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Abstract 
In the paper, a general framework for large scale modeling of macroeconomic and financial time 
series is introduced. The proposed approach is characterized by simplicity of implementation, 
performing well independently of persistence and heteroskedasticity properties, accounting for 
common deterministic and stochastic factors. Monte Carlo results strongly support the proposed 
methodology, validating its use also for relatively small cross-sectional and temporal samples. 
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1. Introduction 
In the paper, a general strategy for large-scale modeling of macroeconomic and financial data, set within the 
factor vector autoregressive model (F-VAR) framework, is proposed.1 

Following the lead of dynamic factor model analysis proposed in [2], it is assumed that a small number of 
structural shocks are responsible for the observed comovement in economic data; it is, however, also assumed 
that commonalities across series are described by deterministic factors, i.e., common break processes. Comove- 
ment across series is then accounted by both deterministic and stochastic factors; moreover, common factors are 

 

 

*The literature on F-VAR models is large. See [1] for a survey. 
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allowed in both mean and variance, covering the I(0) and I(1) persistence cases, as well as the intermediate case 
of long memory, i.e., I(d), 0 1d< < . As the common factors are unobserved, accurate estimation may fail in the 
framework of small scale vector autoregressive (VAR) models, but succeed when cross-sectional information is 
employed to disentangle common and idiosyncratic features. 

The proposed fractionally integrated heteroskedastic factor vector autoregressive model (FI-HF-VAR) bridges 
the F-VAR and (the most recent) G-VAR literature, as, similarly to [3], a weakly stationary cyclical representa- 
tion is employed; yet, similarly to [4], principal components analysis (PCA) is employed for the estimation of 
the latent factors. Consistent and asymptotically normal estimation is performed by means of QML, also imple- 
mented through an iterative multi-step estimation procedure. Monte Carlo results strongly support the proposed 
methodology. 

Overall, the FI-HF-VAR model can be understood as a unified framework for large-scale econometric model- 
ing, allowing for accurate investigation of cross-sectional and time series features, independent of persistence 
and heteroskedasticity properties of the data, from comovement to impulse responses, forecast error variance 
and historical decomposition analysis. 

After this introduction, the paper is organized as follows. In Section 2, the econometric model is presented; in 
Section 3, estimation is discussed, while Monte Carlo analysis is performed in Section 4; finally, conclusions are 
drawn in Section 5. 

2. The FI-HF-VAR Model 
Consider the following fractionally integrated heteroskedastic factor vector autoregressive (FI-HF-VAR) model 

( )( )1 1 1Λ Λ Λ Λt t f t t t f t tx f C L x f vµ µµ µ− − −− − = − − +                     (1) 

( ). . . 0,t vv i i d∼ Σ  

( ) ( ) 1/2
t t t tP L D L f Hη ψ= =                                (2) 

( ). . . 0,t Ri i d Iψ ∼  

where tx  is a 1N ×  vector of real valued integrated I(d) ( 0 1d≤ ≤ ) and heteroskedastic processes subject to 
structural breaks, 1, , ,t T=   in deviation from the unobserved common deterministic ( tµ ) and stochastic (ft)  
factors; ( ) 0 2

0 1 2
s

sC L C L C L C L C L≡ + + + +  is a finite order matrix of polynomials in the lag operator with  
all the roots outside the unit circle, jC , 0, ,j s=  , is a square matrix of coefficients of order N; tv  is a  

1N ×  vector of zero mean idiosyncratic i.i.d. shocks, with contemporaneous covariance matrix Σv , assumed to 
be coherent with the condition of weak cross-sectional correlation of the idiosyncratic components (Assumption E) 
stated in [5] p. 143. The model in (1) actually admits the same static representation of [5], as it can be rewritten  

as ( )( ) 1
μΛ Λt t f t tx f I C L vµ

−
= + + − . 

2.1. The Common Break Process Component 
The vector of common break processes tµ  is 1M × , with M N≤ , and N M×  matrix of loadings Λµ ; the  
latter are assumed to be orthogonal to the common stochastic factors tf , and of unknown form, measuring re- 
current or non recurrent changes in mean, with smooth or abrupt transition across regimes; the generic element  
in 𝜇𝜇𝑡𝑡  is 𝜇𝜇𝑖𝑖 ,𝑡𝑡 ≡ 𝑧𝑧𝜇𝜇 ,𝑖𝑖(𝑡𝑡),  where ( ), , 1, , ,iz t i Mµ =   is a function of the time index t, 1, ,t T=  . 

The idiosyncratic break process ( ),iz tµ  can take different forms. For instance, [6] use a discontinuous func- 
tion, 

( ), ,0 ,1 ,
j

J
i i i jjz t Iµ τδ δ

=
= +∑                               (3) 

where 
j

Iτ  is the indicator function, such that 1
j

Iτ =  if jt τ>  and is 0 otherwise; in [6] the break points jτ  

are determined through testing; a Markov switching mechanism, as in [7], could however also be employed to 
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this purpose. 
Differently, [8] [9] and [10] model the break process as a continuous and bounded function of time, by means 

of a Fourier expansion, i.e., 

( ) ( ) ( ), ,0 , , , ,1 sin 2 cos 2 ,
2

J
i i i s j i c jj

Tz t jt T jt T jµ δ δ π δ π
=

= + + ≤∑                (4) 

Similarly [11], using a logistic specification 

( ) ( )*
, ,0 ,1 , , ,J
i i i j j jjz t g c tµ δ ηδ

=
= +∑                             (5) 

where the logistic function is ( ) ( )( )( )( )*

1
* * ˆ, , 1 expj j j t

g c t t cη γ η σ
−

= + − − , ( ) ( )exp jγ η η= , [ ]0,1jc ∈  and 

jη  are parameters, *t t T= , and *ˆ
t

σ  is the estimated standard deviation of *t . In particular, as jη →∞ , 

( )g ⋅  becomes the indicator function, yielding therefore a generalization of the specification in [6]. 
Also similarly [12] and [13], using a spline function 

( ) ( ),iz t S t Tµ = ,                                   (6) 

where ( ) ( )2
1

p
j jjS t T a f t T+

=
= ∑  is a spline function of order p, ja  are unknown regression coefficients and  

the functions ( )jf ⋅  are spline basis functions defined as 1 1f = , ( )2f t T= , , ( )1
p

pf t T+ = , and  

( )2
p

pf t T η+ = − , with ( )1 ,1Tη ∈ . 
A semiparametric approach has also been suggested by [14], using a kernel function, i.e., 

( ), ,1

1 T j
i i jj

t t
z t K x

Tb bµ =

− 
=  

 
∑ ,                             (7) 

where b is the bandwidth and ( )K ⋅  is the kernel function, specified as ( ) 2
0

r l
llK u uα

=
= ∑  for 1u ≤  and 

( ) 0K u =  for 1u > ; 0,1, 2, ,r =   and the coefficient lα  are such that ( )1

1
d 1K u u

−
=∫ . 

Finally, a random level shift model has been proposed by [15]-[18]; for instance, [18] define the break process 
as 

( ), , ,1 ,T
i T i jjz tµ δ

=
= ∑                                     (8) 

where ( )2
, , ,π ~ . . . ,, 0T i j T t t t i i d Nδ η η σ=  and ( ),π ~ . . . ,1T t i i d Bernoulli p T  for 0p ≥ . 

In the case M N= , there are no common break processes, i.e., each series is characterized by its own idio- 
syncratic break process and the N M×  factor loading matrix Λµ  is square, diagonal and of full rank; when 
M N< , there exist M common break processes and the factor loading matrix is of reduced rank (M). Hence, in 
the latter case the series tx  are cotrending, according to [19], nonlinear cotrending, according to [20], or co- 
breaking, according to [21] and [22]. The representation in (1) emphasizes however the driving role of the 
common break processes, rather than the break-free linear combinations (cobreaking/cotrending relationships) 
relating the series tx . 

2.2. The Common Break-Free Component 
The vector of (zero-mean) integrated heteroskedastic common factors tf  is 1R× , with R N≤ , and N R×   
matrix of loadings Λ f . The order of integration is id  in mean, and ib  in variance, 0 1id≤ ≤ , 0 1ib≤ ≤ ,  

1, ,i R=  . 

