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Abstract 
Most of sleep disorders are diagnosed based on the sleep scoring and assessments. The purpose of 
this study is to combine detrended fluctuation analysis features and spectral features of single 
electroencephalograph (EEG) channel for the purpose of building an automated sleep staging sys-
tem based on the hybrid prediction engine model. The testing results of the model were promising 
as the classification accuracies were 98.85%, 92.26%, 94.4%, 95.16% and 93.68% for the wake, 
non-rapid eye movement S1, non-rapid eye movement S2, non-rapid eye movement S3 and rapid 
eye movement sleep stages, respectively. The overall classification accuracy was 85.18%. We con-
cluded that it might be possible to employ this approach to build an industrial sleep assessment 
system that reduced the number of channels that affected the sleep quality and the effort excreted 
by sleep specialists through the process of the sleep scoring. 
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1. Introduction 
Sleep is defined as a desired state of unconsciousness. The science of sleep investigation began to catalog the 
unique and varying texture of this state over the past 75 years. Standard metrics were needed to characterize 
what could be observed. After many germinal studies, a consensus for manual sleep assessment has evolved. A 
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standardized method for characterizing normal sleep was published in 1968 by Allan Rechtschaffen and Antho-
ny Kales [1]. Since then, this method has been considered the golden standard for sleep assessment. 

In 2009, the American Academy of Sleep Medicine (AASM) set the AASM manual for the scoring of sleep 
and associated events [2]. Sleep scoring classifies sleep into stages that correspond to certain brain activities. 
According to the AASM standard, sleep is divided into 5 stages, the awake stage (WK), the rapid eye movement 
(REM), and three non-rapid eye movements (NREM) sleep sub-stages (NREMS1, NREMS2, and NREMS3) 
that describe the depth of sleep. 

Both R&K and AASM manuals were originally developed to facilitate manual sleep scoring, not to be used in 
automated sleep scoring systems. Sleep assessment specialists exert considerable effort and time in the scoring 
of a single subject record. These manuals provide a subjective method for sleep scoring which may lead to in-
consistent results. In a study that involved eight European sleep laboratories, the overall level of agreement in 
the scoring of the five sleep stages was only 76.8% [3]. 

In the past few decades, many studies aimed to develop automated sleep scoring systems. Various automated 
systems differ in the extracted features, classification engines, or the bio-signals that these systems are based on. 
Spectral analysis features have the longest tradition in the analysis of sleep bio-signal due to the capability to 
quantify the different frequency contents of the signal similar to visual analysis [4]. The spectral features of 
sleep bio-signals could be calculated using FFT [5]-[7] and autoregressive models [8] [9].  

Many studies in the last decade switched from the conventional methods of spectral analysis to time-fre- 
quency analysis, and particularly using the Wavelets Transform [10]-[12]. Other feature extraction techniques 
include relative power band [8], Harmonic parameter (Hjorth parameter) [8] [13], K-means clustering based 
features [14] and detrended fluctuation analysis (DFA) of the raw EEG signals [15] [16].  

Detrended fluctuation analysis (DFA) is a widely used technique for the detection of long-range autocorrela-
tion in non-stationary and noisy time series [15]. The advantage of DFA over conventional methods is that it 
avoids the spurious detection of apparent long-range correlations that are artifacts of non-stationarity [17]. Pre-
vious studies indicate that DFA power law exponents of EEG signals changes significantly with various sleep 
stages [18]. In our previous study, we concluded that the DFA of the extracted brain waves changes significantly 
with various sleep stage [19]. 

The field of machine intelligence provides a broad range of classification engines that were recently employed 
in designing reliable automatic sleep staging algorithms. The Multi-layer perceptron (MLP) classification engine 
with back propagation training was used in [7] [9] [20]. Rule-based, decision trees, random forests, and fuzzy 
classifiers were also applied and showed to be reliable techniques for automated sleep assessment [5] [21]-[23]. 

Decision trees are one of the most successful and popular classification engines in automated sleep assess-
ment [22]. A classification decision tree is a hierarchical non-parametric model for supervised learning. One of 
the advantages of decision trees over other classification engines is its superior interpretability [24].  

