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Abstract

For a class of (1 + 2)-dimensional nonlinear Schrédinger equations, the infinite dimensional Lie
algebra of the classical symmetry group is found and the one-dimensional optimal system of an
8-dimensional subalgebra of the infinite Lie algebra is constructed. The reduced equations of the
equations with respect to the optimal system are derived. Furthermore, the one-dimensional op-
timal systems of the Lie algebra admitted by the reduced equations are also constructed. Conse-
quently, the classification of the twice optimal symmetry reductions of the equations with respect
to the optimal systems is presented. The reductions show that the (1 + 2)-dimensional nonlinear
Schrédinger equations can be reduced to a group of ordinary differential equations which is use-
ful for solving the related problems of the equations.
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1. Introduction

We plan to consider the (1 + 2)-dimensional coupled nonlinear Schrédinger (2D-CNLS) equations with cubic
nonlinearity
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where u, v are complex-valued functions. The 2D-CNLS equations which describes the evolution of the
wave packet on a two-dimensional water surface under gravity was derived by Benny and Roskes [1] and Davey
and Stewartson [2]. The solutions of the equation have been studied by several authors [3]-[12]. The multi-
soliton solutions were obtained by Anker and Freeman [8]. They showed that the two-soliton resonant interac-
tion occurs and a triple soliton structure is produced. A similarity reductions of the 2D-CNLS equation is also
studied in [9]. Nakamura [10] found explode-decay mode solutions by using the bilinear method. However, the
algebra properties of the Lie algebra admitted by (1) has not been studied so far. The optimal system of the Lie
algebra yields the optimal classification of the invariant solutions set to the 2D-CNLS which is essential to
distinguish the inequivalent classes of the invariant solutions of the equation.

In this paper, we show the optimal reduction classifications of the 2D-CNLS equations (1) through studying
one-dimensional optimal system of the Lie algebra of the equations.

Outline of the paper is following. In 82, the complete infinite-dimensional Lie algebra £* of the Lie sym-
metry group of the 2D-CNLS equations is derived which covered the results obtained in [9]. In §3, the one-
dimensional optimal system of an 8-dimensional subalgebra £*, presented in [9], of the £° is constructed. In
84 the first reductions of the 2D-CNLS Equation (1) with respect to the optimal system obtained in 83 are given.
In 85 we construct one-dimensional optimal systems of Lie algebras of the reduced equations obtained in §4
which yields the second reductions of (1). Consequently, the 2D-CNLS Equation (1) can be reduced to a group
of scale ordinary differential equations, which is essential to solve different exact solutions of the 2D-NLS
Equation (1).

2. The Lie Algebra of the 2D-CNLS Equations (1)

In this section, we present the Lie algebra of point symmetries of 2D-CNLS (1). To obtain the Lie algebra, we
consider the one parameter Lie symmetry group of infinitesimal transformations in (t, XY, u,v) given by

t :t+gr(t,x,y,u,v)+0(52),

X' =x+e&(t,x, y,u,v)+O(eZ),

Yy =y+el (txy,uv)+0(e), @)
u =u+en(t,x y,u,v)+0(52),

Vi =v+ed(t,x, y,u,v)+0(82)7

where & is the group parameter. Hence the corresponding generator of the Lie algebra of the symmetry group
is

0 0 0 0 0
X =7(t,x, y,u,v)§+§(t,x, y,u,v)&+.§(t,x, y,u,v)5+77(t, X, y,u,v)aﬂé(t, X, y,u,v)a.

Transforming 2D-CNLS equations (1) to real case by transformations u=U +iu, v=V +iv,where U, u,
V and v are real functions, one has real form of the 2D-CNLS equations (1) in four unknown functions
U,u,vV and v.

