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Abstract 
A new method for the solution of non-sinusoidal periodic states in linear fractionally damped os-
cillators is presented. The oscillator is forced by a periodic discontinuous waveform and a viscous 
element is taken into account. The presented method avoids completely the Fourier series calcu-
lations of the input and output oscillator waveforms. In the proposed method, the steady-state re-
sponse of fractionally damped oscillator is formulated directly in the time domain as a superposi-
tion of the zero-input and forced responses for each continuous piecewise segments of the forcing 
waveform, separately. The whole periodic response is reached by taking into account the continu-
ity and periodicity conditions at instants of discontinuities of the excitation and then using the 
concatenation procedure for all segments. The method can be applied efficiently to discontinuous 
and continuous non-harmonic excitations equally well. Solutions are exact and there is no need to 
apply any of the widely up-to-date used frequency approaches. The Fourier series is completely 
cut out of the oscillator analysis. 
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1. Introduction 
Mathematical models of dynamical systems with fractional-order derivatives have found many applications in 
various domains of science and technology such as viscoelasticity, control theory, electronics, heat conduction, 
electrode-electrolyte polarization, diffusion wave, electromagnetic waves, signal processing and many other 
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physical processes [1]-[8]. In mechanics, for example, fractional-order derivatives have been successfully used 
to model the damping forces with memory effect or to describe state feedback controllers [9] [10]. Presently, it 
is clear that the fractional calculus broadens our perception not only of physical processes but also of many bio-
logical systems. Studies on dynamical behaviors of the electric signals of a human muscle’s tremor of legs in a 
normal state and of the electric potentials of the human brain core from EEG’s during epileptic seizure as well as 
a human hand finger tremor in Parkinson’s disease have attracted considerable attention in many research cen-
ters through the world [11] [12]. These systems are known to display fractional-order dynamics (FOD). The 
characteristic features of all these models are that fractional derivatives introduce a new parameter-the order of 
fractional derivative ν changing the properties of the solutions.  

Recently, it is found in [13] that in fractional-order vibration systems of single degree of freedom, the term of 
fractional-order derivative whose order is between 0 and 2 acts always as damping force. In addition, almost all 
systems containing internal damping are not suitable to be described properly by the classical methods, but the 
fractional calculus represents one of the promising tools to incorporate in a single theory both conservative and 
non-conservative phenomena [14]. It is a well-recognized belief that fractional calculus leads to better results 
than classical one [15]. In some cases, it is possible to find out closed form solutions of fractional-order diffe-
rential equations [2] [6] [8]. Therefore, a description of dynamical systems with using fractional derivatives may 
lead to results of major importance.  

The definitions of fractional integral and derivative have been provided in the fractional calculus literature in 
a variety of ways, including Riemann-Liouville, Caputo, Erdélyi-Kober, Hadamard, Grünwald-Letnikov, and 
Riesz type. Equivalence of these definitions on some function has also been established [16]-[18]. However, the 
two most commonly used definitions are the Riemann-Liouville and the Caputo ones. It is well known presently 
that initial conditions are not taken into account in the same way whether Riemann–Liouville or Caputo defini-
tions are considered. It is worth to mention that several mathematical and physical interpretations of fractional 
differentiation and of fractional systems exist in the literature [7] [14]. A demonstration of Montseny for a frac-
tional integrator is now adapted to deduce a physical interpretation of a fractional system. From applications 
point of view the most convenient representation is that that permits to take into account initial condition in a 
coherent way with system physics. 

Note that in the domain of fractional-order dynamical systems, fractional order harmonic oscillator is a fun-
damental issue, for it can be used to describe a much broader area of application than it is possible with the clas-
sical approach. Therefore, it is of fundamental importance to study the fractional model of the harmonic oscilla-
tor and to discuss the specific properties of its solutions. 

The plan of the paper is the following: Section 2 provides basic formulations and introductory results to be 
used in this article. Section 3 derives the main problem concerning solutions of fractionally damped oscillators 
with periodic discontinuous excitations. In Section 4, we give results of applications of the proposed method to 
determination of T -periodic solution of equations describing fractionally damped oscillator with discontinuities 
in time periodic excitations. Finally, in Section 5 conclusions are presented. 