The polynomial matrix ( ) 2
1 2

u
R uP L I P L P L P L≡ − − − −  is of finite order, with all the roots outside the unit  

circle; jP , 1,j u=  , is a square matrix of coefficients of order R ; tψ  is a 1R×  vector of common zero  
mean i.i.d. shocks, with identity covariance matrix RI , 0it jsE vψ  =   all , , ,i j t s , respectively. 
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The matrix ( )D L  is a square diagonal matrix in the lag operator of order R , specified according to the in- 
tegration order (in mean) of the common stochastic factors, i.e., ( ) ( )1 RD L L I≡ −  for the case of ( )1I  inte- 
gration ( 1id = ); ( ) RD L I≡  for the ( )0I  or no integration (short memory) case ( 0id = );  

( ) ( ) ( ) ( ){ }1 21 , 1 , , 1 Rd d dD L diag L L L≡ − − −  for the case of fractional integration ( ( )I d , long memory)  

( 0 1id< < ), where ( )1 idL−  is the fractional differencing operator; the latter admits a binomial expansion,  
which can be compactly written in terms of the Hypergeometric function, i.e., 
( ) ( ) ( ) ( ) ( ) 11

0 01 ,1,1; Γ Γ 1 Γ πid k k
i i i kk kL F d L k d k d L L−−∞ ∞

= =
− = − ≡ − + − ≡∑ ∑ , where ( )Γ ⋅  is the Gamma func- 

tion. 
In the case R N=  there are no common stochastic processes, i.e., each series is characterized by its own 

idiosyncratic persistent stochastic component, and the N R×  factor loading matrix Λ f  is square, diagonal 
and of full rank; when R N< , then there exist R common stochastic processes and the factor loading matrix is 
of reduced rank (R). Hence, in the latter case the series tx  show common stochastic features, according to [23]. 
The concept of common feature is broad, encompassing the notion of cointegration ([24]), holding for the 
0 1id< ≤  case. The representation in (1) emphasizes however the driving role of the common stochastic fac-
tors rather than the feature-free linear combinations (cofeature relationships) relating the series tx . 

2.3. The Conditional Variance Process 
The R R×  conditional variance-covariance matrix for the unconditionally and conditionally orthogonal com- 
mon factors tf  is ( ) { }1 1, 2, ,, , ,t t t t t R tH Var f diag h h h−= Ω ≡  , where 1t−Ω  is the information set available at 

time period 1t − . Consistent with the constant conditional correlation model of [25], the ith generic element 
along the main diagonal of tH  is 

( ) ( ) 2
, , , , 1, , ,i i t i t i i tm L h n L i Rω η= + =                         (9) 

where ( ) ( ) ( )( )( )1 1 1 ib
i i in L L L Lβ ϕ≡ − − − −  for the case of fractional integration (long memory) in variance  

( 0 1ib< < ); ( ) ( ) ( )( )( )1 1 1i i in L L L Lβ ϕ≡ − − − −  for the case of ( )1I  integration in variance ( 1ib = );  

( ) ( ) ( )( )1 1i i in L L Lβ ϕ≡ − − −  for the ( )0I  or no integration (short memory) in variance case ( 0ib = ). In all  

cases ( ) ( )1 im L Lβ≡ − , ( ) ( ) ( )i i iL L Lϕ α β= + , ( ) 2
,1 ,2 ,

q
i i i i qL L L Lα α α α≡ + + + ,  

( ) 2
,1 ,2 ,

p
i i i i pL L L Lβ β β β≡ + + +  and all the roots of the ( )i Lα  and ( )i Lβ  polynomials are outside the  

unit circle. 
The conditional variance process ( ), , , 1i t i t i th Var f −= Ω , 1, ,i R=  , is therefore of the ( ), ,iFIGARCH p b z   

type [26], with { }max ,z p q= , or the ( ),IGARCH p q  type, for the fractionally integrated and integrated  

case, respectively; of the ( ),GARCH p q  type for the non integrated case. The model is however not standard  
as the intercept component ,i tω  is time-varying, allowing for structural breaks in variance; similarly to the 
mean part of the model, structural breaks in variance are assumed to be of unknown form, measuring recurrent  
or non recurrent regimes, with smooth or abrupt transition; then, ( ), ,i t h iz tω ≡ , where ( ),h iz t  is a continuos or  
discontinuous bounded function of the time index t , 1, ,t T=  , which can be parameterized as in (3), (4), (5), 
(6), (7), or (8). 

The following ARCH (∞) representation can be obtained from each of the three above models  

( )* 2
, , , 1, , ,i t i t i i th L i Rω ψ η= + =                          (10) 

where 
( )
,*

, 1
i t

i t
im
ω

ω =  and ( ) ( )
( )

2
1, 2,

i
i i i

i

n L
L L L

m L
ψ ψ ψ= = + + . 

The term *
,i tω  then bears the interpretation of break in variance process, or time-varying unconditional va- 
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riance process (no integration case), or long-term conditional variance level (unit root and fractional integration 
cases). 

To guarantee the non negativity of the conditional variance process at eachpoint in time all the coefficients in 
the ( )ARCH ∞  representation must be non-negative, i.e., , 0i jψ ≥  for all 1j ≥  and *

, 0i tω >  for any t . 
Sufficient conditions, for various parameterization, can be found in [26] and [27]. 

2.4. The Reduced Fractional VAR form 
By substituting (2) into (1) and rearranging, the vector autoregressive representation for the factors tf  and the 
gap series Λt tx µµ−  can be written as 

( )
( ) ( )

*
1

*
1 1

0
Λ Λ

t t tf

t t t t t

f fL
x xL C Lµ µµ µ ε

η−

− −

      
= +      − −      

Π
Π 

                   (11) 

1/2 0
,

Λ
t

t t
ft t

I
H

v
η

ψ
ε

     = +         
 

where ( ) ( ) ( )* 1Λ Λf fL L L C L− = −Π   and ( )*
f LΠ  is differently defined according to persistence proper- 

ties of the data. In particular, for the case of fractional integration (long memory) ( )0 1id< < , by means of the  
binomial expansion, it follows ( ) ( ) ( )P L D L I L≡ −Π , ( ) 2

1 2L L LΠ = Π +Π + , where iΠ , 1, 2,i =  , is a  

square matrix of coefficients of dimension R , and ( ) ( )* 1
f L L L−= ΠΠ ; since the infinite order representation  

cannot be handled in estimation, a truncation to a suitable large lag for the polynomial matrix ( )LΠ  is re- 

quired.2 Hence, ( )
*

1
p j

jjL L
=

Π ≅ Π∑ . For the case of no integration (short memory) ( 0id = ), recalling 

that ( ) RD L I≡ , and therefore ( ) ( ) ( )P L D L P L= , then ( ) 2
1 2

u
uL L L LΠ = Π +Π + +Π ; for the case of inte- 

gration ( 1id = ), it should be firstly recalled that 

( ) ( ) ( )( ) ( ) ( )( )2
1 21 1u

R uP L D L P L L I L P L P L P L Lρ≡ − ≡ − − + + + − , with RIρ = ; the latter may be rewrit- 

ten in the equivalent polynomial matrix form 2 1
1 2 1

u
R uI L L L +

+− Γ −Γ − −Γ , where iΓ , 1, , 1i u= + , is a  

square matrix of coefficients of dimension R , and ( )1 2 1 1 2 1... , ...u R i i i uI Pρ+ + + ++ Γ + + Γ = = = − + Γ + + ΓΓ Γ ,  

1, 2, ,i u=  ; then, ( ) 2
1 2 ... u

uL P L P L P LΠ = + + + . 

