Add the two resulting chromosomes to the next 
generation. 

Repeat steps i) through iv) until S new chromo- 
somes are reproduced. 

4) Finally, if the stopping criterion is satisfied, then 
exit; otherwise, return to step (2). 
 
3.2. Adaptive Multi-Dimensional Hill Climbing 
 
By means of GA optimization, we obtain a set of global 
good initial guesses of the best vector of fuzzy clustering 
parameters, namely the last generation produced by the 
GA. In practice, it is also useful to keep track of the 
“best” chromosome throughout the whole GA simulation 
history. The next task is to search for the optima corre- 
sponding to these good initial guesses. 

As noted, our objective functions are quite compli- 
cated and, thus, it is difficult to apply classical gradient- 
based optimization methods. However, this problem can 
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be solved numerically by a derivative-free approach, for 
instance, hill climbing. We propose a derivative-free 
method in order to optimize the parameters one by one 
while keeping the others fixed. Furthermore, the step size 
is adaptively tuned. However, since each parameter is 
not independent of the others, the overall optimization 
has to be performed iteratively. Our algorithm, described 
below, is actually a multi-dimensional version of adap- 
tive hill climbing, 

It consists of multiple loops, in each of which the in- 
dividual parameters are optimized one at a time. Con- 
sider optimization of i, where its current value is i

(0) 
and the current model evaluation value is Ft()(0). Let k 
= 1 and i

(k) = i
(k–1) + kd, where d is small positive 

number, and keep the other p – 1 parameters unchanged. 
Then recalculate the model evaluation value as Ft()(k). If 
Ft()(1) > Ft()(0), that is, the fuzzy model gets worse, 
then return to i

(0) and let k = 1and replace d by –d; oth-
erwise, continue to search in the same direction within 
the interval [xmin, xmax] until Ft()(k+1) > Ft()(k). The final 
i

(k) is taken as the optimum in the current loop. Then we 
turn to the next parameter i+1. Each computational loop 
starts with 0 and ends up with 2M-2. Once a loop is 
computed, another one will be started depending upon 
the stopping criterion. 

At the beginning of each loop, we calculate the resul- 
tant model’s values of Ft(), and we do the same for the 
end of each loop. If the difference between these two 
values is small enough, for example,  

     

  

1

1
δ,

j j

t t

j

t

F F

F

 








            (37) 

where  is very small (e.g. 10–5), we say that the mini- 
mum has been reached and we stop the local searching 
process. 

In view of the facts that i) There exists an (unknown) 
lower bound for Ft()(k), and ii) the sequence of Ft()(k) is 
not increasing, the convergence is guaranteed according 
to the Cauchy convergence criterion. 
 
3.3. Procedure of Mixture of Local Feature  

Models 
 
To this point the development of a new method for mix- 
ture of local feature models, from model structure to pa- 
rameter estimation, is almost complete. In summary, the 
input space of the system is first decomposed into fuzzy 
subspaces by use of the adaptive fuzzy clustering algo- 
rithm and then in each subspace the system is approxi- 
mated by a local linear feature model. This is somewhat 
analogous to that of the Takagi-Sugeno fuzzy model [34] 
within the context of predictive control. 

The entire modeling procedure can be summarized as 

follows. 
1) Set M = 1 
2) Optimize the fuzzy clustering using a hybrid GA 

given the number of fuzzy clusters 
a) Build an initial population of S chromosomes 

randomly; 
b) Calculate the fitness of each chromosome; 

i) Classify data points into each fuzzy cluster 
ii) Perform local PCA/ICA within each fuzzy 

cluster 
iii) Create local PCA/ICA models based upon 

data using the multiple regression method 
with fuzzy variable selection 

iv) Mix local PCA/ICA models 
v) Calculate the weighted residual sum of squared 

error 
c) Generate the next generation of chromosomes 

by selection, crossover and mutation 
d) If the “stop” criterion is met, then go to e); oth- 

erwise go to b) 
e) Treat the last generation of GA as the starting 

parameter values and determine the local min-
ima around them 

3) Choose the best local optimum as the global opti- 
mum and then assess the resulting optimal model by 
means of G(M) in Equation (29). If G(M) < G(M – 1) for 
M  2, then go to step (4); otherwise, go to step (5) 

4) Set M = M + 1 and go to step (2) 
5) Return the final optimal mixture model including 

the optimal fuzzy clustering. 
 
4. Numerical Simulation Study 
 
In this section, we present results from our numerical 
simulation studies. In order to directly compare with a 
global composite model method, we apply the new 
method to the same examples used in [1]. 

It is first applied to an artificial example, where the 
true model is supposed to be known. This allows us to 
demonstrate how the method works and its advantage 
over global models. Then, the method is used concerning 
a real physical case. From our numerical simulation, we 
also justify our argument that a mixture of local models 
is suitable to situations where severe nonlinearity is in- 
volved, with the linear local models reflecting the 
nonlinear characteristics. 
 