2. Basic Formulations and Introductory Results 
In this section we are focused on the equation of a linearly damped oscillator with the damping term generalized 
to a Caputo fractional derivative. We deal with the fractional-order differential equations expressed in terms of 
the Caputo derivatives needing the initial conditions in the same form as for the integer-order differential equa-
tions. It is an advantage because applied problems require definitions of fractional derivatives, where there are 
clear interpretations of initial conditions, which contain f(a), ( ) ( ), ,f a  f a   etc. The analytic solution to the 
fractionally damped equation can be drawn by means of Laplace transform. Note, that the Laplace transform 
method is a very frequently used tool for solving engineering problems. 

The existence of periodic solutions is very often a desired property in dynamical systems, constituting one of 
the most important research directions in applied mathematics, with applications ranging from celestial mechan-
ics to biology and finance. The analysis of linear harmonic fractionally damped oscillator is a very recent and 
promising research topic. 

A standard approach to derive T-periodic solution is to define the differential operator which maps an initial 
value along the unique solution by T-units. Then the key periodicity and compactness conditions are given such 
that some fixed point theorems can be applied to get fixed points for the differential operator, which give rise to 
T-periodic solutions. 
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In order to study periodic responses of a fractionally damped oscillator, we consider here the Caputo fraction-
al derivative in the scalar case, introduced in [14]. The considered oscillator is described by the equation 

( ) ( ) ( ) ( )2 , 0TD x t AD x t Bx t f t      t  Tν+ + = ≤ ≤                       (1) 

where d dD t=  is the symbol of the derivative, ( )x t R∈  and ( )Tf t R∈  denote the response and excitation 
terms of the oscillator, respectively. Constant coefficients A and B depend on parameters of the oscillator ele-
ments and their connections. The fractional order ν of the damping term will be restricted to 0 ≤ ν ≤ 1.  
The forcing term is assumed to be periodic discontinuous function of time t with finite number of discontinuities 
over period T. Using the concatenation procedure we represent the forcing term as splines of continuous seg-
ments (Figure 1). 

For instance, the forcing term shown in Figure 1 can be represented as follows 

 ( ) ( ) ( ) ( )( )cos 0.8 1.2 0.4 cos 0.8f t f t T t h t t= + = + ⋅ − −                       (2) 

where ( ) ( )0.5 1 abs 0.5 0.5h p p= + − −    denotes the concatenation factor with p = p(t) = p(t + T) as the so- 
called saw tooth function [19]. 

It is worth pointing out that formula (2) can be easily extended on all remaining discontinuity points if they 
exist in the forcing terms. In the sequel we discus properties of fractionally damped oscillators with periodic 
non-sinusoidal discontinuous excitations and develop a systematic Fourier series-less method for their studies. 

3. Preliminary Results 
3.1. Analysis of Fractionally Damped Oscillators  
In this section, the attention is focused on the linear fractionally damped oscillator characterized by the structure 
shown in Figure 2. A superconducting coil L with very small resistance R is connected in parallel with a super-
capacitor C and controlled source as an active element. The forcing term is represented by independent current 
source js(t).  

Applying Kirchhoff current law and relations between current and voltage for each oscillator element yields 

( ) ( ) ( ) ( )
d d

d d s

x t x t
LC GL x t j t

t t

µ ν ν

µ ν ν

+

+ + + =                                (3) 

where G denotes the active element conductance and μ and ν denote fractional orders characterizing the super 
 

 
Figure 1. Periodic discontinuous forcing term f(t) = f(t + T).                
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Figure 2. Scheme of the oscillator structure.                             

 
capacitor and superconducting coil, respectively. Because in practice the sum of fractional orders is very near 
two thus in the sequel we take μ + ν = 2. Then, after few simple manipulations on the components of Equation 
(3) we can transform it to the form represented by (1) with 

 ( ) ( ) ( ), 1 and 1T sA G C B LC f t LC j t= = =                               (4) 

In what follows the Equation (1) with notation (4) is considered taking into account the damping term genera-
lized to a Caputo fractional derivative. It is worth mentioning that the Caputo derivative has been often used in 
fractional order systems since it has the practical initial states like that of integer order systems. Recall that the 
order of the derivative being considered is 0 ≤ ν ≤ 1. At the lower limit (ν = 0) the equation represents a no 
damped oscillator and at the upper limit (v = 1) the ordinary linearly damped oscillator equation is recovered.  
Time response of system (1) is thus defined by 

 ( ) ( ) ( )d px t x t x t= +                                  (5) 

where xd(t) is the damped component, and xp(t) denotes the periodic component.  
In this article, we present a new method suitable for determination of non-sinusoidal periodic response xp(t) of 

linear fractionally damped oscillator. It avoids the Fourier series calculations of the input and output oscillator 
waveforms. In the proposed method, the oscillator response is formulated directly in the time domain as a su-
perposition of the zero-input and forced responses for each continuous piecewise segments of the forcing term, 
separately. The strict periodic response is reached by taking into account the continuity and periodicity condi-
tions at instants of discontinuities of the forcing term and then using the concatenation procedure for all seg-
ments. 

