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Abstract 
In this paper we will generalize the author's two nonzero component lemma to general self-reduc- 
ing functions and utilize it to find closed from answers for some resource allocation problems. 
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1. Introduction 
The technique we will use in this paper was first applied by this author to problems in matrix inequalities and 
matrix optimization. Historically, many researchers have established matrix inequalities by variational methods. 
In a variational approach one differentiates the functional involved to arrive at an “Euler equation” and then 
solves the Euler Equation to obtain the minimizing or maximizing vectors of the functional. The same technique 
is also often used in matrix optimization. Solving the Euler equations obtained are tedious and generally provide 
little information. Others have established inequalities for matrices and operators by going through a two-step 
process which consists of first computing upper bounds for suitable functions on intervals containing the 
spectrum of the matrix or operator and then applying the standard operational calculus to that matrix. This me- 
thod, which we refer to as “the operational calculus method”, has the following two limitations: First,it does not 
provide any information about vectors for which the established inequalities become equalities (a matrix opti- 
mization problem). Second, the operational calculus method is futile in extending Kantorovich-type inequalities 
to operators on infinite dimensional Hilbert spaces. See [1] for examples using each of the two methods 
mentioned above. In his study of matrix inequalities and matrix optimization, the author has discovered and 
proved a lemma called the Two Nonzero Component Lemma or TNCL for short. In this paper we will state an 
extension of the author’s Two Nonzero Component Lemma and utilize it to solve some resource allocatoin 
problems. While resource allocatoin problems are not generally formulated in terms of matrices, as we will see, 
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there are some similarities between matrix optimization problems and resource allocation problems Let us first 
state the TNCL as it was used in author's previous papers on matrix inequalities and matrix optimization. 

2. The Two Nonzero Component Lemma 
It was in his investigation on problems of antieigenvalue theory that the author discovered and proved the Two 
Nonzero Component Lemma (see [2]-[4]). Although this lemma is utilized effectively by the author in matrix 
theory, it is by nature a dimension reducing optimization lemma which has potential applications in all areas of 
mathematics and physics. While TNCL was implicitly used in all of the papers just cited, it was not until 2009 
that the author stated a formal description of the lemma in his paper titled, “Antieigenvalue Techniques in 
Statistics” (see [4]). Below is the statement of the lemma. For the proof of the lemma please see the author’s 
work cited above. 

Lemma 1 (The Two Nonzero Component Lemma) Let 1l
+  be the set of all sequences with nonnegative terms 

in the Banach Space 1l . That is, let 

( ){ }1 1, 0 .i il t l tε+ = = ≥t                                   (1) 

Let 

( )1 2, , mF x x x                                       (2) 

be a function from mR  to R . Assume ( ) k
k i ig c t= ∑t  for ( ) 1

k
ic l+∈ , 1l

+∈t , and 1 k m≤ ≤ . Then the  

minimizing vectors for the function  

( ) ( ) ( )( )1 2, , mF g g gt t t                                  (3) 

on the convex set ( ){ }1 : 1i iC t l t= ∈ =∑  have at most two nonzero components.  

What make the lemma possible are the following two facts: First, the fact that the set  

( ){ }1
: 1i iC t l t+= ∈ =∑                                     (4) 

is convex. Second, a special property that the functions  

( ) ( ) ( )( )1 2, , mF g g gt t t                                 (5) 

involved possess. If we set  

( ) ( ) ( ) ( )( )1 2 3 1 2 3, , , , , ,D t t t F g g g= t t t                            (6) 

then all restrictions  

( )1 2 1 1, , , ,0, ,i iD t t t t− +                                   (7) 

of  

( )1 2 3, , ,D t t t                                       (8) 

obtained by setting one component it  equal to zero, have the same algebraic form as ( )1 2 3, , ,D t t t   itself. We  
call functions with this property self-reducing functions. Please note that TNCL is valid for both finite and in- 
finite variable cases. Let us look at an example of a self-reducing function where there are only a finite number 
of variables 1 2 3, , nt t t t  involved. Considered the function  

1 1 2 2
22 2

1 1 2 2 3 3

n nt t t
t t t
β β β

λ λ λ

+ + +

+ + +





                              (9) 

where 1 2 3, , , nβ β β β  are real numbers and 1 2, , nλ λ λ  are complex numbers (this function appeared in [2]).  
Let  

( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , n n
n

t t t
D t t t

t t t
β β β

λ λ λ

+ + +
=

+ + +







                        (10) 
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then we have  

( ) 2 2
2 22

2 2 3 3

0, , , n n
n

t t
D t t

t t
β β

λ λ

+ +
=

+ +







                            (11) 

which has the same algebraic form as 

( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , .n n
n

t t t
D t t t

t t t
β β β

λ λ λ

+ + +
=

+ + +







                          (12) 

Indeed, for any j , 1 <j n≤ ; all restrictions of the function  

( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , n n
n

t t t
D t t t

t t t
β β β

λ λ λ

+ + +
=

+ + +







                          (13) 

obtained by setting an arbitrary set of j  components of ( )1 2, , , nD t t t  equal to zeros have the same alge- 

braic form as ( )1 2, , , nD t t t . 

