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Abstract 
This paper presents a hierarchical Bayesian approach to the estimation of components’ reliability 
(survival) using a Weibull model for each of them. The proposed method can be used to estimation 
with general survival censored data, because the estimation of a component’s reliability in a series 
(parallel) system is equivalent to the estimation of its survival function with right- (left-) censored 
data. Besides the Weibull parametric model for reliability data, independent gamma distributions 
are considered at the first hierarchical level for the Weibull parameters and independent uniform 
distributions over the real line as priors for the parameters of the gammas. In order to evaluate 
the model, an example and a simulation study are discussed. 
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1. Introduction 
This paper presents a hierarchical Bayesian approach to the estimation of components’ reliability using a Wei-
bull model for each component in series and parallel systems. A series system is a frame of components that 
works if and only if all its components are functional, that is, whenever one fails the system fails. As a dual 
frame, the parallel system fails if and only if all components are malfunctioning. 

The literature dealing with the problem of estimating the reliability of series systems, or competing risks, is 
abundant. The work of Kaplan and Meier [1] is arguably the most celebrated work, where it was developed a 
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nonparametric estimator using a frequentist approach. For a Bayesian counterpart, we draw the attention to Sa-
linas-Torres et al. [2] and Polpo and Sinha [3]. Rodrigues et al. [4] performed a simulation study of three dif-
ferent methods to estimate the reliability of a series system. They compared the Kaplan-Meier estimator [1], 
maximum likelihood estimator (MLE) and the Bayesian plug-in estimator (BPE) for Weibull reliability systems. 
Their results indicated that MLE and BPE are similar in quality and that both outperformed the Kaplan-Meier 
estimator. However, the construction of credible bounds was not addressed in their work. 

For parallel systems, the literature is scarce. To the best of our knowledge, Polpo and Pereira [5] were the first 
to address the nonparametric reliability estimation in parallel systems and their components, using the Bayesian 
paradigm. Later on, Bhattacharya and Samaniego [6] proposed a frequentist nonparametric estimator for com-
ponents’ reliability under a restrictive condition that all components are independent and identically distributed. 

In a related work, Polpo et al. [7] presented the reliability estimation with Weibull models and non-informa- 
tive priors, also using the Bayesian paradigm. Their proposal had very demanding computational needs, and the 
described Markov Chain Monte Carlo (MCMC) algorithm suffered from convergence issues in many problem 
instances, making the estimation a difficult task. The authors realized later on that it is often impossible to eva-
luate the components’ reliability with that method because of such issues, and unfortunately one cannot predict 
when the algorithm will succeed. The present work aims at achieving a robust estimation procedure for the es-
timation problem. We suggest considering non-informative priors in a one-level hierarchical model as means to 
solve the estimation issues faced by the algorithm of Polpo et al. [7]. Moreover, an important goal of this work 
is to provide a simple way to build credible bounds for the reliability functions, giving a step-by-step algorithm 
that performs such analysis. 

Similarly to Polpo et al. [7] and Rodrigues et al. [4], we consider Weibull statistical models for the system’s 
reliability. Two independent gamma distributions are considered in the first hierarchical level. The gamma dis-
tributions are parametrized by their means and variances, instead of the more common parametrization with 
scale and shape. In the second level of the hierarchy, we choose two flat priors for the means, and fixed values 
for the variances of the gamma distributions in the first level. These hyper-parameters corresponding to va-
riances in the first level can be seen as prior precision parameters. The means of the gamma distributions (first 
level of the hierarchy) can be viewed as the prior expectations of the parameters of the Weibull model. In this 
work, the posterior modes are taken as the Bayesian estimators of the gamma distributions. 

The estimation of the reliability functions has three main steps: 1) we draw a sample from the posterior dis-
tribution of the Weibull parameters; 2) using the appropriate transformation, we build a sample from the relia-
bility posterior distribution; and 3) locally, for each reliability time, we evaluate the posterior mean. The high 
posterior density (HPD) procedure was used to define the credible region for the reliability function. We em-
phasize that we are not using the plug-in estimator, but the posterior mean of the reliability function, which 
seems more suitable under the Bayesian paradigm. 

This paper is organized as follows. Section 2 describes all functions that are involved in the estimation pro-
cedure. Section 3 provides the estimation procedure itself. Section 4 presents a simulation study that highlights 
the quality of the model and the proposed estimators, and final remarks and additional comments are given in 
Section 5. We note that an extended abstract of this work has appeared in the Brazilian Conference on Bayesian 
Statistics [8]. 