Assuming that the 2D-CNLS equations (1) is invariant under the transformations (2), then its real form
transformed system is invariant under the Lie symmetry group with generator

X =1, +&0, + (0, +n0y +¢0, +yd, +wd,, inwhich z=7(t,x,y,U,uV,v), &=£(t,xyU,uV,v),
C=<(tx,yuuV,v), n=n(txyU,uV,v), ¢=¢(tx,y,U,uV,v), v=yp(txyU,uV,v),

W= a)(t, X, y,U,u,V,v) . By invariance criterion in [11]-[13], we have the DTEs of the Lie symmetry group as
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follows

77v =0”7V =O’¢v =0’¢/ =O!l//v =O,l//u =O,l//U =O!l//xy =0,§V =O!§V =O’§u =07§U =O,§y =01

¢, =08, =0,¢,=0,¢,=0¢,=07,=017 =07,=07,=07,=0,7,=0,

Ug—un+(U°+u?)n, =0,Ug-up—(U°+u?)g, =0,
ug+Un—(U%+u)n, =0,up+Un—(U%+u’)4, =0,
(u¢+U77)+(U2+u2)§x =0, u¢5+U77+(U2+u2)§y =0,

2(ug+Un)—(U?+u? )y, =0, 2(up+Un)+(U*+u’)z, =0

(U?+u*)o—2v(ug+Un)=0,Ud 4V (ug+Un)-up +2(U° +u* )y =0,

29, +U¢& =0,2n, -ug =0,2¢4, -UZ, =0,2n, +ug, =0,4y, - &, =0, +4y, =0,

16u°V? (ug+Un)+4uV (U? +u? ) +U (U2 +u? ), —8u?V (U% +U% )y —20u(U? +u° )y, —4U? (U* +0° )y, =0,

yy

16UV ? (ug+Un)+4uV (U +u® ) +U (U% +u? ), —8uPV (U2 +U° )y —2Uu(U? +U° )y, —4U% (U2 +07 )y, =0,

for functions 7,&,¢,n,¢,w, . Solving this system by characteristic set algorithm given in [14] [15], we obtain
the infinitesimal functions of generator X, i.e.,

T :rl(t),

§:§xr'(t)+§(t),

&=2ye 1)+ (1),

7 =%[—8u¢(t)+4ux5’(t)—4uy§'(t)—4ur'(t)+uxzf”(t)—uy2f”(t)]: ©)
¢:%[&J¢u)-4UX5(0+4Uy§KQ—4ufU)—Ux%ﬂ@)+Uy%"@ﬂ,

y= %[—MV /() +x22¥ (1) - y?e () + 4xE" (1) - 4y< " (1) —8¢'(t)],

w=-vr'(t),

where z(t), &£(t), £(t), ¢(t) are arbitrary functions of their argument. Hence the 2D-CNLS (1) admits
infinite dimensional Lie algebra £”. It is notice that in [9] only a special subset of (3) were found. Namely, if
taking here a linear independent representatives of the vectors (z(t),£(t),4(t).£(t)) as

t=0=¢=0,¢5=1
r=C=¢=0¢=t;
t=£=¢=0,0=1
t=5=¢=0,0=t
t=5=¢0=0,¢=1
§=¢=¢=0,7=1
E=C=¢=07=2
p=¢6=¢=0,7=t

respectively and by transforming U +iu —»u, 6, »90,, 0, —>id,, V+iv—>v, o6, >0, 0, —>id,, we
recover the basis of the 8-dimensional Lie algebra £ given in [9] as follows
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X, =0, X, =0, X3 =0, X, =20, + X3, + Yy, —ud, —2vd,,

1. 1.
Xy =—10, +§|xu6u, Xe =t0, +Elyu6u, 4)
2 1. 2 1. 2 -
X, =170, +tx0, +tyo, — t+Z|x —Zly uo, —2tvo,, Xy =iuo,.

If taking other linear independents case of vector (T(t),é’(t),¢(t),§(t)), we obtain other subalgebras of

L7 . In this paper, we take the case (4) as example to show the investigation procedure for finite sub-algebras
properties of the infinite dimensional algebra £”.
The commutators of the generators (4) are given in the Table 1, where the entry in the i™ row and j"

column is defined as | X;, X |= X;X; =X, X;, (i,j=1-8).
The table is fundamental for our constructing the optimal system of the £° with basis (4).