Reduced Form and Structural Vector Moving Average Representation of the FI-HF-VAR 
Model 
In the presence of unconditional heteroskedasticity, the computation of the impulse response functions and the 
forecast error variance decomposition (FEVD) should be made dependent on the estimated unconditional va- 
riance for each regime. In the case of (continuously) time-varying unconditional variance, policy analysis may 
then be computed at each point in time. For some of the conditional variance models considered in the paper, i.e., 
the FIGARCH and IGARCH processes, the population unconditional variance does not actually exist; in the lat- 
ter cases the ,i tω  component might bear the interpretation of long term level for the conditional variance; poli- 
cy analysis is still feasible, yet subject to a different interpretation, FEVD referring, for instance, not to the pro- 
portion of forecast error (unconditional) variance accounted by each structural shock, but to the proportion of 
forecast error (conditional) long term variance accounted by each structural shock. With this caveat in mind, the 
actual computation of the above quantities is achieved in the same way as in the case of well defined population 
unconditional variance. 

Hence, the computation of the vector moving average (VMA) representation for the FI-HF-VAR model de- 

 

 

2Monte Carlo evidence reported in [28] suggests that the truncation lag should increase with the sample size and the complexity of the 
ARFIMA representation of the long memory process, still remaining very small relatively to the sample size. For instance, for the covariance 
stationary fractional white noise case and a sample of 100 observations truncation can be set as low as 6 lags, while for a sample of 10,000 
observations it should be increased to 14 lags; for the case of a covariance stationary ARFIMA (1,d,1) process and a sample of 1000 obser- 
vations truncation may be set to 30 lags. See [28] for further details. 



C. Morana 
 

 
297 

pends on the persistence properties of the data. The following distinctions should then be made. 
For the short memory case, i.e., the zero integration order case ( )0id = , the VMA representation for the 

factors tf  and gap series Λt tx µµ−  can be written as 

( )
( ) ( )

0
Λ

t t

t t t

f U L
x vG L F Lµµ

η    
=     −     

,                         (12) 

where ( ) ( ) 1U L P L −≡ , ( ) ( ) 1Λ fG L P L −≡  and ( ) ( ) 1
F L I C L L

−
≡ −   . 

For the long memory case ( 0 1id< < ) and the case of ( )1I  non stationarity ( 1id = ), the VMA representa- 
tion should be computed for the differenced process, yielding 

( ) ( )
( ) ( )

0
1

Λ
t t

t t t

f U L
L

x vG L F Lµµ
η+

+ +

    
 − =   −       

,                      (13) 

where ( ) ( ) ( )1U L L U L+ ≡ − , ( ) ( ) ( )1G L L G L+ ≡ −  and ( ) ( ) ( )1F L L F L+ ≡ − . Impulse responses can  

then be computed as 1
k

jjI U +
=

+∑  for tf  and 1
k

jjI G+
=

+∑  and 1
k

jjI F +
=

+∑  for Λt tx µµ− , 1, 2,k =   

The identification of the structural shocks in the FI-HF-VAR model can be implemented in two steps. Firstly, 
denoting by tξ  the vector of the R  structural common factor shocks, the relation between reduced and struc- 
tural form common shocks can be written as t tHξ η= , where H  is square and invertible. Therefore, the iden- 
tification of the structural common factor shocks amounts to the estimation of the elements of the H  matrix. It 
is assumed that [ ]t t RE Iξ ξ =′ , and hence RH H IηΣ ′ = . As the number of free parameters in ηΣ  is  
( )1 2R R + , at most ( )1 2R R +  parameters in 1H −  can be uniquely identified through the 1 1H Hη

− −Σ ′=   

system of nonlinear equations in the unknown parameters of 1H − . Additional ( )1 2R R −  restrictions need  
then to be imposed for exact identification of 1H − , by constraining the contemporaneous or long-run responses 
to structural shocks; for instance, recursive (Choleski) or non recursive structures can be imposed on the VAR 
model for the common factors through exclusion or linear/non-liner restrictions, as well as sign restrictions, on 
the contemporaneous impact matrix 1H − .3 

Secondly, by denoting t  the vector of N  structural idiosyncratic disturbances, the relation between re- 
duced form and structural form idiosyncratic shocks can be written as t tKv= , where K is square and invertible. 
Hence, the identification of the structural idiosyncratic shocks amounts to the estimation of the elements of the 
K matrix. It is assumed that [ ]' NE KK I= , and hence v NK K IΣ ′ = . Then, in addition to the ( )1 2N N +  equa- 

tions provided by 1 1
v K K− −Σ ′= , ( )1 2N N −  restrictions need to be imposed for exact identification of 1K − ,  

similarly to what required for the common structural shocks. 
Note that preliminary to the estimation of the vΣ  matrix, t̂v  should be obtained from the residuals of an 

OLS regression of t̂ε  on t̂η ; the latter operation would grant orthogonality between common and idiosyn- 
cratic residuals. 

The structural VMA representation can then be written as 

( )
( ) ( )

*

* *

0
Λ

t t

t t t

f U L
x G L F Lµ

ξ
µ

    
=     −        

,                        (14) 

where ( ) ( )* 1U L U L H −= , ( ) ( )* 1G L G L H −= , ( ) ( )* 1F L F L K −= , or 

( ) ( )
( ) ( )

*

* *

0
1

Λ
t t

t t t

f U L
L

x G L F Lµµ
ξ+

+ +

    
 − =   −        

,                    (15) 

where ( ) ( )* 1U L U L H+ + −= , ( ) ( )* 1G L G L H+ + −= , ( ) ( )* 1F L F L K+ + −= , according to persistence proper- 

ties, and , ,, 0i t j tE ξ ′  =   any ,i j . 

 

 

3See [29] for a recent survey. 



C. Morana 
 

 
298 

3. Estimation 
Estimation of the model can be implemented following a multi-step procedure, consisting of persistence analysis, 
QML  estimation of the common factors and VAR parameters in (1), QML  estimation of the conditional mean 
model in (2) and the reduced form model in (11), QML  estimation of the conditional variance covariance matrix 
in (2). 

3.1. Step 1: Persistence Analysis 
Each component ,i tx , 1, ,i N=  , in the vector time series tx  is firstly decomposed into its purely determinis- 
tic (trend/break process; ,i tb ) and purely stochastic (break-free, , , ,,i t i t i tl x b= − ) parts. 

It is then assumed that the data obey the model 

, , , , 1, , 1, ,i t i t i tx b l t T i N= + = = 
,                         (16) 

where ,i tb  and ,i tl  are orthogonal, ( ), ,i t b ib z t≡ , with ( ),b iz t  a bounded function of the time index t , evolv- 
ing according to discontinuous changes (step function) or showing smooth transitions across regimes. 

Depending on the specification of ( ),b iz t , a joint estimate of the two components can be obtained following [7] 
[10] [11] [13] [14] [30], by setting up an augmented fractionally integrated ARIMA model  

( )( ) ( )( ), , ,1 1id k
i t i t i tL L L x b vφ − − − = ,                         (17) 

where { }0,1k =  is the integer differencing parameter, id  is the fractional differencing parameter  

( 0.5 0.5id− < < ), ( )Lφ  is a stationary polynomial in the lag operator and ,i tv  is a white noise disturbance. 

Heteroskedastic innovations can also be considered, by specifying ,i t it tv eσ≡ , with ( )~ . . . 0,1te i i d  and the condi- 
tional variance process 2

itσ  according to a model of the GARCH family. 
Consistent and asymptotically normal estimation by means of QML , also implemented through iterative algo- 

rithms, is discussed in [10] [13] [14] [18] [31]. Extensions of the Markov switching [7], logistic [11] and random 
level shift [15]-[18] models to the long memory case have also been contributed by [32] [33] and [34], respec- 
tively. 

Alternatively, following [6], a two-step procedure can be implemented: firstly, structural break tests are carried 
out and break points estimated; then, dummy variables are constructed according to their dating and the break 
process is estimated by running an OLS regression of the actual series ,i tx  on the latter dummies, as in (3); this  
yields ,î tb  computed as the fitted process and the stochastic part as the estimated residual, i.e., , , ,,ˆ ˆ

i t i t i txl b= − ;  

,î tb  and ,î tl  are then orthogonal by construction.4 
As neglected structural breaks may lead to processes which appear to show persistence of the long memory or 

unit root type, as well as spurious breaks may be detected in the data when persistence in the error component is 
neglected, testing procedures robust to persistence properties are clearly desirable. In this respect, the RSS-based 
testing framework in [6] yields consistent detection of multiple breaks at unknown dates for ( )0I  processes, as 
well as under long range dependence [35];5 moreover, under long range dependence, the validity of an estimated 
break process (obtained, for instance, by means of [6]) may also be assessed by testing the null hypothesis of long 
memory in the estimated break-free series ( ,î tl ), as antipersistence is expected from the removal of a spurious  
break process [36] [37]. Structural break tests valid for both ( )0I  and ( )1I  series have also recently contri- 
buted in the literature. 