2. The Model 
We use the same notation as in Polpo et al. [7]. Consider a system of k components and let Xj, { }1, ,j k∈  , be 
the sequence of failure times of all components. We assume that this sequence is composed of independent ran-
dom variables with a (possibly) different Weibull distribution for each component. Recall that we only observe a 
random vector of two variables, namely, ( ),T δ  with ( )1min , , kT X X=   for the series system and  

( )1max , , kT X X=   for the parallel system, with jδ =  if jT X= , for 1, ,j k=  . The δ  quantity can be 
viewed as an indicator function of the component that caused the system failure. 

Consider a sample of n independent and identically distributed systems (either all series or all parallel sys-
tems). The observations are represented by ( ) ( ){ }, , : 1, ,i iT T i nδ δ= =  . The reliability function of the jth com-  
ponent is given by ( ) ( )j jR t P X t= > , 1, ,j k=  . Therefore, the reliability function is ( ) ( )1

k
jjR t R t

=
=∏  

for the series system and ( ) ( )( )11 1k
jjR t R t

=
= − −∏  for the parallel system. 
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We define random variables jX  for the components’ reliability with Weibull distributions parametrized by 
( ),j j jθ β η= , that is, 

( ) ( ) exp
j

j j j
j

xP X x R x
β

θ θ
η

   > = = −      
                          (1) 

for 0x > , 0jβ >  (shape) and 0jη >  (scale). Then, the likelihood function for the series system is given by 

( ) ( ) { } ( ) { }1

1 1
, ,j ji i

k n

j i j j i j
j i

L t f t R tδ δδ θ θ= =−

= =

   ∝    ∏∏θ
 

                      (2) 

and for the parallel system, 

( ) ( ) { } ( ) { }1

1 1
, 1 ,j ji i

k n

j i j j i j
j i

L t f t R tδ δδ θ θ= =−

= =

   ∝ −   ∏∏θ
 

                     (3) 

where f is the density function of a random variable with Weibull distribution, ( )1, , kθ θ= θ , and A  is the 
indicator function of the set A. 

The prior distributions were considered independent with ( )gamma ,
j jj m vβ ββ  , ( )gamma ,

j jj m vη ηη  ,  

( ) ( ) 1
j j

m mβ ηπ π∝ ∝ , and 
j

vβ  and 
j

vη  as known constants, 1, ,j k=  . Then 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

{ }
( ) ( )

{ }
( ) ( )

2 2

2 2

1

1 1

=1 2 2

| , , ,

, , ,

exp exp
,

j j j j j j j j

j jj j
j j j j

j jj j

j j j j j j j j

k

j
j

m v m v
k j j j j

m v m vj

m v m v m v m v

m v m v

v m m v v m m v

β ηβ η

β ηβ η

β β η η β β η η

β β η η

β β β β η η η η

π π π π π π

π θ π π π π

β β η η

=

− −

∝

∝

− −
∝

Γ Γ

∏

∏

θ m v m v m v m vβ β η η β β η η

 

where  ( ), , , ,= m v m vβ β η ηθ , ( )1
, ,

k
m mβ β= mβ  and ( )1

, ,
k

m mη η= mη  are the prior mean parameters,  

( )1
, ,

k
v vβ β= vβ  and ( )1

, ,
k

v vη η= vη  are the prior variance (precision) parameters, and , , , 0
j j j j

m m v vβ η β η > , 
1, ,j k=  . 

In this case, we have that the posterior distributions of series and parallel systems are, respectively, 

 
( ) ( )

{ } { }1
1

1 1
, exp exp ,

j ji ij jjk n
i j i i

j i j j j

t t t
δ δβ ββ β

π π
η η η

= =−
−

= =

               ∝ − −                        
∏∏t δ

 

 
and 

 
( ) ( )

{ } { }1
1

1 1
, exp 1 exp ,

j ji ij jjk n
i j i i

j i j j j

t t t
δ δβ ββ β

π π
η η η

= =−
−

= =

               ∝ − − −                        
∏∏t δ

 

 
where ( )1, , nt t= t  are the observed failure time of the system, ( )1, , nδ δ= δ  are the indicators of which 
component failed, and the other quantities are as defined before. 

3. Estimation 
For the estimation, we use the EM algorithm [9] to obtain the posterior mode as estimates of mβ  and mη , and 
the MCMC procedure to generate a sample from the posterior distribution of β  and η . The algorithm steps 
for the estimation are briefly given as follows: 

1) Choose the prior precision values vβ  and vη . Note that one can set to the same value all the precision 
values, that is, v = =v vβ η . We suggest the use of 4v = . 