3. One-Dimensional Optimal System of L8

In this section, we give an one-dimensional optimal system of the Lie algebra £° spaned by (4). Finding
one-dimensional optimal system of one-dimensional subalgebras of a Lie algebra is a subalgebra classification
problem. It is essentially the same as the problem of classifying the orbit of the adjoint representation, since each
one-dimensional subalgebra is determined by nonzero vector in the Lie algebra. Hence it is equivalent to
classification of subalgebras under the adjoint representation of the Lie algebra. The adjoint representation is
given by the Lie series

Ad (exp(£X,)) X, = X, +g[xj,xi]+%gz[[xj7Xi]xi]+...,

where [Xi,Xj] is the commutator given in Table 1, & is a parameter, and i, j=1,2,---,8. This yields

following adjoint commutator Table 2 for (4) in which the (i, j) entry gives Ad (exp(gXi )) X

The following is the deduction procedure of one-dimensional optimal system of (4) by using the method gi-
ven in [15]-[20].

Let X =k X, +k,X, +---+k;X, be an element of £ spanned by (4), which we shall try to simplify using
suitable adjoint maps and find its equivalent representative. A key observation here is that the function
n(X)=(k, )2 —k;k, is an invariant of the full adjoint action, that means n(Ad (9)X)=n(X),Xel’,geG

(the corresponding symmetry group of the Lie algebra £°). The detection of such an invariant is important
since it places restrictions on how far we can expect to simplify X . For example, if n(X ) # 0, then we cannot

simultaneously make kj;,k, and k, all zero through adjoint maps; if n(X)<O, we cannot make either k,

or k, zero!
To begin the classification process, we first concentrate on the coefficients kj,k,,k, of X . Acting simul-

taneously adjoints of X, and X, one has

X = Ad (exp(aX,))o Ad [exp(%XSDX = ii;ﬁixi

with coefficients

2
ky =k, — Sk, +’B—k7,
2
k4:k4_§k7+0{k3_ﬁk4+%k7j’ (5)

2
k, =k, +2a(k4 —§k7J+a2[k3 - pk, +ﬂTk7J.

680
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Table 1. The commutators of (4).

[X. X ] X, X, X, X, X, X, X, X,
1
X, 0 0 0 X, 5% 0 -X, 0
1

X, 0 0 0 X, 0 2% X, 0

X, 0 0 0 2X, -X, X, X, 0

X, -X, -X, -2X, 0 X, X, 2X, 0

X, -=X, 0 X, -X, 0 0 0 0
1

X, 0 -=X, -X, =X, 0 0 0 0
2

X, X, X, X, -2X, 0 0 0 0

X, 0 0 0 0 0 0 0 0

Table 2. The adjoint commutator of (4).

Ad X, X, X, X, X, X, X, X,
1 ,1
X1 X1 Xz Xa XA_gxl Xs_E‘gxs Xe X7+‘9X5_‘9 sz Xa
1 1,
X, X, X, X, X, —&X, X, X=X, X, =eX, 45X, X,
X, X, X, X, X,=26X, X, +&X,  X,-¢X, X, —eX, +&°X, X,
X, e°X, e°X, e X, X, e’ X, e X, e X, X,
X L X L X, +&X X X X X
5 X1+E£Xa 2 Xa X1fz€ Xa 4+5 5 5 6 7 8
X X X, 11 L X, +&X X X X X
6 1 z+7€xa X3+€XZ+Z£ Xs 4+5 6 5 6 7 8
X, X, —eX, X, +eX,  X,+eX,+&X, X, +2X, X, X, X, X,
X X X X X X X X X

There are now three cases, depending on the sign of the invariant 77.
Case 1. If 77(X)>0, then we choose A to be either real root of the quadratic equation

l%ﬂz—kmws:o and a =k, /(k,8-2k,) (which is always well defined). Then k,=k, =0, while

k,=\n(X)#0, so X is equivalent to a multiple of X =X, +k X, +K, X, +ks X5 +K; X, +K; X . Acting
further by adjoint maps generated respectively by X,,X,, X, and X, we can arrange that the coefficients of
X;, X,,Xg and X, in X vanish. Therefore, every element X with 7(X)>0 is equivalent to a multiple
of X,+aX, forsome aeR.No further simplifications are possible.