Obviously, not all functions have this property. For instance, for the function ( )1 2 1 1 2, = 2G t t t t t+ , we have  

( )1 1,0 = 2G t t , which does not have the same algebraic form as ( )1 2,G t t . Note that functions ( )ig t  appearing  
in the statement of TNCL above are finite or infinite linear combinations of 1 2 3, , ,t t t   The lemma was  
originally stated this way because when we deal with a matrix or operator optimization problem each ( )ig t  is  
either a finite or infinite linear combination of variables 1 2 3, , ,t t t  . 

Example 2 In Theorem 1 of [4] we used TNCL to find the minimum of a Rayleigh quotient. A Rayleigh 
quotient of a positive operator C  over positive operators A  and B  is a quotient of the form 

( )

( ) ( )
1 1
2 2

,

, ,

Cf f

Af f Bf f
                                 (14) 

The unit vectors f  for which the minimum in  
( )

( ) ( )
1 10, 0
2 2

,
inf

, ,Af Bf

Cf f

Af f Bf f≠ ≠
                              (15) 

is attained are called stationary values for (14). In Theorem 1 of [4] the minimum of (14) was found by con- 
verting the problem to the problem of finding the minimum of  

2

=1

=1 =1

n

i i
i

n n

i i i i
i i

t

t t

λ

α β

 
 
 

  
  
  

∑

∑ ∑
                                  (16) 

=1
Subject to 1.

n

i
i

t =∑                                  (17) 

In this case ( )1 =1
n

i iig t tλ= ∑ , ( )2 1
n

i iig t tα
=

= ∑ , and ( )3 1
n

i iig t tβ
=

= ∑  The sets { }iλ , { }iα , { }iβ  are the  
set of eigenvalues of C , A , and B  respectively. 

3. A Generalization of TNCL (GTNCL) 
In this section we will show how a generalization of TNCL can be formulated. In the proof of the TNCL in [2] 
and [3] we took advantage of the facts that the set  

( ){ }1 : 1i iC t l t+= ∈ =∑  

is a convex set and the function  
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( ) ( ) ( )( )1 2, , mF g g gt t t  

is a self-reducing function. A function  

( )1 2, , nF t t t  

can be a self-reducing function without being composed of linear combinations of the form ( ) k
k i ig c t= ∑t . 

Example 3 Consider the function 

( ) ( ) ( ) ( ) ( )31 2
1 2, , 1 e 1 e 1 e 1 e .t tt t n

nF t t t − −− −= − + − + − + + −   

This function is self-reducing but is not a composition of linear combinations. A close look at our arguments 
in [3] shows that the only property used was the fact that the function to be minimized was self-reducing and the  
set 1 1n

ii t
=

=∑  was convex. Therefore, we can state the following lemma which is a generalization of TNCL.  
We state the lemma for the case that the number of variables in finite (a case which occurs in many applied 
problems) but the arguments used in [3] show that the lemma is also valid in the case where the number of 
variables is infinite.  

Lemma 4 If the function  

( )1 2, , nF t t t                                       (18) 

is a positive self-reducing function on the convex set 

( ){ }1 : 1i iC t l t+= ∈ =∑                                   (19) 

then the minimizing vectors  

( )1 2= , , nt t t t  

have at most two nonzero components.  
We call the lemma stated above the General Two Nonzero Component Lemma or GTNCL for short. 
Remark 5 We can also use TNCL and GTNCL to find the maximum of a positive self-reducing function on 

(19). To see this please note that if  

( )1 2, , nF t t t                                     (20) 

is a positive self-reducing function so is  

( )1 2

1
, , nF t t t

                                    (21) 

and maximum of (20) on (19) is the reciprocal of the minimum of (21) on (19).  
A general resource allocation problem is stated as  

( )1 2minimize , , , nf x x x  

1
subject to , 0, 1, 2, , .

n

i i
i

x N x i n
=

= ≥ =∑   

which can be converted to  
( )1 2minimize , , , ng t t t  

=1
subject to 1, 0, 1,2, , .

n

i i
i

t t i n= ≥ =∑   

In the following sections we will use GTNCL to compute a closed form answer for the distribution of the 
search effort problem. 