2) Choose the initial guess for the parameters to be estimated: mβ , mη , β  and η . 
3) Using the initial guess, consider mβ  and mη  as fixed values. Employing the MCMC tool, generate a 
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sample (of size np) from the posterior distribution of β  and η . We suggest the use of 1000pn = . It may also 
be necessary to use a “burn-in” and a “jump” to ensure convergence of the MCMC. 

4) (Expectation step of the EM) Using the posterior sample of β  and η  obtained in Step 3, evaluate the 
mean of the likelihood function, obtaining a “mean” function of mβ  and mη . 

5) (Maximization step of the EM) Find the values of mβ  and mη  that maximize the function obtained in 
Step 4. 

6) Update the initial guess of mβ  and mη  with the values obtained in Step 5, and the values of β  and η  
with their posterior mean obtained in Step 3. 

7) Repeat Steps 3, 4, 5 and 6 until convergence of mβ  and mη  is reached. We suggest the use of a toler-
ance value of three decimal places between the previous values of mβ  and mη  and the current ones, in order 
to decide whether to stop iterating. 

8) Once convergence of mβ  and mη  is reached, use their values to generate a sample from the posterior 
distribution of β  and η  by applying the MCMC tool. 

Using this algorithm, we obtain the posterior mode (the Bayesian estimate) of mβ  and mη , and a sample 
(of size pn ) from the joint posterior distribution of β  and η . If we estimate the reliability function of any 
component (let us arbitrarily choose component 1), then we can notice that the estimations of the other compo-
nents’ reliability functions are very similar and could be omitted here. Consider that the sample from the post-  
erior of the parameters of component 1 can be expressed as ( )11 12 1, , ,

pnβ β β  and ( )11 12 1, , ,
pnη η η . To ob-  

tain the reliability estimates and credible regions, consider the functions ( ) ( )1 1,Y t F t β η=
  

, 1, , pn=  , 
where ( )1 1,F t β η

 

 are Weibull distribution functions conditioned on 1β 

 and 1η 

. Consequently, the post-
erior mean estimate of the component’s reliability can be expressed as 

( ) ( ) ( )
1

1E data 1 , for each .
pn

p

R t R t Y t t
n =

 = = −  ∑




 

Hence, for each fixed t, ( ) ( ) ( )( )1 , ,
pnY t Y t Y t=   is a sample from the posterior of the component 1’s distri-

bution function and, to obtain the credible region, we can either use the quantiles of ( )Y t  or evaluate the high 
posterior density credible interval. To estimate the mean reliability time, we have 

1 1
1

1E data E , , 1, , ,
pn

p
p

T T n
n

β η
=

  =   =   ∑
 



   

where ( )1 1 1 1E , 1 1T β η η β  = Γ +    

 is the mean of a random variable with Weibull distribution, and ( )Γ ⋅  is 
the gamma function. Note that similar procedures can be used to evaluate other quantities of interest; as an ex-
ample, the posterior median could be evaluated. 

4. Examples 
4.1. Example 1 
Consider three random variables X1, X2, X3 such that X1 has Weibull distribution with mean 2 and variance 4, X2 
has gamma distribution with mean 2 and variance 0.667, and X3 has log-normal distribution with mean 2.014 
and variance 6.968. We have generated a sample (with size n = 100) of series systems with these three compo-
nents and another sample (again with size n = 100) of parallel systems with the exactly same three components. 
The components were chosen in order to have similar means but different variances and, consequently, different 
distributions. We have used the same theoretical components in both simulations (series and parallel systems) to 
verify, in each situation, the differences that are due to the distinct system models with the available data. The 
simulated data have the following characteristics: 1) for the series systems, we have obtained 64%, 80%, and  
56% of censured data for components 1, 2, and 3, respectively; and 2) for the parallel systems, we have observed 
61%, 68% and 71%, respectively for the same three components. In this case, the main interest is in the estima-
tion of the components’ reliability functions. Note that, with our simulated example, we have a huge amount of 
censored data, making it a challenging example. 

As already said, the estimation procedures are performed using MCMC. We have discarded the first 10,000 
samples (as burn-in) from the posterior to achieve the stationary measure and then have generated a sample from 
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the posterior. To perform the estimation of the reliability functions and the credible region, we have used a sam-
ple of size 1000 from the posterior, which was obtained by discarding 10 samples (the jump between each final 
sample point). We have used 4v =  in the prior specification for all parameters and systems. For the experi-  
ment with series systems, we have obtained  ( )1.31,4.12,1.44=mβ  and  ( )2.19,2.03,1.80=mη . For the paral-

lel systems, the estimates are  ( )1.28,2.57,0.92=mβ  and  ( )2.67,2.28,2.11=mη . To evaluate the quality of  
these estimates, we have compared the “true” reliability of each component with the estimated reliability func-
tion. Table 1 presents the posterior mean and the posterior standard deviation of each parameter involved in the 
model (for both series and parallel systems). Note that the standard deviations are relatively small, and the esti-
mation of the mean reliability time is very close to the original values, indicating a good performance of our 
method. 