Case 2. If 7(X)<0 (implies k, #0), set f=0,a=-k,/k, to make k,=0. Acting on X by the
group generated by X, , we can make the coefficients of X, and X, agree, so X is equivalent to a scalar
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multiple of X =(X;+X,)+kX; +K,X, +Ks X5 +ksXq + ks Xy . Further use of the groups generated by
Xg, Xg, X, and X, showthat X isequivalent to a scalar multiple of X, + X, +aX, forsome aeR.
Case 3. If 77(X)=0, there are two subcases. If not all of the coefficients kj,k,,k; vanish, then we can
choose o and S in(5)sothat k,#0,but k, =k, =0,s0 X is equivalent to a multiple of
X = X, +K X, +K, X, + ks X + K, X, +ks X, . Suppose K, #0. Then we can make the coefficients of X,, X,
and X, zero using the groups generated by X, X, and X,, while the group generated by X, independ-
ently scales the coefficients of X, and X,. Thus such a X is equivalent to a multiple of either
X,+&X,+aX, forsome aecR, s=+1.1f k,=0,s50 X isequivalenttoa multiple of
X = Xg +k X, +ky X, +K, X +k; Xq, suppose ks # 0. Then we can make the coefficients of X,,X, and X,
zero using the groups generated by X, X, and X, , while the group generated by X, independently scales
the coefficients of X, and X,. Thus such a X is equivalent to a multiple of either X,+&Xg,e£1. If
ks = ks =0, then the group generated by X, and X, can be reduce X to a vector of the form X, +aX,,

forsome acR.

The last remaining case occurs when k, =k, =k, =0, for which our earlier simplifications were unneces-
sary. If k, =0, then using groups generated by X, and X, we can arrange X to become a multiple of
X, +aX,+bX, for some a,beR. If k =0, but k, =0, X =Kk, X, +k;X; +ksX,+Kk;X;, then we can
make the coefficients of X, and X, zero using the groups generated by X, and X,, while X is
equivalent to a multiple of X,+aX, for some aeR. If k =k, =0, but k=0, we can first act by
Ad (exp(sXa)) and get a nonzero coefficients in front of X, X, which is reduced to the previous case. If

ki =k, =k; =0, but k=0, X =k;X;+k;X, then we can arrange X to become multiple of X, +aX,

for some a <R . The only remaining vectors are the multiple of X .
In summary, an optimal system of one-dimensional subalgebras of £° with base (4) is provided by gene-
rators

X=X, +aXg, n>0, aeR,
X?=X,+X,+aX,, 17n<0, aeR,
X¥=X,+eX,+aX,, n=0, aeR,e=+]

X4:X3+5X5, n=0, &==1,

X® = X, +aXg, n=0, acR, (6)
X®=X,+aX,+bX,, 7=0, abeR,

X7:X2+aX5, n=0, aeR,

XS:X8+aX6, n=0, aeR,

X® =X, n=0.

4. First Optimal Reductions of 2D-CNLS (1) with (6)

In this section, we give a classification of symmetry reductions of 2D-CNLS (1) by using optimal system (6).
Since the similarity, we will introduce the details of computation for X? = X;+ X, +aX; in (6) and directly

give the computation results without showing the details of the procedure for the remaining cases in (6).
The differential invariants (and hence the similarity variables) for the generator X can be obtained by
solving the characteristic system

d dx dy du dv
2 = — = . (7)
1+t tx ty . 1., 1., —2tv
al—t—ZIX +Z|y u
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The system yields the similarity variables as follows
1
7, (t,x, y):x(1+t2)_5’
1
)=y
1
W (2,,2,) = (1417 )Zexp( (1+? 1(4a 1+t%) arctant—t(xz—yz))ju,

“(z,2,)= 1+t2)