The main goal of this study is to develop an accurate automated sleep scoring engine with clinically accepta-
ble performance using only a single EEG channel. The motivation of the work is to facilitate the use of such en-
gine in home-based devices requiring minimal complexity and maximal convenience and ease of use. Even at 
the clinic-based setting, a single channel engine can improve the polysomnography experience of the patient, 
which helpsto obtain better clinical diagnosis. In this study, we employed a hybrid classification engine used 
over a combination of DFA features of filtered EEG brain waves components and a number of derived spectral 
features. 

2. Material and Methods 
2.1. Data Set Description and Acquisition 
22 healthy subjects aged 20 - 32 underwent one overnight polysomnographic recording which comprised EEG 
signal acquisition (4 channels, Ag/AgCl electrodes placed according to the 10 - 20 International System referred 
to linked earlobes: C3, C4, F3, F4). Recordings were carried out using Alice Polysomnographic System (Respi-
ronics, Inc.) The records were initially scored by a sleep specialist according to AASM rules. The data was di-
vided into two groups for training and validation of the algorithm. The first group consisted of 12 subjects and 
the second group consisted of 10 subjects. 

In this study, the sleep EEG (C3A2 Lead) was selected for classification. 10 minutes for each sleep stage were 
extracted from the records of the first group. Each 10 minute EEG record was labeled by its sleep stage; WK, 
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REM, NREMS1, NREMS2, and NREMS3. The total length of isolated data set is 600 minutes composed of 120 
min for each sleep stage. These data records were used in the training of the classifier model. 

2.2. Algorithm 
The block diagram for the proposed algorithm is shown in Figure 1. The proposed algorithm was tested using 
Matlab (MathWorks, Inc., Natick, Massachusetts, United States) Signal Processing toolbox and Weka (Waikato 
Environment for knowledge analysis, University of Waikato, Hamilton, New Zealand). In the following, a de-
tailed description of the system block diagram is given. 

2.3. DFA Features Extraction 
2.3.1. Signal Processing 
The EEG isolated data were introduced to the filter bank shown in Figure 2 to extract the known brain waves: 
Delta, Theta, Alpha and Beta waves. The EEG signals training set was segmented to 30 sec segments using a 
Hamming window of 3000 samples length applied to each segment to compensate for truncation errors and edge 
mismatches. 
 

 
Figure 1. The block diagram of the system algorithm.                                     

 

 
Figure 2. Brain waves filter bank.                    
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2.3.2. Detrended Fluctuation Analysis 
DFA reveals the properties of non-stationary time series by calculating the scaling exponents which index the 
long-range power-law correlations. The DFA scaling exponent was computed for the segmented raw EEG signal 
and its filtered brain waves of length 30 seconds. The DFA procedure [17] [25] consists of 4 steps: 

Step 1: Determine the “profile” of the data series of length N and a mean τ. 

( ) ( )( )1 , 1, ,i
kkY i i Nτ τ

=
= − =∑                           (1) 

where ( )Y i  represents the integration of the EEG time series τk. 
Step 2: we divide ( )Y i  into Nt = int(N/t) non-overlapping segments of equal length t. Since the length N of 

the series is often not a multiple of the considered time scale t, a short part at the end of the profile may remain. 
In order not to disregard this part of the series, the same procedure is repeated starting from the opposite end. 
Thereby, 2Nt segments are obtained altogether. 

Step 3: Calculate the local trend for each of the segments by a least-square fit of the data. Then determine the 
variance 
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for each segment , 1,υ υ =  , Nt. Here, ( )p iυ  is the fitting polynomial in segment υ. Linear, quadratic, cubic, 
or higher order polynomials can be used in the fitting procedure (conventionally called DFA1, DFA2, 
DFA3,…..). 