4. The Distribution of the Search Effort 
This problem is formulated as  
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( )
=1

minimize 1 e
n

xi
i

i
pα−−∑  

=1
subject to , 0, = 1,2, , .

n

i i
i

x N x i n= ≥∑   

where α  is a positive number, ip  is the probability of an object being at position i  and ( )1 xi
ie pα−−  is  

the conditional probability of detecting the object at position i . If we define  

xii
N

u
=

 

then the distribution of the search effort problem will be transformed into 

( )
=1

minimize 1 e
n

ui
i

i
pβ−−∑  

=1
subject to 1, 0, 1,2, , .

n

i i
i

u x i n= ≥ =∑   

Theorem 6 The minimum of  

( )
=1

1 e
n

xi
i

i
pβ−−∑                                    (22) 

subject to  

=1
1, 0, 1, 2, ,

n

i i
i

u u i n= ≥ =∑                               (23) 

is either  

( )1 e ipβ−−                                     (24) 

for some ni ≤≤1  or  
1
2e j i

i j i j
i j

p p
p p p p

p p
β−  
 + + +
 
 

                            (25) 

for a a pair of i  and j , 1 i n≤ ≤  and 1 j n≤ ≤ .  
Proof. Since  

( )
=1

1 e
n

ui
i

i
pβ−−∑                                   (26) 

is a self -reducing function, the GTNCL can be used to find the minimum of this function subject to  

=1
1, 0, 1, 2, ,

n

i i
i

u u i n= ≥ =∑                               (27) 

Since α  is positive so is β . Suppose 0, 1,2, ,iu i n≥ =   are components of a minimizing vector on the 
feasible set (27). By GTNCL either there is an i , 1 i n≤ ≤  so that 1iu =  and 0ju =  for j i≠  and 
1 i n≤ ≤  or there is a pair of i  and j , 1 i n≤ ≤ , 1 j n≤ ≤  such that iu o≠ , ju o≠  and ku o=  for 
k i≠ , k j≠ , 1 k n≤ ≤ . In the first case the minimum of (26) on (27) is obviously (24). In the second case the 
minimum of (26) on (27) is the same as the minimum of  

( ) ( )1 e 1 e
uu ji

i jp p
ββ −−− + −                              (28) 

subject to 
1i ju u+ =                                     (29) 
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Expression (28) can be simplified to 

e e
u jui

i j i jp p p p
β

β
−

−+ − −                              (30) 

Substituting 1j iu u= −  in (30) we have 
( )1e e uu ii

i j i jp p p p ββ − −−+ − −                              (31) 

If we differentiate (31) with respect to iu  and put the derivative equal to zero we have 
( )1e e 0u ui i

j ip pβ ββ β− −− =                              (32) 

If we solve (32) for iu , we obtain 

( )1 1ln ln ln
2 2

i
i i j

j

p
u p p

p
β β

β β

 
= + − = +  

 
                        (33) 

Substituting iu  from (33) in (29) gives us 

1 ln
2

j
j

i

p
u

p
β

β
 

= + 
 

                                 (34) 

If we substitute (33) and (34) in (30) we have 
1 1ln ln
2 2e e .

pp ji
p pj i

i j i jp p p p
β β
   
 − +  − +   
   + + +                            (35) 

The last expression is equivalent to 
1
2e .ji

i j i j
j i

pp
p p p p

p p
β−  
 + + +
 
 

                           (36) 

Please note that the derivative of the function  
( )1e eu ui i

j ip pβ ββ β− −−                                 (37) 

with respect to iu  is  
( )12 2e eu ui i

j ip pβ ββ β− −+                                (38) 

which is positive for iu , 0 1iu≤ ≤ . Therefore, by the second derivative test (36) is a minimum value not a 
maximum value for the objective function in the resource allocation problem. ■ 

Although the GTNCL states two components iu  and ju  are nonzero but in general we do not know 
exactly which pair of ip  and jp  expresses (36). When applying TNCL to problems of matrix optimization, 
the author was able to determine exactly which component or which pair of components of the optimizing vec- 
tors are nonzero (see [5]) under certain conditions. The same can be done here. 

Theorem 7 Suppose the probabilities ip , 1 i n≤ ≤  are ordered such that  

1 2 3 np p p p≤ ≤ ≤  
Then the minimum of  

( )
=1

1 e
n

ui
i

i
pβ−−∑  

subject to  

=1
1, 0, 1, 2, ,

n

i i
i

u u i n= ≥ =∑   

is  

( )1 e ipβ−−  
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Proof. Assume  

1 2 3 .np p p p≤ ≤ ≤                              (39) 

Since > 0β  (39) implies that  

( ){ } ( ) 1=1
min 1 e 1 e

n

i i
p pβ β− −− = −  

Furthermore, in (25) assume <i j . Let j

i

p
x

p
=  and 

1
2= ek
β−

. Obviously 1x ≥ . Now (25) can be written  

as  

1i
xp x k x x

x
  
+ + +      

                            (40) 

Note that > 0k . If we define  

( ) = 1 xf x x k x x
x

 
+ + +  

 
                            (41) 

then 

( ) 3
2 2

3
2

d 1= 3 2
d

2

f x
kx k x

x
x

 
− +  

 
                         (42) 