3.2. Step 2: Estimation of the Conditional Mean Model 
QML  estimation of the reduced form model in (11) is performed by first estimating the latent factors and VAR 

 

 

4The orthogonality of ,î tb  and ,î tl  can however also be imposed when jointly estimating the deterministic and stochastic components by 
means of augmented ARFIMA models. 
5The strong consistency of the  RSS  estimator of the break fraction, independently of the rate of decay of the autocovariance function of 
the error process, has been proved in [35] when the number of break points is known; a modified Bayes-Schwarz selection criterion for the 
number of break points is also proposed. 
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parameters in (1); then, by estimating the conditional mean process in (2); finally, by substituting (2) into (1) in 
order to obtain a restricted estimate of the polynomial matrix ( )* LΠ . 

3.2.1. Estimation of the Common Factors and VAR Parameters 
Estimation of the common factors is performed by QML , writing the (misspecified) approximating model as 

Λ Λt t f t tx f vµµ− − =                                    (18) 

( )2~ . . . 0,t Nv i i d N Iσ
                                        

 

( )2~ . . . 0,t Rf i i d N Iσ
                                        

 

with log-likelihood function given by 

( )
( ) ( )2

21

Λ Λ Λ Λ1ln 2π – ln
2 2 2

t t f t t t f tT
N t

x f x fNT Tl I µ µµ µ
σ

σ=

′− − − −
⋅ = − − ∑ .          (19) 

QML estimation of the latent factors and their loadings then requires the minimization of the objective function 

( ) ( )1 Λ Λ Λ ΛT
t t f t t t f tt x f x fµ µµ µ

=
′− − − −∑                          (20) 

which can be rewritten as 

( ) ( ) ( ) ( )1 1

1 1Λ Λ Λ ΛT T
t t t t t f t t f tt tb b l f l f

NT NTµ µµ µ
= =

′′− − + − −∑ ∑ ,              (21) 

where t t tx l b= + , as tl  and tb  are orthogonal vectors, as well as tµ  and tf . 

The solution to the minimization problem, subject to the constraints 1Λ Λ MN Iµ µ
− ′ =  and 1Λ f f RN I− ′ Λ = , is  

given by firstly minimizing with respect to tµ  and tf , given Λµ  and Λ f , yielding 

( )( ) ( )1 1
ˆ Λ Λ Λ Λ Λ Λt tbµ µ µ µ µ µµ

− −
′ ′ ′=

                                    
 

( )( ) ( )1 1ˆ Λ Λ Λ Λ Λ Λt f f f f f f tf l
− −

′ ′ ′=
                                    

 

and then concentrating the objective function to obtain 

( )( ) ( )( )11

1 1

1 1Λ Λ Λ Λ Λ Λ Λ ΛT T
t N t t N f f f f tt tb I b l I l

T Tµ µ µ µ

−−

= =
′ ′ ′ ′− + −∑ ∑ ,      (22) 

which can be mimized with respect to Λµ  and Λ f . This is equivalent to maximizing 

( ) ( ) ( ) ( )1/2 ' 1/21/2 1/2

1 1

1 1Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ ΛT T
t t f f f t t f f ft ttr b b tr l l

T Tµ µ µ µ µ µ

′ − −− −

= =

      ′ ′ ′ ′ ′ ′ ′ ′+      
      
∑ ∑ ,   (23) 

which in turn is equivalent to maximizing 

Λ Λˆ
bµ µΣ                                            (24) 

subject to 1Λ Λ MN Iµ µ
− ′ = , and 

Λ Λˆ
f l fΣ                                             (25) 

subject to 1Λ Λf f RN I− ′ = . 
The solution is then found by setting: 

 Λ̂µ  equal to the scaled eigenvectors of ˆ
bΣ , i.e., the sample variance covariance matrix of the break  

processes tb , associated with its M  largest eigenvalues; this yields 1 ˆˆt tN bµµ − ′Λ= , i.e., the scaled first M   
principal components of tb ; 
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 Λ̂ f  equal to the scaled eigenvectors of ˆ
lΣ , i.e., the sample variance covariance matrix of the break-free  

processes tl , corresponding to its R  largest eigenvalues; this yields 1Λ̂t f tf N l−′ ′= , i.e., the scaled first R   
principal components of tl . 

Note that PCA uniquely estimates the space spanned by the unobserved factors; hence, Λ f  and tf  ( Λµ   

and tµ ) are not separately identified, as the common factors ( )t tf µ  and factor loading matrix ( )Λ Λf µ  are  

uniquely estimated up to a suitable invertible rotation matrix ( )fH Hµ , i.e., PCA delivers estimates of  

( )*, *,t f t t tf H f Hµµ µ≡ ≡  and ( )1 1
* *Λ Λ Λ Λf f fH Hµ µ µ

− −≡ ≡ , and therefore a unique estimate of the common  

components ( )* *, * *,Λ Λ Λ Λf t f t t tf f µ µµ µ≡ ≡  only, which is however all what is required for the computation  

of the gap vector. 
As shown by [38], exact identification of the common factors can also be implemented, by appropriately con-

straining the factor loading matrix while performing PCA or after estimation. In particular, three identification 
structures are discussed, involving a block diagonal factor loading matrix, yield by a statistical restriction imposed 
in estimation, and two rotation strategies, yielding a lower triangular factor loading matrix in the former case and 
a two-block partitioned factor loading matrix in the latter case, with identity matrix in the upper block and an un-
restricted structure in the lower block. 

Moreover, the number of common factors ( ),R M  is unknown and needs to be determined; several criteria are 
available in the literature, ranging from heuristic or statistical eigenvalue-based approaches [39] [40] to the more 
recent information criteria [41] and “primitive” shock ([42]) based procedures. 

Finally, in order to enforce orthogonality between the estimated common break processes ( )*,ˆ tµ  and sto- 
chastic factors ( )*,

ˆ
tf , the above procedure may be modified by computing the stochastic component t̂l  as the 

residuals from the OLS regression of ,i tx  on *,ˆ tµ ; then PCA is implemented on (the break-free residuals) t̂l  to 
yield *,

ˆ
tf . 

Estimation of the VAR parameters. Conditional on the estimated (rotated) latent factors, the polynomial ma- 
trix ( )C L  and the 1

*Λ Λf f fH −≡  and 1
*Λ Λ Hµ µ µ

−≡  (rotated) factor loading matrices are obtained by means  
of OLS estimation of the equation system in (1). This can be obtained by first (OLS) regressing the actual series  
xt on the estimated common break processes ( )*,ˆ tµ  and stochastic factors ( )*,

ˆ
tf  to obtain *Λ̂µ  and *Λ̂ f ;  

alternatively, *Λ̂µ  and *Λ̂ f  can be estimated as yield by PCA, i.e., from the scaled eigenvectors of the matric- 
es ˆ

bΣ  and ˆ
lΣ , respectively; then, the gap vector is computed as * *, * *,

ˆˆ ˆˆΛ Λt t f tx fµ µ− − , as * *,
ˆ ˆˆ ˆΛ Λf t f tf f=  and  

* *,
ˆ ˆˆ ˆΛ Λt tµ µµ µ= , and ( )Ĉ L  is obtained by means of OLS estimation of the VAR model in (1). 

3.2.2. Iterative Estimation of the Common Factors and VAR Parameters 
The above estimation strategy may be embedded within an iterative procedure, yielding a (relatively more effi- 
cient) estimate of the latent factors and the VAR parameters in the equation system in (1). 

The objective function to be minimized is then written as 

( )( ) 1

1Λ , ,Λ , , T
t f t t ttS f C L v v

NTµ µ
=

′= ∑                           (26) 

where ( )( )( )Λ Λt N t t f tv I C L L x fµµ= − − − . 