Step 4: Average over all segments and take the square root to obtain the fluctuation function. 
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The logarithm of ( )F n  is then plotted as a function of the logarithm of the time scale n. The slope, α, of the 
plot of Log2(F(n)) versus Log2(n) is called the scaling or self-similarity exponent. A time series shows 
self-similarity when this plot will display a linear scaling region and slope α > 0.5. This exponent is 0.5 for 
white noise, where the values of the time series are completely uncorrelated, when the exponent is α < 0.5, pow-
er-law anti-correlation is present. 

In order to determine how ( )F n  depends on the time scale n, steps 2 to 4 were repeated 30 times with dif-
ferent time scales between n = 4 and 3000. The long range auto-correlation properties of the raw sleep EEG sig-
nal and the filtered brain waves for each sleep stage were investigated separately using DFA. 

2.4. Spectral Features Extraction 
2.4.1. Signal Processing 
The isolated EEG data was introduced to a filter bank as the one shown in Figure 2 to extract the brain waves. 
The brain waves were segmented using a one second hamming window (100 samples length) to compensate for 
truncation errors and edge mismatches. The one-second window is selected in order to assume that the signal is 
stationary within the window length for accurate spectrum estimation. Zero padding was then used to enhance 
the frequency resolution. 

2.4.2. Spectral Analysis 
Using Matlab, Welch’s power spectrum density was calculated for each segmented sleep brain wave. The sum 
of the power spectrum values (e.g. sum(Delta)) was calculated for Delta, Theta, Alpha and Beta brain waves and 
the sum of the 4 sums (sum(Delta, Theta, Alpha, Beta)) was also calculated. Then, the relative power for each of 
these brain waves was calculated as follows: 

P-delta = sum(Delta)/sum(Delta, Theta, Alpha, Beta)                (4) 
P-theta = sum(Theta)/sum(Delta, Theta, Alpha, Beta)                (5) 
P-alpha = sum(Alpha)/sum(Delta, Theta, Alpha, Beta)               (6) 
P-beta = sum(Beta)/sum(Delta, Theta, Alpha, Beta)                 (7) 
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Using the power spectrum sum of each frequency range, the following features and ratios were extracted: Al-
pha wave index (AWI), Theta wave index (TWI), and Slow wave index (SWI): 

AWI = P-alpha/(P-delta + P-theta)                         (8) 
TWI = P-theta/(P-alpha + P-delta)                         (9) 
SWI = P-delta/(P-theta + P-alpha)                        (10) 

This yields a 7-elements feature vector for a 1-second segment and 30 × 7 features matrix for each 30-seconds 
brain wave epoch. 

2.5. Features Combination 
The main challenge in combining spectral and detrended fluctuation analysis features was that the spectral fea-
tures were computed for 1 second segments while the DFA features were computed for the whole 30 second 
epoch. This yields 30 spectral features set and single DFA features set per sleep epoch. Therefore, each DFA 
feature was replicated 29 times for each epoch. This resulted in a features matrix of dimensions 36,000 × 11. 

Each raw represents 11 features computed for a 1-second EEG epoch. These 11 features include: DFA-Alpha, 
DFA-Beta, DFA-Delta, DFA-Theta, P-Alpha, P-Beta, P-Delta, P-Theta, AWI, TWI and SWI. The total number 
of epochs that the combined feature matrix represents is 1200 epochs divided into 240 epochs for each sleep 
stage. 

2.6. Decision Tree Classifier 
In this study, we employed a Decision Tree Classifier. A classification tree is a hierarchal data structure imple-
menting divide and conquer strategy. It is composed of internal decision nodes and terminal leaves. The con-
struction of a tree given a training data is called tree induction. 

Recently many methods were developed for tree induction. C4.5 algorithm is one of the most popular algo-
rithms of tree induction. It employs the following steps [26] [27]: 
• Discretization of continuous attributes: for effective classification, some continuous valued attributes must be 

discretized. 
• Attribute selection: information gain of each attribute is calculated, the attribute with the highest information 

gain is selected for the instant node split. 
• Pruning: to prevent the over fitting for the training data, the decision tree must be pruned. 