It is hoped that a careful study of the analytic solution to the linear fractionally damped equation will help 
shed light on properties of the nonlinear equation and be of use for direct applications of fractionally damped 
oscillations. 

To find an analytic solution we first consider homogeneous form of Equation (1) by annihilation of the forc-
ing term. Thus, we take into considerations the equation 

( ) ( ) ( )2 0, 0h h hD x t AD x t Bx t      t  ν+ + = ≤ <∞                        (6) 

In the following, we will present the solutions of this forcing free fractional differential equation for different 
fractional orders and will investigate the specific differences of the obtained solutions. The analytic solution to 
the above fractionally damped equation is found by means of Laplace transform. 

Using Caputo definition and applying Laplace transformation to both sides of (6) gives 

( )
( )2

0 1

2

1
h

As sx x
X s

s As B

ν

ν

−+ +
=

+ +
                                   (7) 

with Xh(s) =L[xh(t)] as the Laplace transform of the response of fractionally damped autonomous oscillator and 
x0 and x1 as initial conditions. 

In order to evaluate the inverse Laplace transform of X(s) the following equation needs to be solved 

 2 0s As Bν+ + =                                (8) 
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what is not a trivial problem for arbitrary ν. Substituting s = reiα into (8) and then comparing to zero a real and 
imaginary part yields 

 
( ) ( )
( ) ( )

2

2

cos 2 cos 0,

sin 2 sin 0

r Ar B

r Ar

ν

ν

α να

α να

+ + =

+ =
                                (9) 

Performing detailed examinations of possible solutions of (9) it can be easily verified that for 0 ≤ ν ≤ 1 there 
are nine distinct cases as opposed to the usual three for the ordinary oscillator’s equation (damped, over-damped, 
and critically damped). In three of these cases, the frequency of oscillation actually increases with increasing 
damping order before eventually falling to the limiting value given by the ordinary damped oscillator equation. 
For the six remaining cases, the behavior of the fractional oscillator is as expected and the frequency of oscilla-
tions decreases with increasing order of the fractional derivative. Observe moreover, that both terms of the 
second Equation in (9) would always be positive, thus, there are no solutions in the right half of the complex 
plane and none on the complete axis of negative real numbers. If there are solutions, they should be in pairs, 
complex conjugates, with π/2 < α < π and −π/2 > α > −π. Thus, Equation (8) can be rewritten in the form 

( )( )1 2 0s s s s− − =                               (10) 

with 1i
1 1es r α= and 1i

2 1es r α−=  where r1 > 0 and π/2 < α1 < π denotes solutions of (9). It has to be noted that 
for the fractionally damped equation repeated roots are not possible. 
The time response of system (6) is thus given by 

( ) 1 2
1 2e es t s t

hx t C C= +                                  (11) 

where C1 and C2 are constant. In Figure 3 are presented some graphs of solutions (11) for fixed A=0.5 and B 
=1.0, and various values of ν.  

It should be emphasized that the evolution in time for this system is dominated by an exponential decay. 
Consequently, we obtain the result, that the behavior of the free solutions of the fractional harmonic oscillator 
under variation of the fractional derivative order ν may be interpreted from a classical point of view as damping 
phenomena. Our view point sheds some new light on the arising question: does the oscillation frequency fall 
monotonically with respect to ν? To demonstrate an answer we first examine the derivative of (8) with respect to 
ν and get  

( )
1

lnd
d 2

As ss
s A s

ν

νν ν −= −
+

                                 (12) 

Denoting s = α + iω and separating the imaginary part of (12) yields 
 

 
(a)                                                      (b) 

Figure 3. Solutions of the fractionally damped oscillator with: (a) ν = 0.25, 0.5, 0.27, 1.0; (b) ν = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.     
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( )
1

lnd
d 2

As s
Imag

s A s

ν

ν

ω
ν ν −

 
= −   + 

                                 (13) 