 Initialization. The iterative estimation procedure requires an initial estimate of the common deterministic 
( )tµ  and stochastic ( )tf  factors and the ( )C L  polynomial matrix, i.e., an initial estimate of the equation 
system in (1). The latter can be obtained as described in Section 3.2.1. 

 Updating. An updated estimate of the equation system in (1) is obtained as follows. 
° First, a new estimate of the M  (rotated) common deterministic factors, and their factor loading matrix, is 

obtained by the application of PCA to the (new) stochastic factor-free series 

( )( )* *, 1 * *, 1 * *, 1
ˆ ˆˆ ˆ ˆ ˆΛ Λ Λt f t t f t tx f C L x f µ µ− − −− − − − , yielding ( )

*Λ̂ new
µ and ( )

*,ˆ new
tµ .6 

 

 

6Alternatively, ( )
*Λ̂ new

µ  can be obtained by regressing tx  on ( )
*,ˆ new

tµ  (and the initial estimate *,
ˆ

tf ), using OLS. 
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° Next, conditional on the new common break processes and their factor loading matrix, the new estimate of 
the common long memory factors is obtained from the application of PCA to (new) break-free processes 
( ) ( ) ( )

* *,
ˆˆ ˆΛnew new new

t t txl µ µ= − 7 yielding ( )
*Λ̂ new

f  and ( )
*,
ˆ new

tf .8 
° Finally, conditional on the new estimated common break processes and long memory factors, the new esti- 

mate of the gap vector ( ) ( ) ( ) ( )
* *, * *,

ˆˆ ˆˆΛ Λnew new new new
t t f tx fµ µ− −  is obtained, and the new estimate ( )( )ˆ newC L  can be  

computed by means of OLS estimation of the VAR model in (1). 
° The above procedure is iterated until convergence, yielding the final estimates ( ) ( )

* *,
ˆ ˆΛ ,fin fin

tµ µ , ( ) ( )
* *,

ˆΛ̂ ,fin fin
f tf ,  

and ( )( )ˆ finC L . Convergence may be assessed in various ways. For instance, the procedure may be stopped  
when the change in the value of the objective function is below a given threshold.9 

3.2.3. Restricted Estimation of the Reduced Form Model 
Once the final estimate of the equation system in (1) is available, the reduced VAR form in (11) is estimated as 
follows: 

1) For the case of fractional integration (long memory) ( 0 1id< < ), the fractional differencing parameter is  
(consistently) estimated first, for each component of the (rotated) common factors vector ( )

*,
ˆ fin

tf , yielding the es- 

timates ˆ
id , 1, ,i R=  , collected in ( )D̂ L  matrix. 

Considering then the generic element ( )
*,
ˆ fin

tf , T  consistent and asymptotically normal estimation of the ith  
fractional differencing parameter can be obtained, for instance, by means of QML  estimation of the fractionally 
integrated ARIMA model in (17); alternatively, consistent and asymptotically normal estimation can be obtained 
by means of the log-periodogram regression or the Whittle-likelihood function.10 

Then, conditionally to the estimated fractionally differencing parameter, ( )P̂ L  is obtained by means of OLS 
estimation of the ( )VAR u  model for the fractionally differenced common factors ( ) ( )( )*,

ˆˆ fin
tD L f  in (2); hence, 

( ) ( ) ( )*ˆ ˆˆI L P L D L−Π = , where ( )*D̂ L  is the diagonal polynomial matrix in the lag operator of order R, con- 

taining the *p th order ( )*p u>  truncated binomial expansion of the elements in ( )D̂ L . Then,  

( ) ( ) 1
*

ˆ ˆ
f L L L−Π = Π  and ( ) ( ) ( ) ( )( ) ( )* 1

*
ˆ ˆˆ ˆΛ Λfinfin fin

f fL L L C L−Π = Π − . 
Alternatively, rather than by means of the two-step Box-Jenkins type of approach detailed above, VARFIMA 

estimation of the R-variate version of the model in (17) can be performed by means of Conditional-Sum-of-  
Squares [45], exact Maximum Likelihood [46] or Indirect [47] estimation, still yielding T  consistent and  
asymptotically normal estimates.11 OLS estimation of a VAR approximation for the VARFIMA model has also 
been recently proposed in [48], which would even avoid the estimation of the fractional differencing parameter 
for the common stochastic factors. 

For the case of no integration (short memory) ( 0id = ) and integration ( 1id = ), we also have: 

2) For the case of no integration (short memory) ( 0id = ), ( )P̂ L  is obtained by means of OLS estimation of  

the VAR(u) model for the (rotated) common stochastic factors ( ( )
*,
ˆ fin

tf ) in (2); then ( ) 2
1 2
ˆ ˆ ˆˆ u

uL P L P L P LΠ = + + + ; 
3) For the ( )1I  case ( 1id = ), ( )ˆ LΠ  is obtained by means of OLS estimation of the ( )1VAR u +  model in  

 

 

7Alternatively, the new break-free process can be computed as ( )( )* *, 1 * *, 1 * *, 1
ˆˆ ˆ ˆˆ ˆΛ Λ Λt t t f t tx C L x fµ µµ µ− − −− − − − . 

8Alternatively, ( )
*Λ̂ new

f  can be obtained by regressing tx  on ( )
*,
ˆ new

tf  and the updated estimate ( )
*,ˆ new

tµ , using OLS. This would also yield a new 

estimate ( )
*Λ̂ new

µ  to be used in the computation of the updated gap vector. 

9For instance, the procedure can be stopped when 
( )( ) ( )( )
( )( ) ( )( )

1

4

1

ˆ ˆ
10

ˆ ˆ

j j

j j j

S S
c

S S

θ θ

θ θ

+

−

+

−
= < −

+
, where the objective function is written as in (26). 

10See [43] and [44] for a survey of alternative estimators of the fractional differencing parameter. 
11Depending on the parametric structure, system estimation may however become unfeasible when the number of factors is too large. 
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levels for the (rotated) common stochastic factors ( )( )*,
ˆ fin

tf  implied by (2); then, 

( ) 2 1
1 2 1

ˆ ˆ ˆ ˆ u
uL L L L +
+Π = Γ + Γ + + Γ . 

Consistent with [49] and [50], in all of the above cases VAR estimation can be performed as the estimated 
common factors were actually observed. 

Following the thick modelling strategy in [51], median estimates of the parameters of interest, impulse res- 
ponses and forecast error variance decomposition, as well as their confidence intervals, can be computed 
through simulation. 

3.3. Step 3: Estimation of the Conditional Variance-Covariance Matrix 
The estimation of the conditional variance-covariance matrix for the factors in (2) can be carried out using a pro- 
cedure similar to the O-GARCH model of [52]: 

1) Firstly, conditional variance estimation is carried out factor by factor, using the estimated factor residuals t̂η ,  

yielding îth , 1, 2, ,i R=  ; QML estimation can be performed in a variety of settings, ranging from standard  

( ),GARCH p q  and ( ), ,FIGARCH p b z  models to their “adaptive” generalizations [9] [12] [53] [54], in or- 
der to allow for different sources of persistence in variance; 

2) Secondly, consistent with the assumption of conditional and unconditional orthogonality of the factors, the 
conditional variance-covariance ( ),x tH  and correlation ( ),x tR  matrices for the actual series may be estimated as  

,
ˆ ˆˆ ˆ ˆΛ Λx t f t f vH H= = Σ                                  (27) 

* 1/2 * 1/2
, , , ,

ˆ ˆ ˆ ˆ
x t x t x t x tR H H H− −=                                  (28) 

where { }1, 2, ,
ˆ ˆ ˆˆ , , ,t t t R tH diag h h h=  , and { }1, 2, ,

*
,

ˆ ˆ ˆˆ , , ,
t t N tx t x x xH diag h h h=  . 

Relaxing the assumption of conditional orthogonality of the factors is also feasible in the proposed framework, 
as the dynamic conditional covariances, i.e., the off-diagonal elements in tH , can be obtained, after step i) above, 
by means of the second step in the estimation of the Dynamic Conditional Correlation model [55] or the Dynamic 
Equicorrelation model [56]. 