It can be seen from the 95% credible bounds that the “true” reliability of each component was well estimated. 
We note however that the “true” reliability functions of the components are, for short (time) intervals, outside 
the 95% credible bounds. Considering that these are reasonably challenging examples, this situation is likely to 
happen in any estimation procedure (see Figure 1 and Figure 2). 

4.2. Example 2 
This example has a simulation study to show the quality of the proposed hierarchical Weibull model over many 
different conditions. We have considered 108 different scenarios that were built using three different sample 
sizes ( )30,100,1000n = , three different proportions of censored data (0%, 20% and 40%), two different means 
(2 and 7) of reliability time for the generating distribution, three different generating distributions (Weibull, 
gamma, log-normal), and two types of censoring (right and left). In all these cases, we have fixed the variance of 
the generating distribution to 5. We have used a non-random censored approach to guarantee the desired propor-
tions of censure, that is, for each scenario, we have fixed a time for which all values that are larger than this time 
are assumed censored for the right-censored data (series systems), and all values smaller than this fixed time are 
assumed censored for the left-censored data (parallel systems). In order to improve the analysis, 100 copies of 
each scenario were considered. 

To summarize and to compare the results of the simulation, we have evaluated the bias and the mean squared 
error (MSE) of the estimated mean reliability time, for each scenario. The results are presented in Tables 2-7. 
One can see from the results that all biases and MSEs are close to zero, indicating that, in all scenarios, the 
model has estimated well the true mean reliability time. Even in the most challenging scenarios, which are those 
with small sample size ( )30n =  and large proportion of censoring (40%), the estimated mean reliability time 
has had a good performance. When the generating distribution is Weibull, the model should obviously estimate 
well, yet the results show that the performances were good even for the other two generating (non-Weibull) dis-
tributions. 
 
Table 1. Posterior mean (sd) of some quantities involved in the estimation of the simulated examples. 

 Series system estimates 

 β η ( )E ,T β η  

Component 1 1.26 (0.17) 2.27 (0.41) 2.13 (0.45) 

Component 2 3.98 (0.53) 2.06 (0.12) 1.87 (0.11) 

Component 3 1.40 (0.17) 1.83 (0.22) 1.68 (0.22) 

 Parallel system estimates 

 β η ( )E ,T β η  

Component 1 1.23 (0.15) 2.60 (0.27) 2.45 (0.22) 

Component 2 2.47 (0.32) 2.25 (0.14) 2.00 (0.13) 

Component 3 0.87 (0.11) 1.98 (0.33) 2.17 (0.29) 
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5. Final Remarks 
We have introduced a Bayesian reliability statistical analysis using hierarchical models for the problem of esti-
mating the reliability functions and credible bounds of series and parallel systems. The MCMC has shown good 
performance in terms of convergence, making the inference process simple and efficient. It shall be noted that 
this performance is not dependent on our choice of a “non-informative” scheme to define the prior hyper-para- 
meters. This is important because other researchers may want to fairly compare our method with other frequen-
tist estimators. However, informative priors may very well produce additional improvements in the estimates. 
The Example 1 has shown good robustness in the sense that the model has performed well for all components in  
 

 
Figure 1. Reliability of the components in the experiment with series systems: (a) Component 1; (b) Component 2; (c) 
Component 3. 
 

 
Figure 2. Reliability of the components in the experiment with parallel systems: (a) Component 1; (b) Component 2; (c) 
Component 3. 
 
Table 2. Bias and mean squared error (MSE) of the E(T) estimate for data generated from the Weibull distribution with 
right-censored data. 

Cens. True E(T) 
n = 30 n = 100 n = 1000 

Bias MSE Bias MSE Bias MSE 

0% 2 −0.1300 0.2217 −0.0426 0.0572 −0.0057 0.0043 

0% 7 0.0293 0.1523 0.0026 0.0474 −0.0095 0.0043 

20% 2 −0.2813 0.4893 −0.1242 0.1275 −0.0200 0.0068 

20% 7 −0.0522 0.2307 −0.0233 0.0565 −0.0148 0.0047 

40% 2 −0.4293 0.7364 −0.2394 0.2925 −0.0239 0.0108 

40% 7 −0.1773 0.3590 −0.0661 0.0874 −0.0162 0.0055 
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Table 3. Bias and mean squared error (MSE) of the E(T) estimate for data generated from the gamma distribution with 
right-censored data. 