Considering this expression at ν = 0 we get initial slopes for the rate of change of ω with respect to ν as fol-
lows 

( ) ( )
1

0 0

ln lnd
d 2 4

As s A A B
Imag

s A s A B

ν

ν
ν ν

ω
ν ν −

= =

  +
= − =  + + 

                                 (14) 

Note that (14) generates three main cases of the initial slopes, namely 
1) The frequency initially increases with increasing damping order for A + B > 1; 
2) The frequency initially is not changing with increasing damping order for A + B = 1;  
3) The frequency initially decreases with increasing damping order for A + B < 1. 
The above result indicates that there are nine cases for the linear fractionally damped oscillator because in 

each of the main cases can become any of the three particular cases, i.e., damped, over-damped, and critically 
damped. A surprising result lies in that that for three of the particular cases the oscillation frequency actually in-
creases with increasing order of derivative of the damping term. After reaching a peak value, the frequency de-
creases as expected. 

3.2. Fourier Series-Less Representation of Periodic Discontinuous Functions 
In this subsection, we introduce notations, definitions, and preliminary facts, which are used throughout the re-
maining part of this paper. The representations introduced in the next section permits to take into account peri-
odicity and continuity conditions of the permanent response of a fractionally damped oscillator in a coherent 
way with system physics. The main attention focuses on periodic discontinuous functions. 

It is well known that a discontinuous function, like the square or saw-tooth waveforms, cannot be expressed 
as a sum, even an infinite one, of continuous functions. The extraneous peaks in the square wave’s Fourier series 
never disappear; because they occur whenever the function is discontinuous, and will always be present when-
ever the function has jumps [20] [21]. Quite obviously, if the excitation waveform is subject to jump changes the 
linear smoothing procedure is not a good choice anymore, because all conservative oscillator elements confuse 
and remove the high frequency components from the circuit output. For this reason, when a source waveform 
with jumps is applied to a linear oscillator it causes a typical effect of “edge blurring”. 

The main theorem concerning the convergence of the Fourier series at a discontinuity implies that this series 
converges to f(t) except at the point t = t0, which is a point of discontinuity of f(t). Indeed, Gibbs [22] showed 
that if f(t) is piecewise smooth on [ ]0, T  and t0 is a point of discontinuity, then the Fourier partial sums will 
exhibit the same behavior, with the bump's height almost equal to  

( ) ( ) ( )( )0 0 00 18f t . f t f t+ −∆ = −                                  (15) 

Recall that the notations ( )0f t+  and ( )0f t−  represent the right-limit and left-limit, respectively, of f(t) at the 
point 0t . 

Thus, it is evident that for accurate analysis of fractionally damped oscillators excited by forcing terms pro-
ducing complicated harmonic components, more formal time-domain mathematical tools are needed. 

Taking into account the above requirements and insufficiencies of the methods based on Fourier series, which 
are up-to-date most commonly used for studies of periodic non-sinusoidal states of linear as well as nonlinear 
oscillators we propose in the sequel new method for obtaining, in closed form, the response of any linear oscil-
lator corresponding to piecewise-continuous periodic non-sinusoidal forcing terms. The Fourier series-less me-
thod presented here depends on a “saw-tooth waveform” and of a scheme for the unified representation of com-
posite periodic non-sinusoidal waveforms. It appears as a powerful broadly applicable technique that enables us 
to characterize non-harmonic periodic oscillations from a perspective different from that obtained by the method 
resulting from the Fourier series. 

To avoid the difficulty appearing in practical applications of the Fourier series to obtain exact solutions of 
problems involved by periodic non-sinusoidal forcing terms operating in linear fractional order oscillators, we 
propose to use a so-called period carrying waveform p(t) defined as follows 
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( ) ( ) πatan cot
2 π
T Tp t p t T t

T
 = + = −  
 

                            (16) 

where T denotes the period. The direct plot of (16) for T = π seconds is presented in Figure 4(a), and very often 
is called “saw-tooth function” or equivalently “saw-tooth waveform”. Applying p(t) it is easy to generate a 
periodic form of the well known absolute value function called also “vee” function which can be defined as 
follows 

( ) ( )( )2
Tvee t p t τ= −                                  (17) 

The plot of (17) for T = 2π seconds and τ = π seconds is presented in Figure 4(b). 
In the sequel we will also take advantages of such useful functions as: 
relay function r(t,τ) also called jump function which can be defined by 