3.4. Asymptotic Properties 
The proposed iterative procedure for the system of equations in (1) bears the interpretation of QML estima- 
tion, using a Gaussian likelihood function, performed by means of the EM algorithm. In the E-step, the un- 
observed factors are estimated, given the observed data and the current estimate of model parameters, by 
means of PCA; in the M-step the likelihood function is maximized (OLS estimation of the ( )C L  matrix is 
performed) under the assumption that the unobserved factors are known, conditioning on their E-step esti- 
mate. Convergence to the one-step QML estimate is ensured, as the value of the likelihood function is in- 
creased at each step [57] [58]. The latter implementation of the EM algorithm follows from considering the 
estimated factors by PCA as they were actually observed. In fact, the E-step would also require the compu- 
tation of the conditional expectation of the estimated factors, which might be obtained, for instance, by 
means of Kalman smoothing [59] [60]. As shown by [49] and [50], however, when the unobserved factors 
are estimated by means of PCA in the E-step, the generated regressors problem is not an issue for consistent  
estimation in the M-step, due to faster vanishing of the estimation error, provided 0T N →  for linear  

models, and 5/8 0T N →  for (some classes of) non linear models, i.e., the factors estimated by means of  
PCA  can be considered as they where actually observed, therefore not requiring a Kalman smoothing step. 

Note also that the Expectation step of the EM  algorithm relies on consistent estimation of the unob- 
served components. In this respect, under general conditions, { }min ,N T  consistency and asymptotic  

normality of PCA , at each point in time, for the unobserved common components Λ f tf , has been estab- 
lished by [5] and [61] for ,N T →∞  and the case of 𝐼𝐼(0) and 𝐼𝐼(1) unobserved components;12 this implies 
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the consistent estimation of the gap vector Λ Λt t f tx fµµ− −  at the same { }min ,N T  rate, for 

,N T →∞ , as well. Based on the results for ( )0I  and ( )1I  processes, the same properties can be conjec- 
tured also for the intermediate cases of long memory and (linear/nonlinear) trend stationarity; supporting 
Monte Carlo evidence is actually provided by [63] and in this study.13 

Moreover, likewise in the Maximization step of the EM  algorithm, T  consistent and asymptotically 
normal estimation of the polynomial matrix ( )C L  is yield by OLS estimation of the VAR model for the 
( )0I  gap vector Λ Λt t f tx fµµ− − , which, according to the results in [49] and [50], can be taken as it were 

actually observed in the implementation of the iterative estimation procedure. 
Similarly, T  consistent and asymptotically normal estimation of the block of equations in (2) is ob- 

tained by means of OLS estimation of the conditional mean process first, holding the estimated latent factors 
as they were observed, still relying on the results in [49] and [50] and on a consistent estimate of the fractional differ- 
rencing parameter if needed, and then performing QML  estimation of the conditional variance-covariance matrix. 

4. Monte Carlo Analysis 
Consider the following data generation process (DGP) for the 1N ×  vector process tx  

( )1 1 1Λ Λ Λ Λt t f t t t f t tx f C x f vµ µµ µ− − −− − = − − +                     (29) 

( )2~ . . . 0, ,t Nv i i d Iσ  

where C  is a N N×  matrix of coefficients, Λµ  and Λ f  are 1N ×  vectors of loadings, and tµ  and 
tf  are the common deterministic and long memory factors, respectively, at time period t , with  

( )( )1 1 d
t tL L fφ η− − = .                             (30) 

Then, for the conditionally heteroskedastic case it is assumed 

( )~ . . . 0,1t t t th i i dη ψ ψ=  

[ ]( ) ( ) [ ]( )2 2 21 1 1b
t t tL L L L hη ηα β ση β− − − − = − − , 

while  
( )~  . . . 0,1t i i dη  

 

 

12In particular, under some general conditions, given any invertible matrix Ξ , N  consistency and asymptotic normality of PCA 

for Ξ tf , at each point in time, is established for ,N T →∞  and 0T N →  and the case of ( )0I  unobserved factors and idiosyn- 
cratic components, the latter also displaying limited heteroskedasticity in both their time-series and cross-sectional dimensions [5]; 
for 𝑁𝑁,𝑇𝑇 → ∞ and 𝑁𝑁,𝑇𝑇3 → 0 and the case of ( )1I  (non cointegrated) unobserved factors and ( )0I  idiosyncratic components, 
similarly showing limited heteroskedasticity in both the time-series and cross-sectional dimensions ([61]). The latter result is ac- 
tually obtained by applying PCA to the level of the series, rather than their first differences. Moreover, for both the ( )0I  and ( )1I  

case, T  consistency and asymptotic normality of PCA for 1Λ Ξf
−  is established under the same conditions, as well as { }min ,N T  

consistency and asymptotic normality of PCA for the unobserved common components Λ f tf , at each point in time, for ,N T →∞ .  

The conditions for consistency and asymptotic normality reported in [6] and [61] implicitly cover also the case in which PCA is im- 

plemented using the estimated break ( )t̂b  and break-free ( )ˆ ˆ
t t tl x b= −  components, rather than the observed 𝑥𝑥𝑡𝑡  series; in fact, by 

assuming ,t̂ t b tb b e= +  and ,t̂ t l tl l e= + , then ,
ˆ Λt t b tb eµµ= +  and ,

ˆ Λt f t l tl f e= + , which are static factor structures as assumed in [5] 
and [61]. It appears that assumption E in [5], page 143, i.e., weak dependence and limited cross-sectional correlation, holding for 
both noise (estimation error) components ,b te  and ,l te , augmented with the assumption of their contemporaneous orthogonality, i.e.  

, , 0b t l tE e e′  =  , is then sufficient for the validity of PCA also when implemented on noisy data. In this respect PCA acts as noise sup- 

pressor: intuitively, PCs associated with the smallest eigenvalues are noise, which should be neglected when estimating the com-
mon factors. PCA estimation of the signal component can actually be shown to be optimal in terms of minimum mean square er-
ror [62]. 
13The use of PCA for the estimation of common deterministic trends has previously been advocated by [64]. See also [65] for applica- 
tions to nonstationary data. 
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for the conditionally homoskedastic case. 
Different values for the autoregressive idiosyncratic parameter 𝜌𝜌, common across the N cross-sectional 

units ( )NC Iρ= , have been considered, i.e., { }0,0.2,0.4,0.6,0.8ρ = , as well as for the fractionally diffe- 

rencing parameter { }0,0.2,0.4,0.6,0.8,1d =  and the common factor autoregressive parameter φ , setting  

{ }0.2,0.4,0.6,0.8φ =  for the non integrated case and { }0, 2dφ =  for the fractionally integrated and inte- 
grated cases; φ ρ>  is always assumed in the experiment. For the conditional variance equation it is as- 
sumed 0.05α =  and 0.90β =  for the short memory case, and 0.05α = , 0.30β =  and 0.45b =  for the  

long memory case. The inverse signal to noise ratio ( ) 1s n −  is given by 2 2
ησ σ , taking values 

( ) { }1 4, 2,1,0.5,0.25s n − = . Finally, Λµ  and Λ f  are set equal to unitary vectors. 
Moreover, in addition to the structural stability case, i.e., 0tµ µ= = , two designs with breaks have been  

considered for the component tµ , i.e., 
1) Single step change in the intercept at the midpoint of the sample case, i.e., 

0, 1, , 2
4, 2 1, ,t

t T
t T T

µ
=

=  = +





 

2) The two step changes equally spaced throughout the sample case, with the intercept increasing at one 
third of the way through the sample and then decreasing at a point two thirds of the length of the sample, i.e., 

1, , 3
4 1, , 2 3.

0,
4,
2, 2 / 3 1, ,

t

t T
t T T
t T T

µ
=

= = +
 = +







 

The sample size investigated is 100,500T = , and the number of cross-sectional units is 30N = . For the 
no breaks case also other cross-sectional sample sizes have been employed, i.e., 5,10,15,50N = . The num- 
ber of replications has been set to 2,000 for each case. 