In this work, each input instance represents a 1 second sleep EEG record. The C4.5 algorithm is employed for 
tree induction using Weka classification software package. The resulting tree consisted of 63 leaves with a 
maximum depth of 17 levels. The decision tree classifier accuracy was improved using Multi-layer perceptron 
(MLP) sub-classifier as will be discussed in next section. 

2.7. MLP Sub-Engines 
MLP classifiers are special types of artificial neural networks (ANN) where the nodes are set in successive lay-
ers; input layer, hidden layer and output layer. Two MLP sub-classifiers were employed in this work to reduce 
the main classifier (decision tree) confusion error. One MLP classifier was dedicated to reduce the confusion 
between REM and NREMS1 sleep stages, while the other one was dedicated for confusion between NREMS2 
and NREMS3 sleep stages. 

The MLP sub-classifiers were modeled using Weka classification software package with sigmoid and pure- 
line functions for model nodes. The classifiers were trained using the training data that the main classifier has 
been able to classify correctly in an adaptive pattern. The classifiers were trained using the back propagation al-
gorithm [28]. 

3. Results and Discussion 
The isolated EEG records were used to build and train a decision tree classifier model that distinguish between 
WK, REM, NREMS1, NREMS2 and NREMS3 sleep stages. Hence, the model was tested using the total data of 
the testing group combined with the data of the validation group (22 subjects EEG sleep records). Table 1 illu-
strates the confusion matrix for the decision tree classifier; representing the prediction capability of the algo-
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rithm for each class. The diagonal elements represent the sensitivity of the algorithm to each sleep stage. 
The system performance measures including the accuracy and specificity for each sleep stage are listed in 

Table 2. Table 3 shows the system confusion vectors computed by adding the off-diagonal confusion values in 
Table 1 for all sleep stages pairs. Based on the results shown in Table 3, two sub-engines were employed to re-
duce or eliminate the top two confusion vector elements after the main decision tree classifier application. The 
complete elimination of the top two confusions could improve the overall accuracy dramatically. 

The systems overall accuracy was improved to be 87.62%. The improved confusion matrix is shown in Table 
4. The effect of the sub-engines is shown by the confusions in bold font. The REM/NREMS1 confusion was re-
duced to 27% while the NREMS2/NREMS3 was reduced to 16%. 

Other feature combination methods were tested in order to compare to the DFA features of the EEG spectral 
components combination with the spectral analysis features. The other features tested include: DFA computed 
for the raw EEG signal, DFA computed for the filtered EEG waves, and combined spectral features with DFA 
features of raw EEG. Table 5 illustrates the resulting accuracies for the sleep EEG classification based on the 
various features combination. It can be seen that the combined spectral and DFA features of the EEG filtered 
waves resulted in the highest accuracy compared to the other feature sets. 
 

Table 1. The confusion matrix of the decision tree validation.                            

True stages 
Predicted sleep stages 

WK NREMS1 NREMS2 NREMS3 REM 

WK 92.4% 3.3% 1.0% 0.6% 2.7% 

NREMS1 11.3% 69.1% 2.0% 1.0% 16.5% 

NREMS2 0.8% 1.6% 92.0% 4.7% 1.0% 

NREMS3 1.1% 5.6% 19.5% 70.7% 3.0% 

REM 13.2% 20.8% 0.2% 0.4% 65.4% 

Overall accuracy 85.18% 

 
Table 2. Performance measures of the decision tree model.                              

PREDICTED STAGES SPECIFICITY ACCURACY 

WK 95.9% 94.85% 

NREMS1 95.7% 92.26% 

NREMS2 96.1% 94.40% 

NREMS3 97.5% 95.16% 

REM 96.1% 93.68% 

 
Table 3. Confusion vectors arranged descendingly.                                    

Confusion vector Confusion (%) 

REM/NREMS1 37.3% 

NREMS2/NREMS3 24.2% 

WK/REM 15.9% 

WK/NREMS1 14.6% 

NREMS1/NREMS3 6.6% 

REM/NREMS3 3.5% 

WK/NREMS2 1.8% 

WK/NREMS3 1.7% 

REM/NREMS2 1.2% 
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Table 4. Improved confusion matrix after applying the sub-engines.                       