 ( ) ( )
( )

,
Abs t tr t

t Abs t
τ ττ

τ τ
− −

= =
− −

                                 (18) 

The plot of function (18) depending on p(t), i.e. r(p(t),τ) for τ = π seconds is shown in Figure 5(a).  
The switch-on function denoted by h(t,τ ) is defined as follows 

( ) ( )
0     for  1, 1 ,
1      for  2

t
h t r t

t
τ

τ τ
τ

≤
= + =    ≥

                                 (19) 

The plot of function (19) depending on p(t), i.e. h(p(t),τ) for τ = π seconds is shown in Figure 5(b). 
The above waveforms as well as many other similar ones, which can be easily derived on their base, are very 

useful in relatively simple representations of composite periodic non-sinusoidal waveforms. We remark that the 
latter situation will be relevant in the present analysis. 

However, in a general setting, i.e., when we are dealing with waveforms x(t) exhibiting discontinuities, two 
restrictions must be fulfilled, namely: (i) global condition requiring that x(t) is absolutely integrable, (ii) local 
condition constraining x(t) to have a finite number of maxima and minima and a finite number of discontinuities 
in every finite interval [15] [22]. Moreover, we will use the results known in the general statement for the spe-
cial case of the concatenation and show that this leads to an elegant procedure in Fourier series-less analysis also 
in the situation of real jumps in the input as well as output waveforms. 

To cope with these effects we will describe discontinuous functions by using the saw-tooth waveform and its 
relatives such as switch-on and relay waveforms. To present the main idea of such an approach we consider at 
first a periodic non-sinusoidal function v(t) = v(t + T) with T = 0.5 seconds as the period. Such type of wave 
 

 
(a)                                                      (b) 

Figure 4. Diagrams of periodic functions: (a) p(t); (b) veeT(t).                                                      
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forms appears very often in power electronics [22]-[29]. Its diagram is shown in Figure 6(a) and can be repre-
sented by 

( ) ( )πcos
4

v t p t =  
 

                                 (20) 

with 

( ) 0.5 π0.25 atan cot
π 0.5

tp t     = −     
    

                                 (21) 

as the period carrying waveform. 
Further, the waveform f(t) = f(t + 1) shown in Figure 6(b) can be represented using the switch-on waveform 

h(t,τ) with τ = T/2 = 0.5 seconds as follows 
 

 
(a)                                                      (b) 

Figure 5. Diagrams of periodic discontinuous functions: (a) r(t); (b) h(t).                                            
 

 
(a)                                                      (b) 

Figure 6. Periodic discontinuos functions: (a) v(t) = cos(πp(t)/4) and T = 10.5 s; (b) ( ) ( )1 cos 0.65f t t=  for ( )0, 0.5  t∈    

( ) ( )2and 0  for  0.5, 1  with 1 sf t t T= ∈ = .
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( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 2 1 1 1, 2f t f p t h p t T f p t f p t = + ⋅ −                           (22) 

where  
( ) ( ) ( ) ( ) ( )( )1 2 1cos 0.65 ,  0;  0.5 1 π atan cot πf t t f t p t t= = = − ⋅                          (23) 

The above examples show that the new proposed harmonic-less approach is very effective and leads to much 
less time consuming task than the standard method following from the Fourier series analysis. This intuitively 
appealing “switching rule” can be exploited in several ways. Using the switching approach (22) suggests the in-
corporation of a true smoothing element into the competition. 

4. General Analysis of Forced Fractional Oscillators  

4.1. Periodic Closed-Form Response 
The purpose of this section lies in demonstrating how to generate and analyze complex form responses of linear 
systems under steady states with both discontinuous and continuous periodic non-harmonic forcing terms. As a 
matter of fact, periodic oscillations are very important and special phenomena not only in natural science but al-
so in social science such as climate, food supplement, insecticide population, sustainable development [29]. 

The large applicability of the Caputo fractional derivatives is because we can formulate the fractional diffe-
rential equations initial conditions as in the case of the classical one. Such particular properties of Caputo deriv-
ative as  

 ( )
( ) ( )1, 1

1
0,   , e ,   1 ,   1

1
v p p v t n n

n

p
D F D t t    D t E t n ν n p n

p
ν ν λ ν

νλ λ
ν

− −
− +

Γ +
= = = − < < > −

Γ − +
     (24) 

where F = const, Γ(.) is the gamma function and E1,α(.) denotes the two-parameter Mittag-Leffler function, are 
very useful in general analysis of forced fractional oscillators. The above features of the Caputo derivative have 
attracted the engineers’ interest in the latter years, and now it is a tool used in almost every area of science. 