The performance of the proposed multi-step procedure has then been assessed with reference to the esti- 
mation of the unobserved common stochastic and deterministic factors, and the φ  and 𝜌𝜌 autoregressive pa- 
rameters. Concerning the estimation of the common factors, the Theil’s inequality coefficient ( IC ) and the 
correlation coefficient ( Corr ) have been employed in the evaluation, i.e.,  

( ) 2 2

1 1 1

21 1 1ˆ ˆ
T

t

T T

t t t
t t t

IC zz z z
T T T= = =

 
= +  

 
−∑ ∑ ∑  

( ) ( ) ( )cov , ˆ ˆt t t tzCorr z Var z Var z= , 

where ,t t tz fµ=  is the population unobserved component and ˆtz  its estimate. The above statistics have 
been computed for each Monte Carlo replication and then averaged. 

In the Monte Carlo analysis, the location of the break points and the value of the fractional differencing 
parameter are taken as known, in order to focus on the assessment on the estimation procedure contributed 
by the paper; the break process is then estimated by means of the OLS regression approach in [6]. The 
Monte Carlo evidence provided is then comprehensive concerning the no-breaks ( )0I  and ( )1I  cases, as 
well as the no-break ( )I d  case, concerning the estimation of the common stochastic factor. A relative as- 
sessment of the various methodologies which can be employed for the decomposition into break and 
break-free components is however of interest and left for further research. 

4.1. Results 
The results for the non integration case are reported in Figure 1, Figure 2 (and 5, columns 1 and 3), while 
Figure 3, Figure 4 (and 5, columns 2 and 4) refer to the fractionally integrated and integrated cases (the inte- 
grated case, independent of the type of integration, thereafter). In all cases, results refer to the estimated para- 
meters for the first equation in the model. Since the results are virtually unaffected by the presence of condi- 
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Figure 1. In the figure, Monte Carlo bias and RMSE statistics for the autoregressive parameter (φ) are plotted for the case of 
no breaks (top and center plots) and one (break 1) and two (break 2) breaks (bottom plots), and a conditionally heteros- 
kedastic common I(0) factor. Results are reported for various values of the persistence spread φ ‒ ρ (0.2, 0.4, 0.6, 0.8) against 
various values of the (inverse) signal to noise ratio (s/n)−1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, 
the number of cross-sectional units N is 30, and the number of replications for each case is 2000. For the no breaks case, 
Monte Carlo bias statistics are also reported for other sample sizes N (5, 10, 15, 50) (center plots).                        
 
tional heteroskedasticity, for reasons of space, only the heteroskedastic case is discussed. Moreover, only the 
results for the 2dφ =  case are reported for the integrated case, as similar results have been obtained for the 

0φ =  case.14 

4.1.1. The Structural Stability Case 
As shown in Figure 5 (top plots 1-4), for a cross-sectional sample size N = 30 units, a negligible downward bias 
for the ρ  parameter (on average across (inverse) signal to noise ratio values) can be noted (−0.02 and −0.03, 
for the non integrated and integrated case, respectively, and 100T =  (top plots 1-2); −0.01 and −0.006, respec- 
tively, and 500T =  (top plots 3-4)), decreasing as the serial correlation spread, φ ρ−  or d ρ− , or the sam- 
ple size T  increase. 

On the contrary, as shown in Figure 1 and Figure 3 (top plots 1 and 3), the downward bias in φ is increasing 
with the degree of persistence of the common factor d , the (inverse) signal to noise ratio 𝑠𝑠/𝑛𝑛−1, and the serial 
correlation spread, φ ρ−  or d ρ− , yet decreasing with the sample size T . 

For the non integrated case (Figure 1, plots 1 and 3), there are only few cases ( 0.4,0.6,0.8φ ρ− = ) when a 
10%, or larger, bias in φ  is found, occurring when the series are particularly noisy ( )1 4s n− = ; for the statio- 
nary long memory case a 10% bias, or smaller, is found for 1 2s n− ≥ , while for the non stationary long mem- 
ory case for 1 1s n− ≥  and a (relatively) large sample ( 500T = ) (Figure 3, plots 1 and 3). Increasing the 
cross-sectional dimension N  yields improvements (see the next section). 

Also, as shown in Figure 2 and Figure 4 (top plots 1-4), very satisfactory is the estimation of the unobserved 
common stochastic factor, as the IC  statistic is always below 0.2 (0.14 (0.10)), on average, for 100T =  
( 500T = ) for the non integrated case (Figure 2, top plots 2 and 4); 0.06 (0.03), on average, for 100T =  
( 500T = ) for the integrated case (Figure 4, top plots 2 and 4). Moreover, the correlation coefficient between 

 

 

14Detailed results are available in the working paper version of this paper [66] or upon request from the author. 
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Figure 2. In the figure, Monte Carlo Carlo Theil’s index (IC) and correlation coefficient (Corr) statistics, concerning the 
estimation of the conditionally heteroskedastic common I(0) factor, are plotted for the case of no breaks (top and center plots) 
and one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread φ ‒ ρ 
(0.2, 0.4, 0.6, 0.8) against various values of the (inverse) signal to noise ratio (s/n)−1 (4, 2, 1, 05, 0.25). The sample size T is 
100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 2000. 
For the no breaks case, Monte Carlo correlation coefficient statistics are also reported for other sample sizes N (5, 10, 15, 50) 
(center plots).                                                                                           
 
the actual and estimated common factors is always very high, 0.98 and 0.99, on average, respectively, for both 
sample sizes (Figure 2 and Figure 4, top plots 1 and 3). 

Results for smaller and larger cross-sectional samples. In Figures 1-4 (center plots, i.e., rows 2 and 3), the 
bias for the φ  parameter and the correlation coefficient between the actual and estimated common factors are 
also plotted for different cross-sectional dimensions, i.e., 5,10,15,50N = , for the non integrated and integrated 
cases, respectively; statistics for the ρ  parameter are not reported, as the latter is always unbiasedly estimated, 
independently of the cross-sectional dimension. 

As is shown in the plots, the performance of the estimator crucially depends on T , N , and 1s n− . 

For the non integrated case (Figure 1), when the (inverse) signal to noise ratio is low, i.e., 1 0.5s n− ≤ ,  
the downward bias is already mitigated by using a cross-sectional sample size as small as 5N = , for  

100T = ; as N  increases, similar results are obtained for higher 1s n− , i.e., 10, 15N =  and 1 1s n− ≤ , or 
50N =  and 1 4s n− ≤  (center plots, column 1-2). For a larger sample size, i.e., 500T =  (center plots, 

column 3-4), similar conclusions hold, albeit for the 5N =  the (inverse) signal to noise ratio can be higher, 
i.e., 1 0.5s n− ≤ ; similarly for 10,15N =  with 1 2s n− ≤ . 

For the integrated case (Figure 3) conditions are slightly more restrictive; in particular, for the stationary  
long memory case, when the (inverse) signal to noise ratio is low, i.e., 1 0.5s n− ≤ , the downward bias is 
already mitigated by setting 5N =  and 100T = ; similar results are obtained for higher 1s n−  and N, i.e., 

10,15N =  and 1 1, 2s n− ≤ , or 50N =  and 1 4s n− ≤  (center plots, column 1-2). Similar conclusions can 
be drawn for 500T =  (center plots, column 3-4), albeit, holding N  constant, accurate estimation is 
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Figure 3. In the figure, Monte Carlo bias statistics for the autoregressive parameter (φ) are plotted for the case of no breaks 
(top and center plots) and one (break 1) and two (break 2) breaks (center and bottom plots), and a conditionally heter- 
oskedastic common I(d) factor ( 0 1d< ≤ ). Results are reported for various values of the persistence spread d − ρ (0.2, 0.4, 
0.6, 0.8, 1) against various values of the (inverse) signal to noise ratio (s/n)−1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 
500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 2000. For the 
no breaks case, Monte Carlo bias statistics are also reported for other sample sizes N (5, 10, 15, 50) (center plots).           
 
obtained also for higher 1s n− . Similarly also for the non stationary case (long memory or ( )1I ); yet, 
holding T  constant, either larger N , or lower 1s n− , would be required for accurate estimation. 