Hence we let

u:(1+t2)%vv1(zl, )exp( (1+? )l(4a(l+t2)arctant—t(x2—yz))),

®)
-1
v:(1+t2) W (z,,2,),
and substitute them into the Equations (1), then the equations are reduced to
d’w d2W1 1., 2 2
o (a+z(zz—zl)—p|w1| +2w JW1=O,
9)

2\p,2 2
U 2(|wl|2):0.
dz; dz, 9(z,)

Using the rest elements in (6), we can obtain the rest reductions of 2D-CNLS Equations (1) presented in
following Table 3. Here

5. Further Optimal Reductions of (1) through Reductions of the Equations in
Table 3

In fact, the equations in Table 3 can be reduced further in the similar way which results in the second time re-
ductions of 2D-CNLS (1). We take the second case in Table 3 as example to show the procedure of the second
time reduction of the Equation (1).

Using characteristic set algorithm given in [14] [15], the symmetry algebra generators of the second Equa-
tions (9) with similarity variables of case B in Table 3 is determined as follows

Y, =20, +2,0,, —\A/lawl+%(zf—z§—2a—4wz)awz,

1
Y,=0, +Zzlé’wz,

Y;=0,, —% 2,0 ;, (10)
Y, =—iw'o Y
Ys=0,,
Ys =10, .
Using the same procedure in last section, we can also find an one-dimensional optimal system of one-dimen-
sional subalgebras of the Lie algebra spanned by (10). The optimal system consists of
Y7? =Y, +cY,, Y7 =Y, +cY, +dY,, Y7 =Y, +cY, +dY,, 1)
YZ =Y, +cY,+dY,, Y =Y,+cY,, YZ=Y,,

where ¢, d are arbitrary constants. We take Y, =Y, +cY,+dY, (cd #0) as example to show the further
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Table 3. The first reductions of the 2D-CNLS (1) by optimal system (6).

Invariance

No. Generators in (6) The first reductions variables

+—|z +z — plwf +2w |wt =0,
1 X'e X +aX a7 o2 2\ tey o, 2 Pl ) A
4 8 2,2 2,12 2
o'W O'W 0 (‘wf):O.

rw ow i[ ow @]J{ﬂ

+ — _

oz} oz oz?

oW oW

ot oz

ow  ow | 0° 2
+ w

oz oz oz} (‘ | )

1

+[a+%(zz2 —zf)—p‘mﬂ‘z+2wz}wl =0,
2 X=X, +X, +aX,

2

86‘“2’1—";”1’1 +(%zl+gzz—p‘wlr+2W2)w‘=0,

z z

3 X®=X,+eX, +aX, 8212 6222 2 c
s (w()=o0.
oL o1, 01,

2 2
av‘;_ﬂ+(£zl—p‘vﬂz+2wzjw‘=0,
= X 4 eX oL oz, 2
4 =Ry TEARS 52W2 azwz az 2 D

PR _672(‘\,\/1‘ ):0'
0z, 0z, 0z,

o’w otw - , N
5 X® =X, +aX o oz +(a pwl +2w )Wl—O, E
’ ’ 22 2,512 2

6\1\2’ +6V\2/ _5872(‘\,\[1‘2):0.
621 622 azl

(1—(a+bzl)2)azw1 +i[aw1

. +b(a+bzl)22%
0z, 0z, oz,

ib b? , ,
6 X® =X, +aX, +bX, +('E(a+bzl)+jzz+p\mf\272w )w‘:O, E
" S(a+bz,)

=7Z‘w1‘Z +kz,+k,.
1+(a+bz,)

i%+(1— ! ]62W1 —[Lz—p‘mf\z+2w2]wl=0,

2,2 | A2
7 X' =X, +aX, oz, a‘z ) oz, 2 G
2 2 2
W= W +kz, +k,.
2 .
iﬁ_av\zll+ - 212+p‘wl‘2—2w2 w =0,
. oL, oz, 2z, a’‘z
8 X=X, +aX; S o H
W 2
——-5— | |=0.
oz} oz} (‘ ‘)
) .
iéﬁ—aa\l\:+{zivv‘+p‘vv1r—2ij‘=0,
z z z
9 )(9:)(6 1 2 1 I
o'W’ 0* 2
= 755(\w1\ )-0.
2 2