Since 1x ≥  then  
3

2 23 2 3 2 2 2 0kx k x k k k− + > − + = + >                          (43) 

This shows that ( )f x  is an increasing function on [ )1,∞ . Hence on the finite set  

1 2 1, ,i i n

i i i

p p p
p p p
+ + − 

 
 

  

the function  

( ) 1 xf x x k x x
x

 
= + + +  

 
 

has its minimum at 1i

i

p
p
+ . Therefore, if two components iu  and ju  are nonzero, we must have 1j i= +   

and in this case the minimum of the objective function is 
1

12
1

1

e i i
i i i j

i i

p p
p p p p

p p
β− +

+
+

 
+ + +  

 
 

for some i , 1 i n≤ ≤ . Next notice that  

( )
1

12
1 1 1

1

1 e < < e i i
i i i j

i i

p p
p p p p p p

p p
ββ −− +

+
+

 
− + + +  

 
 

for 1 i n≤ ≤ . Hence the minimum of the objective function is  

( ) 11 e pβ−− . ■ 
Since both TNCL and GTNCL are valid for infinite number of variables, these techniques can be used to 

solve resource allocatoin problems involving an infinite number of variables as well. For example, in the distri- 
bution of the search effort problem we can assume the search is for an object on the plane that can be potentially 
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detected at an infinite set of locations (such as points with integer x  and y  coordinates). 

5. Optimal Portfolio Selection 
There are other resource allocation problems that we are able to tackle with GTNCL, One of these problems is 
the problem of optimal portfolio selection. One model for this general problem is formulated as finding the 
maximum of  

1
1
2

,

n

i i
i

ij i j
i j

R x

x xσ

=

 
 
 

 
  
 

∑

∑

 

1
subject to 1, 0, 1,2, , .

n

i i
i

x x i n
=

= ≥ =∑   

(see [6]). Here iR  is expected return on security i  and ijσ  is the covariance between securities i  and j .  
If the correlation coefficients between i  and j  are constant ρ , with 0 < < 1ρ , then 2

ii iσ σ= ,  

ij i jσ ρσ σ=  and from Karush-Kuhn-Tucker conditions the problem is reduced to  

( ) 2 2

=1

11maximize
2 2

n

i i i i
i

R x x
ρ

σ σ
−   − −  

   
∑                         (44) 

1
subject to 1, 0, 1, 2, , .

n

i i
i

x x i n
=

= ≥ =∑   

Notice that (44) is a self-reducing function and one can again apply the GTNCL to find a maximum value for 
it. 

The problems of distribution of search effort and optimal portfolio selection are both examples of separable 
resource allocation problems. A separable resource allocation problem is a problem where we want to minimize 
or maximize  

( )
1

n

i i
i

f x
=
∑  

1
subject to , 0, 1, 2, , .

n

i i
i

x N x i n
=

= ≥ =∑   

where each if  is continuously differentiable over an interval including [ ]0, N . The GTNCL can be applied to  
such a problem if ( )0 0if = , for each i , 1 i n≤ ≤ . This condition is not satisfied for a number of resource  
allocation problems including optimal sample allocation in stratified sampling, and production planning (see [5]). 

Remark 8 In a broader sense, each Kantorovich-type matrix optimization problem such as the one in 
Example 2 can be regarded as a resource allocation problem where our resource is just the set of pure numbers 
on the interval [ ]0,1 . For instance in Example 2 the problem is reduced to finding minimum of  

2

1

1 1

n

i i
i

n n

i i i i
i i

t

t t

λ

α β

=

= =

 
 
 

  
  
  

∑

∑ ∑
 

1
Subject to 1

n

i
i

t
=

=∑  

Each 2
i it z= , where each iz  is a component of a minimizing vector f  of norm 1  for the operator  

optimization problem (15). Indeed nonzero components of a minimizing vector f  are important in applica- 
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tions. Historically, the optimization problem (15) was first discussed by R. Cameron and B. Kouvartakis in an 
effort to minimize the norm of output feedback controllers used in pole placement (see [7]). 

Remark 9. The author is not aware of any other theorem that provides closed form answers for resource 
allocation problems. The results we obtain might be of interest for instance in signal analysis where one needs 
to minimize the resource spent finding a signal that is probable to detected at a certain location. Computer 
models are used for solving such problems and it is interesting to investigate how consistent the results of 
computer models are with our results here. Also, many theories in portfolio selection suggest that diversification 
maximizes the profit. At the first glance this might sound inconsistent with the results one might obtain using the 
two nonzero theorem. However, we have to remember that the over theory also ensures diversification increases 
profit. If the profit is maximized for one or two securities, then the more the number of securities, the more pairs 
of securities we have. 
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