4.1. Artificial Example 
 
In this example, artificial models and data are used to 
demonstrate the effectiveness of the new method in 
treating complex nonlinearity. Assume that the true 
model is expressed as 
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 
   

 
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 

 

      (38) 

Correspondingly, the data generative model can be 
written as 

  ,y y x                 (39) 

where  obeys a normal distribution, i.e. N(0,2) where 
2 is equal to 64. From this generative model, we gath- 
ered a set of data with n = 50, i.e. (xi, yi), where the xi are 
evenly distributed between [0,10] (see Figure 3) and the 
yi are the corresponding noisy observations.  

We also propose a class of candidate models as fol- 
lows:  
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x . x   ;

(40) 

as shown in Figure 3. Thus, for the same input these 
candidate models give different results. 

Note that each candidate model is either incomplete or 
erroneous, or both. As shown in Figure 3, these models 
approximate the true model to varying degrees over the 
input space. 

Once the candidate models are formulized and data are 
collected, we are ready to employ our new approach to 
determine local domains by fuzzy clustering, to build 
local models within each fuzzy cluster and finally to mix 

 

 

Figure 3. Artificial candidate models and generated data. 

local models into a global model. The results are shown 
in Table 1, compared to a single best model and a global 
linear model. In Table 1, test error refers to the cross- 
validation mean squared error. 

The fuzzy membership functions and resultant mixture 
models are plotted in Figures 4 and 5, respectively. 
From the results in Table 1, we see that the new method 
works well as expected. This is understandable, because 
in this example highly non-linear dependencies among 
candidate models and severe nonlinearity in the data are 
involved. These are exactly the two primary problems 
that our new approach is supposed to deal with. 

 
Table 1. Simulation results of the artificial example. 

Number of domains Domains BIC Test error

A single best model [0, 10] N/A 104.67 

Global combination [0, 10] 583 18.02 

2-Regime local models [0, 0.57, 4.865, 10] 55.15 11.68 

 

 

Figure 4. Membership functions. 

 

 

Figure 5. Local models and the mixture model. 
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4.2. Physical Case Study 
 
In the above subsection, we demonstrate the effective- 
ness of our method using artificial data. Here, we address 
a physical example. 

The physical example that we use here is that of the 
peak ground acceleration (PGA) attenuation models used 
in seismology. In this example, the purpose is to build a 
more accurate mixture of local models, which is applica- 
ble to southern California in the United States. A sample 
data set of size 102 is obtained from the literature [35], 
whose logarithms are assumed to include Gaussian noise. 
Correspondingly, the candidate attenuation models in- 
clude those of Boore et al. (1997)[36], Sadigh et al. 
(1997)[37], Abrahamson and Silva (1997)[38], Campbell 
and Bozorgnia (1997)[39], Spudich et al. (1997) and 
Idriss(1995) [40]. All of these attenuation relations may 
be found in Seismological Research Letters, Volume 68, 
Number 1, January/February, 1997. All of these attenua- 
tion relationships were developed for shallow crustal 
earthquakes in active tectonic regions, and thus they 
should be applicable to southern California.  

The candidate models are plotted together with the 
sample data in Figure 6. From Figure 6, it is easy to 
note that all the models are close to be a straight line, 
which means that unlike the artificial example the de- 
pendence among candidate models are mostly linear. 

As in the artificial example, we apply the new method 
to optimize fuzzy domains, create local models and fi- 
nally create a mixture model. The simulation results are 
shown in Table 2, where the test error refers to the cross- 
validation mean squared error, and the mixture model is 
plotted in Figure 7 together with the data. 

From the above results, we see that the test error of the 
mixture model using two operating regimes is smaller 
than that of the global model by about 12%. Also, the 

 

 

Figure 6. Candidate peak ground acceleration (PGA) at- 
tenuation models and data. 

model plotted in Figure 7 appears reasonable. First of all, 
the peak ground acceleration (PGA) decreases with in- 
creasing distance from the earthquake epicenter. It also 
shows that in two regions, namely near the epicenter and 
far from the epicenter, the attenuation model as a func- 
tion of the distance is somewhat different. One of the 
possible reasons is the effect of the depth of the seismic 
source. Likewise, a possible explanation of the turning 
point shown near 23 km is that for shallow crustal earth- 
quakes the average depth of ruptures is about 25 km [39]. 
 
5. Summary 
 
In this paper, we propose a mixture model of local ICA 
models to overcome the weakness of global models in 
dealing with nonlinearity and locality. This method con- 
sists of three components: fuzzy clustering, local feature 
and model combination. The supervised adaptive fuzzy 
clustering algorithm is proposed in order to divide the 
entire input space into operating regimes, local PCA or 
ICA analysis is carried out and the feature-based model 
combination method is applied to create local feature 
models in each individual region. Finally the local fea- 
ture models are combined into a single mixture model. 
Correspondingly, a three-stage optimization procedure is 
designed to optimize the complete objective function, 
which is actually a hybrid GA algorithm. 

 
Table 2. Simulation results of physical case study. 

Number of domains Domains BIC Test error

Best single model [0,120] N/A 0.1935 

Global combination [0, 120] –66.72 0.1567 

2-Regime local model [0, 23, 23.9, 120] –69.37 0.1303 

 

 

Figure 7. Local models and mixture model. 
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In order to demonstrate its effectiveness this new 
method is applied to both an artificial example and a 
physical case in a seismic study. Our simulation results 
show that the adaptive fuzzy mixture of local ICA mod- 
els is superior to global models.  
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