684
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1

A:u:\/\f(zl,zz)t%l,v:wl( 7 )t ,zfxtz,z =yt
B:u:(1+tz)%w‘(zl,z )exp( (1+t?) (4a(1+tz)arctant—t(xz—yz))),
v:(1+t2) w(z,2,), (1+t)3, z, (1+t)

2
Ciu=w(z, )exp{[ & py ax+gy jj ) zlzx+3tz, zZ:y—gtz.

2
D:u:w‘(zl,zz)exp[i( 6t +%XD V=W (z,2,), 21:x+§t2' z,=Yy.
E:u=w(z,z)exp(ati), v=w(z,2,), =X, z,=Y.

Fiu=w(z,z )exp[ [bxy MD, V=W (z,2,), z,=t, z,=y—(a+bt)x.

G:u:wl(z],zz)exp[i[a vt +ﬂ)j v=w(z,z,), z,=t, 7, =x+aty.
H:u=w(z,z,)ex i Ly =w =t, z,=
=W (z,2,)exp| i| o+ V=W (z,2,),2,=t, 7,=X

2

| :u=w1(zl,zz)exp[i(%]j, V=W (z,z,), z,=t, ,=X.

reduction procedure.
The characteristic system

2
c —i
Z(Czl—dzz)
yields the corresponding similarity variables
d L 22 d?z?  (cz,—dz)dz
1=2,-—1, F(z)=we*, G(z)=w? -2 +——L4+ 2 L1
2 ¢t (2) (2) 8 8’ 4¢?
Hence we let
_i, 2
w=F(z)e WZ:G(Z)+%(1+:—2J212—4%2122, (13)
and substitute them into the underline equations, then the second equation in Table 3 is reduced to
2
dz -1 P +2c:|d—F+(a—i2+lzz—p|F|2+ZGjF=0,
c dz>  ¢* dz c- 4
(14)

&) . &
(c2+d2)[1+4d ] 45F(|F|2)=0.

This is a result of twice reductions of (1) by X?=X,+X,+aX; and Y/ =Y, +cY, +dY, (cd =0) succes-

sively. In the same manner, we can obtain the other reductions of the equation with using the other elements in
(11) which are listed in the following Table 4. In fact, (13) and (14) are listed as second case in Table 4.
Solving the second equation in (14), we have

d’s
c?+d?
where k;,k, are arbitrary constants. Substituting this into the first equation of (14), we get a scale reduction of
2D-CNLS (1) as follows
2
- pj|F| ] F -0,

d? d’F 2didF 1 20
—-1 +——+| a—-—+2kz+2k, +
( 2 jdz2 ¢® dz [ e T (cz+d2

c

G=

|F[ ——z 24 kz+K,,
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Table 4. The second reductions of the 2D-CNLS (1) with X

No. Generators in (11) The second time reductions of 2D-CNLS (1) I\r/m:ﬁgg:;cse
2
(zzfl)(;f+(4+20i)z%—F+(27cz+3cifp\F\2+2G)F:O,
1 Y=Y, 4, dfG © ’ P A
(2% +1)—— +62——+6G - 5| 6+62——+2"— [[F[ =0.
dz? dz dz  dz?
2 2 H
4. jifﬁ‘j’iﬁ {a7%+%zzfp‘F‘z+2G]F:O,
2 Y2 =Y, +cY, +dv, ¢ Jeoca@ ¢ B
A% ey 1o, -
Gic%dz(“:‘ )7@2 +kz+k,, k,k, =constants.
2
(cz—l)(if+(a+%zz—p\F\2+2G)F:O,
3 Y2=Y, +cY, & c
co 2 1
G:ﬂ(\F\ )7§22+klz+kz, k,,k, = constants.
d’F

— +[a—%z2—p\|:f+zej|: =0,
4 a2 =Y, g . D
G=6|F[ +>z%+kz+k, k,k, =constants.
8

where

Y, =20, +2,0, ~W0o, —%(3&121 +3¢7,+8W)a,,,Y, =0, —%aawz,

\ Y, =W, Y, =0,, Y, =id,.