Cens. True E(T) 
n = 30 n = 100 n = 1000 

Bias MSE Bias MSE Bias MSE 

0% 2 −0.1407 0.2286 −0.0191 0.0593 −0.0003 0.0055 

0% 7 0.0006 0.1845 0.0081 0.0623 0.0098 0.0048 

20% 2 −0.3829 0.6346 −0.1132 0.1234 −0.0560 0.0111 

20% 7 0.0569 0.1721 0.1121 0.0669 0.1049 0.0153 

40% 2 −0.5068 0.9424 −0.3084 0.3807 −0.1174 0.0299 

40% 7 0.1389 0.2505 0.2372 0.1107 0.2336 0.0582 

 
Table 4. Bias and mean squared error (MSE) of the E(T) estimate for data generated from the log-normal distribution with 
right-censored data. 

Cens. True E(T) 
n = 30 n = 100 n = 1000 

Bias MSE Bias MSE Bias MSE 

0% 2 −0.1160 0.1757 −0.0024 0.0396 −0.0089 0.0050 

0% 7 −0.0348 0.1551 0.0462 0.0429 0.0220 0.0052 

20% 2 0.0720 0.1410 0.2475 0.0779 0.2523 0.0655 

20% 7 0.0786 0.1492 0.1848 0.0637 0.1620 0.0296 

40% 2 0.2373 0.1795 0.4205 0.1981 0.4371 0.1928 

40% 7 0.2190 0.2094 0.3438 0.1532 0.3337 0.1147 

 
Table 5. Bias and mean squared error (MSE) of the E(T) estimate for data generated from the Weibull distribution with left- 
censored data. 

Cens. True E(T) 
n = 30 n = 100 n = 1000 

Bias MSE Bias MSE Bias MSE 

0% 2 −0.1300 0.2217 −0.0426 0.0572 −0.0057 0.0043 

0% 7 0.0293 0.1523 0.0026 0.0474 −0.0095 0.0043 

20% 2 0.1030 0.1178 0.0034 0.0475 −0.0060 0.0043 

20% 7 0.0387 0.1562 −0.0001 0.0490 −0.0094 0.0043 

40% 2 −0.1813 0.2660 −0.0471 0.0579 −0.0065 0.0043 

40% 7 0.0301 0.1813 0.0040 0.0597 −0.0099 0.0048 

 
Table 6. Bias and mean squared error (MSE) of the E(T) estimate for data generated from the gamma distribution with left- 
censored data. 

Cens. True E(T) 
n = 30 n = 100 n = 1000 

Bias MSE Bias MSE Bias MSE 

0% 2 −0.1407 0.2286 −0.0192 0.0594 −0.0003 0.0055 

0% 7 0.0006 0.1845 0.0081 0.0623 0.0098 0.0048 

20% 2 0.1029 0.1038 0.0448 0.0490 0.0008 0.0054 

20% 7 0.1108 0.2143 0.0950 0.0739 0.0932 0.0139 

40% 2 −0.1934 0.2463 −0.0245 0.0602 −0.0029 0.0055 

40% 7 0.2185 0.2842 0.2105 0.1242 0.1850 0.0402 
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Table 7. Bias and mean squared error (MSE) of the E(T) estimate for data generated from the log-normal distribution with 
left-censored data. 

Cens. True E(T) 
n = 30 n = 100 n = 1000 

Bias MSE Bias MSE Bias MSE 

0% 2 −0.1160 0.1757 −0.0024 0.0396 −0.0089 0.0050 

0% 7 −0.0348 0.1551 0.0462 0.0429 0.0220 0.0052 

20% 2 −0.0092 0.1253 0.0254 0.0405 0.0211 0.0052 

20% 7 0.1003 0.1701 0.1757 0.0784 0.1375 0.0240 

40% 2 −0.1165 0.1937 0.0575 0.0441 0.0624 0.0086 

40% 7 0.2359 0.2727 0.3138 0.1548 0.2763 0.0825 

 
both series and parallel systems. Another important aspect is that we can obtain credible bounds for the reliabil-
ity function, task that is usually hard if one uses a plug-in estimator for the reliability function. The Example 2 
provides an extensive simulation study with more than one hundred different scenarios. Overall, the model has 
performed very well for estimating the mean reliability time. Some open questions that should be addressed in 
future works are the development of hypothesis tests for the components, for instance, one can have interest in 
testing the hypothesis of equal means of all components (or a subset of components), and the extension of these 
ideas to more general coherent systems. 
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