To determine a periodic response of a fractionally damped oscillator we take into considerations the oscillator 
shown in Figure 1 in which source currents js(t) represents the periodic discontinuous forcing term. Using nota-
tions (4) and approaching the time to the limit t → ∞ we get  

 ( )lim 0dt
x t

→∞
→                                          (25) 

so that 
( ) ( ) ( )lim pt

x t x t x t T
→∞

→ = +                                  (26) 

and in steady-state the oscillator response fulfills Equation (1) with x(t) = x(t + T) where T denotes the period of 
the forcing term fT(t) = Bjs(t). Taking into account all particular continuous segments of the discontinuous forc-
ing term we assume the corresponding continuous segment of the oscillator response as follows 

( ) ( )1 2
1, 2, ,e e , 1, 2, ,s t s t

k k k f kx t A A x t     k m= + + =                                (27) 

where s1 and s2 denote solutions of Equation (8), and A1,k and A2,k denote constants to be determined. The last 
component xf,k(t) takes the quite similar variation in time as that exhibited by the corresponding segment of fT,k(t) 
of the forcing term for 1, 2, ,k m=  . 

It has to be emphasized here that the oscillator is composed of a capacitor and an inductor both of fractional 
orders and they must fulfill the physical law of continuous changes of the capacitor voltage and inductor current. 
This important feature can be taken into account for determination of constants A1,k and A2,k of all segments of 
the oscillator response.  

In the sequel to maintain only the clarity of the analysis without lost of its generality, we will limit the atten-
tion to the forcing current exhibiting time variations shown in Figure 7(a). This form of the forcing current is 
very often applied in practice for producing electrochemical nanostructural surface layers of appropriate metals 
or isolators to protect or improve exploitation properties of various construction and machinery details [8]. 

It is easily to check that the source current can be represented on the whole time interval by 

 ( ) ( )( ) ( )1 1 2 1,sj t J h p t T J J= + ⋅ −                               (28) 
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(a)                                                      (b) 

Figure 7. Diagrams of: (a) source current; (b) response of fractionally damped oscillator.                                
 
where p(t) and h(p(t), T1) are determined by (16) and (19), respectively. 

Note that in such a case the excitation current is characterized by two discontinuity moments, i.e. t1 = 0 and t2 
= T1 separating two segments of constant values J1 and J2, respectively. The response of the oscillator can be 
represented for 0 ≤ t < T1 by 

 ( ) 1 2
1 1 2 1e es t s tx t A A X= + +                                  (29) 

for T1 ≤ t < T by 

 ( ) 1 2
2 3 4 2e es t s tx t A A X= + +                                  (30) 

where constants A1, A2, A3 and A4 are to be determined. Components X1 = J1 and X2 = J2 correspond to particular 
solutions of Equation (1) for appropriate segments of the forcing current. The resulting current in the coil is ex-
pressed as follows 

 ( ) ( ) ( ) ( ) ( )( )1 1 2 1, , 0x t x t h t T x t x t          t  T= + ⋅ − ≤ <                          (31) 

In order to determine unambiguously the constants a help comes from the capacitor voltage, which in accor-
dance with the principles of physics must be continuous in the time. So calculating the fractional derivative of 
the current in the coil, we get a quantity proportional to the capacitor voltage. Hence, taking into account the 
Caputo derivative for 0 ≤ ν ≤ 1 yields  

 
( ) ( ) ( )
( ) ( ) ( )

1 1
1 1 1,2 1 1 2 1,2 2 2

1 1
2 1 1,2 1 3 2 1,2 2 4

,

.