Coherently, the correlation coefficients between the actual and estimated common factors (Figure 2 and 
Figure 4, center plots) point to satisfactory estimation (a correlation coefficient higher than 0.9) also in the case of 
a small temporal sample size, provided the (inverse) signal to noise ratio is not too high, and/or the  
cross-sectional dimension is not too low 1 1s n− ≤  and 5N = ; 1 2s n− ≤  and 10N = ; 1 4s n− ≤  and 15N = ). 

4.1.2. The Structural Change Case 
While concerning the estimation of the ρ  parameter no sizable differences can be found for the designs 
with structural change, relatively to the case of structural stability15, the complexity of the break process may 
on the other hand affect estimation accuracy for the φ  parameter, worsening as the number of break points 
increases, particularly when the temporal sample size is small ( 100T = ). 

Yet, for the no integration case (Figure 1, bottom plots), already for 500T =  the performance is very sa- 
tisfactory for both designs, independently of the (inverse) signal to noise ratio 1s n−  (bottom plots, col- 
umns 3 and 4); on the contrary, for 100T =  the performance is satisfactory (at most a 10% bias) only when 
the series are not too noisy ( 1 1s n− ≤ ) (bottom plots, columns 1 and 2). Also, similar to the structural stabil- 
ity case, the (downward) bias in the φ  parameter is increasing with the degree of persistence of the common 
factor d, the (inverse) signal to noise ratio 1s n− , and φ ρ−  or d ρ− , yet decreasing with the sample size T . 

Coherent with the above results, satisfactory estimation of the unobserved common stochastic factor 
(Figure 2, bottom plots) and break process can also be noted (Figure 5, bottom plots, columns 1 and 3); for  

 

 

15The average bias is −0.04 and −0.01, independent of the break process design and integration properties, when 100T =  and 
500T = , respectively. Moreover, similar to the structural stability case the bias is decreasing as φ ρ− , d ρ− , or the sample size T  

increase, independent of the (inverse) signal to noise ratio. 
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Figure 4. In the figure, Monte Carlo Carlo correlation coefficient (Corr) statistics, concerning the estimation of the 
conditionally heteroskedastic common I(d) factor ( 0 1d< ≤ ), are plotted for the case of no breaks (top and center plots) and 
one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread d − ρ 
(0.2, 0.4, 0.6, 0.8, 1) against various values of the (inverse) signal to noise ratio (s/n)−1 (4, 2, 1, 05, 0.25). The sample size T 
is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 2000. 
For the no breaks case, Monte Carlo correlation coefficient statistics are also reported for other sample sizes N (5, 10, 15, 50) 
(center plots).                                                                                           
 
the common stochastic factor, the IC statistic (not reported) is in fact always below 0.2 for 500T =  (0.11 
and 0.13, on average, for the single break point and two-break points case, respectively) and below 0.3 for 

100T =  (0.17 and 0.20, on average; column 1), while the actual and estimated common stochastic factors 
are strongly correlated: for 100T =  ( 500T = ), on average, the correlation coefficient is 0.96 (0.98) for the 
single breakpoint case and 0.93 (0.97) for the two-break points case (column 3). 

Very accurate is also the estimation of the common break process: the IC statistic is never larger than 0.15 
for 100T =  and 0.075 for 500T =  (Figure 5, bottom plots, columns 1 and 3), while the correlation coef- 
ficient is virtually 1 for the single break case and never below 0.96 for 100T =  and 0.99 for 500T =  for 
the two-break points case (not reported). Given the assumption of known break points, the performance in 
terms of correlation coefficient is not surprising; yet, the very small Theil’s index is indicative of success in 
recovering the changing level of the unobserved common break process. 

Concerning the integrated case, some differences relatively to the nonintegrated case can be noted; as 
shown in Figure 5 (bottom plots, columns 2 and 4), albeit the overall recovery of the common break process 
is always very satisfactory across the various designs, independently of the sample size (the IC statistic is 
never larger than 0.14; bottom plots), performance slightly worsens as the complexity of the break process 
and persistence intensity (𝑑𝑑) increase: the average correlation coefficient between the estimated and actual 
break processes (center plots) falls from 1 when 0.2d =  (single break point case) to 0.93 when 1d =  
(two-break points case). 

Moreover, concerning the estimation of the common stochastic factor (Figure 4, center and bottom plots, 
columns 1-4), for the covariance stationary case ( 0.5d < ) results are very close to the non integrated case, 
i.e., an IC statistic (not reported) always below 0.2 for 500T =  (0.12 and 0.14, on average, for the single 
break point and two-break points case, respectively) and below 0.3 for 100T =  (0.21 and 0.24, on average, 
respectively); the correlation coefficient is also very high: 0.94 and 0.91, on average, 100T =  (columns 1 
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Figure 5. In the figure, average Monte Carlo statistics (across values for the inverse signal to noise ratio) for the bias in the 
autoregressive idiosyncratic parameter (ρ) (top plots) and Theil’s index (IC) statistic for the common break process (bottom 
plots) are plotted for the non integrated (I(0)) and integrated (I(d), 0 1d< ≤ ) cases. Results are reported for various values 
of the persistence spreads φ − ρ (0.2, 0.4, 0.6, 0.8) and d − ρ (0.2, 0.4, 0.6, 0.8, 1). The sample size T is 100 and 500 
observations, the number of cross-sectional units N is 30, and the number of replications for each case is 2000.             
 
and 2); 0.97 and 0.96, on average, 500T =  (columns 3 and 4). 

On the contrary, for the non stationary case performance is worse, showing average IC statistics (not re-
ported) of 0.32 (0.32) and 0.42 (0.44), respectively, for the single break point (center plots) and two-break 
points (bottom plots) case and 100T =  ( 500T = ); the average correlation coefficient is 0.79 (0.78) and 
0.68 (0.66), respectively. Coherently, a worsening in the estimation of the common factor autoregressive 
parameter φ , for the 0.8d =  and 1d =  case, can be noted (Figure 3, center and bottom plots), while 
comparable results to the short memory case can be found for 0.5d < . The latter findings are however not 
surprising, as the stronger the degree of persistence of the stochastic component (and of the series, therefore) 
and the less accurate the disentangling of the common break and break-free parts can be expected; overall, 
Monte Carlo results point to accurate decompositions also for the case of moderate nonstationary long 
memory, albeit deterioration in performance becomes noticeable. 

5. Conclusion 
In the paper, a general strategy for large-scale modeling of macroeconomic and financial data, set within the 
factor vector autoregressive model (F-VAR) framework is introduced. The proposed approach shows mi- 
nimal pretesting requirements, performing well independently of integration properties of the data and 
sources of persistence, i.e., deterministic or stochastic, accounting for common features of different kinds, 
i.e., common integrated (of the fractional or integer type) or non integrated stochastic factors, also hete- 
roskedastic, and common deterministic break processes. Consistent and asymptotically normal estimation is 
performed by means of QML, implemented through an iterative multi-step algorithm. Monte Carlo results 
strongly support the proposed approach. Empirical implementations can be found in [37] [67]-[69], showing 
the approach being easy to implement and effective also in the case of very large systems of dynamic equations. 

Acknowledgements 
A previous version of the paper was presented at the 19th and 21st Annual Symposium of the Society for Non 
Linear Dynamics and Econometrics, the 4th and 6th Annual Conference of the Society for Financial Econome- 



C. Morana 
 

 
310 

trics, the 65th European Meeting of the Econometric Society (ESEM), the 2011 NBER-NSF Time Series Con- 
ference, the 5th CSDA International Conference on Computational and Financial Econometrics. The author is 
grateful to conference participants, N. Cassola, F. C. Bagliano, C. Conrad, R. T. Baillie, J. Bai, for constructive 
comments. This project has received funding from the European Union’s Seventh Framework Programme for 
research, technological development and demonstration under grant agreement no. 3202782013-2015 and PRIN- 
MIUR 2009. 

As Mitsuo Aida wrote in one of his poems, somewhere in life/there is a path/that must be taken regardless of 
how hard we try to avoid it/at that time, all one can do is remain silent and walk the path/neither complaining 
nor whining/saying nothing and walking on/just saying nothing and showing no tears/it is then/as human beings, 
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