1
Y,=0, 728(%

Arw' =F(z)z", w* = sz(z)—%z,—%zz, =121,

B:w' = F(z)exp(—%], w’ :G(z)—%c(aCJrgd)zi, z=cz,-dz,.

C:w=F(z), w :G(z)—%(a+gc)zﬂ z=1,-cz,
&

D:w =F(z), WZZG(Z)—ZZZ, =1,

where c,d,k, and k, are arbitrary constants.
For X3 X* and X®°, we also have optimal systems and the corresponding reductions which are given in
Table 5, Table 6, Table 7 and Table 8 respectively.

6. Conclusion

In this paper, the infinite dimensional Lie algebra of 2D-NLS Equations (1) is determined. The optimal system
of a sub-algebra £* of the infinite dimensional Lie algebra is constructed using method given in [12]-[14]. As
a result, the first reductions of the 2D-NLS Equation (1) is presented by infinitesimal invariant method [14] [15].
The corresponding optimal systems of the Lie algebras admitted by the first reduced equations are also con-
structed. Consequently, the second time reductions classifications of the 2D-NLS Equations (1) are obtained by
these optimal systems. The twice reduction procedure shows that the 2D-NLS Equation (1) can be reduced to a
group of ordinary differential equations, which is helpful to explicitly solve the 2D-NLS Equations (1).
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Table 5. The second reductions of 2D-CNLS (1) with X3,

No.  Generators in (11) The second time reductions of 2D-CNLS (1) Inva_rlance
variables
2
(zz—l)(:if+(4+2ci)z(:j—F+(2—c2+3ci—p\F\2+2G)F:O,
1 Y7 =Y, 0, dfG i . A
(22 +1)=——+62——+6G -5 6+6z—+z — \F\ =0.
dz? dz dz
2
(dz—cz)d PN iz———p\F\ +2G |F =0,
s dz c dz 2c
2 Y, =Y, +cY, +dY, d B
G— o \F\ +kz+k,, c=0,k,k, = constants.
s ; o d F
3 Y2 =Y, +cY, (c —1)d z p|F| +2G |F =0, G— ,, k., k, = constants. C
2’
4 Y=Y, ?j (a%—p\F\ +2GJF 0, G=6|F[ +kz+k,, ki, k, =constants. D
where
Yl:zﬁz‘+zzab—w‘aw—%(3azl+3ezz+8wz)6wz,Yz:61‘ Allaawz,Y 2, %gawvozfiw'aw Y,=0,, Y,=id,.
Aw =F ()%, w* =2°G(z)- %z,—%zz, =121,
B:w'=F(z )exp[ c) W =G(z)- j‘c(ac+gd)zl,z:czz—dzl.
C:w =F(z), WZZG(Z)—%(3+SC)Z“ z=17,-cz. D:w =F(z), WZZG(Z)—%ZZ, 1=1,.
Table 6. The second reductions of 2D-CNLS (1) with X*.
No. Generators in (11) The second time reductions of 2D-CNLS (1) Inva_rlance
variables
(zz—l)c(jjf+(4+2ci)z(:i—':+(2—cz+3ci—p\F\2+2G)F:O,
1 Y=Y +oy, dfG “© ] A
(2 +1)=——+62——+6G -5 6+62—+z — \F\ =0.
dz? dz dz
2
(dZ—cZ)if+2i9‘ii—[iz+p\F\z—2GjF=o,
2 Yi=Y,4cY, +dY, e e B
Z\F\ +kz+k,, c#0,k,k, = constants.
S +d
4 2 d°F
3 Y=Y, +cY, (c —1)d ( |F[ —ZG)F 0, G— ° +kz+k,, k,k,=constants. C
7?
4 d’F z 2 2
4 Y, =Y, gy g?p\F\ +2G |F =0, G=05|F| +kz+k,, k,k,=constants. D
where
Y, =20, +2,0, ~Wo, —%(3gz1+8w2)aw Y, =0, —%gawz,vz =0,,Y,=-wo,, Y, =0,,Y,=id,.