D x t s t E s t A s t E s t A

D x t s t E s t A s t E s t A

ν ν ν
ν ν

ν ν ν
ν ν

− −
− −

− −
− −

= +

= +
                     (32) 

Combining continuity and periodicity conditions for (29)-(32), we get a system of equations with unknown A1, 
A2, A3 and A4. In matrix notation, they take the following form 

 
( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 1 1 1 2 1

1 2 1

2 2 1
1 1

31 1,2 1 2 1,2 2
1 1 1 1

41 1 1,2 1 1 2 1 1,2 2 1 1 1 1,2 1 1 2 1 1,2 2 1

1 1 e e
e e e e

00 0
0

s T s T

s T s T s T s T

A X X
A X X
As T E s T s T E s T
As T E s T s T E s T s T E s T s T E s T

ν ν
ν ν

ν ν ν ν
ν ν ν ν

− −
− −

− − − −
− − − −

  −− −    
     −− −     =     
     

− −     

 (33) 

where T1 denotes a moment at which exists a discontinuity of the forcing term fT(t). Solving the above equation 
for following parameters of the fractionally damped oscillator: A = 0.5, B = 1, J1 = 10 A, J2 = −5 A, T = 20 s and 
T1 = 5 s and then substituting the result into (29)-(31) we get for ν = 0.5 the coil current x0.5(t), which is pre-
sented in Figure 7(b).  
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4.2. Computer Simulations 
In this subsection, the simulation results are presented to further demonstration of the reliability of the above 
approach. Three different fractional order systems represented by damped harmonic oscillator equation have 
been considered to confirm the given analytical results. First, let us use Equations (29)-(31) for ν = 0.25, 0.5 and 
0.75 for examinations of influences of the fractional order on the response damping within the period of forced 
fractional oscillator. Moreover, this gives also possibilities to examine the responses of the oscillator on different 
form of variations in time of the periodic forcing term.  

Following the procedure presented in the above subsection, we can generate periodically forced responses of 
the same oscillator for different fractional orders. We exploit here a numerical technique using Matlab incorpo-
rated into the procedure, which is similar to the semi-analytical method. For forcing current exhibiting the dis-
continuous variations in time shown in Figure 7(a) with J1 = 10A, J2= −10A, T = 20 s and T1 = 10 s simulations 
were performed for oscillator parameters A = 0.5, B = 1 and fractional damping order: ν = 0.25, 0.5 and 0.75, 
respectively. Results of numerical simulations are presented in Figure 8(a). Observe that the form of the peri-
odic responses differ significantly with respect to that of the forcing term, but this fact agrees very well with 
physical considerations of the studied problem and the dynamic properties of the given oscillator. Moreover, 
there is no doubt that fractional order has become an exciting new factor indicating the damping rate of the os-
cillator. It takes quite similar role as the damping coefficient in the case of classic, i.e. integer order oscillator. 
When 3D phase trajectory is established (Figure 8(b)) in coordinates (is(t), x0.5(t), ( )0.5x t ) then it is evident that 
the oscillations generate a limit cycle with specific form being in good agreement to the physical state of the 
fractionally damped oscillator. From Figure 8(b), we can see that state loops of x0.5(t) for t ∈ (0, T1) and t ∈ (T1, 
T) are similar to each other, but they are not identically coincided with each other although excitation current 
exhibits symmetry with respect to time axis. The difference is much more visible with changes of the fractional 
order ν. Thus, it is expected that as in the case of classical oscillation systems, the form of the excitation term 
and parameters of the oscillator determine completely the evolution of the oscillation systems. 

5. Conclusions 
This work presents an effective concept of analyzing fractionally damped linear oscillator forced by a disconti-
nuous periodic excitation and feasible computational strategies for time-varying dynamical processes based on 
continuity and periodicity approach for their solutions. This approach does not use any approximations based on 
the Fourier coefficient and not needs further investigation. 

The relationship between fractional order and the damping of oscillations are discussed and concluded that the 
fractional order systems cannot be instead of by any other system. The stability criteria of fractionally damped 
oscillators are addressed. We have revealed that the fractionally damped oscillator contains nine subclasses of 
 

 
(a)                                                      (b) 

Figure 8. Results of numerical simulations: (a) oscillator responses for ν = 0.25, 0.5, 0.75, (b) 3D plot for ν = 0.25.           
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oscillators depending on parameters of elements and the fractional order ν. 
Methods are also proposed to obtain concatenation of continuous response segments corresponding to conti-

nuous segments of the discontinuous forcing term. A physical interpretation of a fractional order of the oscillator 
damping term is also proposed that demonstrates that any fractionally damped system can be viewed as an in-
teger order system described by an equivalent diffusion term associated to a classical rational linear (exponen-
tially damped) system. 

We emphasize that it is possible to obtain exact periodic solutions for the output in periodic fractional-order 
dynamical systems forced by excitations being discontinuous in time. 
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