 Predicated sleep stages 

True stages WK NREMS1 NREMS2 NREMS3 REM 

WK 92.4% 3.3% 1.0% 0.6% 2.7% 

NREMS1 11.3% 74.8% 2.0% 1.0% 10.9% 

NREMS2 0.8% 1.6% 93.8% 2.9% 1.0% 

NREMS3 1.1% 5.6% 12.7% 77.5% 3.0% 

REM 13.2% 16.2% 0.2% 0.4% 70.0% 

Overall accuracy 87.62% 

 
Table 5. Classification accuracies for various features combination.                       

Features combination WK S1 S2 S3 REM Overall 

EEG spectral components DFA 
features and spectral features 95% 92% 94% 95% 94% 85.18% 

RAW EEG DFA features and 
spectral features 92% 90% 93% 94% 92% 80.17% 

Spectral features only 87% 87% 88% 89% 91% 68.83% 

EEG spectral components DFA 
features only 88% 88% 91% 93% 91% 75.56% 

 
The system was tested in two steps. The first step incorporated using selected records from the training group 

(12 subject’s data) for the tuning of the classification engine. The second step incorporated testing the system 
using the complete records of 22 subjects (including the previous 12 records). Testing the algorithm with com-
plete records considered to be more difficult than testing with the selected epochs as the number of complete 
records exceeds the number of selected epoch (including epochs that were not used in the training of the algo-
rithm) which would reveal how the algorithm will perform in reality practice. 

The high confusion between S1 and WK sleep stages could be justified due to the well-known sleep onset 
problem that appears in the transition from WK to S1 sleep in the early night. NREMS1 close to sleep onset 
shows significant alpha rhythm which is characteristic for wake epochs. To overcome this problem, sleep scor-
ers often use EOG and EMG in conjunction with EEG to aid in specifying the exact sleep onset, which is rela-
tively difficult to be specified accurately using EEG alone as done in this approach. 

The highest confusion vector element of the system was computed for REM/NREM-S1 as shown in Table 3, 
emphasized in bold font. Also, the lowest sensitivities of the system were found to be for REM and NREMS1 as 
illustrated in Table 1 in bold font. This confusion makes a lot of sense because of the dominant theta rhythms 
inherent in NREMS1 and REM sleep stages. For this reason, the EOG signal could be essential for the separa-
tion between NREMS1 and REM sleep stages [2]. 

The sensitivity of the proposed system for NREMS3 is 70.7% which is considered relatively-low as compared 
to the other sleep stages. NREMS2/NREMS3 confusion vector element is the second after the highest as illu-
strated in Table 3 in bold font. This confusion can be justified due to the similar frequency content (Delta waves) 
of the EEG signal in these two sleep stages. In addition, the EEG signal loses the long range autocorrelation si-
milarly in these two stages. 

4. Conclusions 
This study presented a novel algorithm for automated sleep scoring using a single EEG channel. The proposed 
system implemented sleep scoring by combining spectral and DFA features on a decision tree classifier engine. 
A clinical dataset was used for initial evaluation of the system. Two MLP sub-classifiers were included in sys-
tem aiming to reduce the main confusion error of the decision tree classifier. The testing results of the proposed 
system revealed an overall sleep stages classification accuracy of 87.62%. A good performance was also shown 
in terms of both sensitivity and specificity.  

The proposed system validation results indicate that it is a reliable single EEG lead automated sleep scoring 
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system that could be employed in practical settings to reduce the number of electrodes mounted on patients and 
consequently the cost of such system. It also makes it more suitable for home use and ambulatory settings. It can 
also be used as an initial screening tool for sleep specialists to avoid long waiting lists in sleep labs, and unne-
cessary full polysomnography nights for subjects who may suffer from simple sleep hygiene problems. 

The limited number of subjects is considered a limitation of our study. Evaluation using a larger clinical data 
set is recommended for a more thorough evaluation for the proposed system. Other potential uses of the pro-
posed system could include monitoring the depth of anesthesia in operating rooms. 
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