Arw =F(z)7"%, WZ:sz(z)—%Zl,

1
z=12"z,

B:w =F(z )exp[ c) w =G(z)- %1, z=cz, - dz,.

C:w=F(z), w
D:w =F(z), w’

&
7)-=17, 1=1,-Cz,.
4

=G(
=6(2),

7=
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Table 7. The second reductions of 2D-CNLS (1) with X°.

No. Generators in (11) The second time reductions of 2D-CNLS (1) Inva_rlance
variables
2
(zz—l)((jjf+(4+2ci)zZ—F+(2—cz+30i—p\F\z+2G)F=0,
! Yo=Yy, oo o d A
(22 +1)—+62——+6G 5| 6+67—+72"— |F[ =0.
dz? dz dz dz?
2
(dz—cz)?j'j—Zin—F+(a—%—p\F\Z+ZGJF=0,
2 YE=Y, +cY, +dY, dzaz ¢ca ¢ B
2
G:W\F\ +kz+k,, c=#0, k,k, =constants.
2 d’F 2 c’o 2
3 Y. =Y, +cY, (c 71)?+(a7p\F\ +ZG)F:O, G:CZH\F\ +kz+k,, k,k,=constants. c
5 dZF 2 2
4 Y, =Y, = +(a—p\F\ +2G)F=0, G=05|F| +kz+k,, k,k,=constants. D
z
where
Y, =20, +2,0, -wd, —(a+2w')a,, ¥,=0,,Y,=0,, Y, =—iwd,, Y, =0, Y,=id,.
Aw =F(z2)7,%, w’ :zlzG(z)—g, =12z, B:W:F(z)exp[—%j, W =G(z), z=cz,—dz,.
C:w' =F(z), w'=G(z), z=2,-cz. D:w=F(z), w'=G(z), z=2.
Table 8. The second reductions of 2D-CNLS (1) with X%, X, X7, X8 and X°.
No.  Generators in (6) G_enerators of the The second time reductions of 2D-CNLS (1) Invquance
first reduced egs. variables
ZE+%?TF+(%+L—C——p\F\Z+ZG]F=O,
1 X=X, +aX, Yi=Y, +cY, z z 4 16 A
G:&\F\2+%zz+klz+k2, k,.k, = constants.
2 X°®=X,+aX,+bX, infinite dimensional
. . dF (i . o _
3 X7 =X, +aX, 2/ =2, i 2—+p\F\ -2G |F =0, G is arbitrary function. B
z z
4 X® =X, +aX, WS =W, sz—(l—p\F\z+ZG)F=0, G=6|F[ +kz+k,, k,k, =constants. C
. . dF (1., . .
5 X® =X, Ve =V, +V, e +p|F[ -2G |[F =0, G=6|F| +kz+k,, k,k, =constants. D
z
0 d’F (1., 2 2
V) =V, -V, i T2t -p|F[ +2G |[F =0, G=6|F [ +kz+k,, k,k, =constants. E
e
V=V, %E+|§zd—F—p\F\zF+2FG:O, G=5[F[ +kz+k, k., —constants.  F
z z
Vi=y O IFfF+2FG=0, G=0|F[ +kz+k, K.k, =constant G
=V, dzz—p\ | F+ =0, G=6|F| +kz+k,, k,k, =constants.
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where

Y=o, —‘awo, - Lz0 v, =-iwa, z,=0,,
T 16 :
W, =20, +2,2,0, —(zl + i zf)wlaw -2zW0,,

V, =200, +2,2,0, —(21 + i zj)wlaw‘ -2zW'0,,,

1 1 i
V, =129, +§Z261’ —Ewlaw, -wa,, V,=0, —Tzfawz.

2

AW = F(z)exp[—i[%+%n W2 :G(z)fézf, z=1,.

B:w=F(z), w=0G(z), 2=z,

C:w= sz(z)exp{—izlzjj, W =2%G(z), 2=12",

F:w = z;lF(z)exp[—:‘fz} W =2°G(z), 2=12"2,

1
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