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Abstract 
 
We study the effects of thermal radiation of a viscous incompressible fluid occupying a semi-infinite region 
of space bounded by an infinite horizontal moving hot flat plate in the presence of indirect natural convection 
by way of an induced pressure gradient. The fluid is a gray, absorbing emitting radiation but a non scattering 
medium. An exact solution is obtained by employing Laplace transform technique. Since temperature field 
depends on Reynold number the flow is considered to be non-isothermal case (the temperature of the plate 
Tw ≠ constant) and for an isothermal case (Tw = constant) the flow is determined by the Reynold number 
which is equal to 1. 
 
Keywords: Thermal Radiation, Indirect Natural Convection, Reynold Number, Stefan-Boltzman Radiation 

Parameter 

1. Introduction 
 
Thermal radiation of an optically thick gray gas is of 
great importance to the study of high temperature 
physics and space technology. Mentioning the study of 
this type of problem with a view to analyse the transient 
approach of a radiative heat-transfer aspects of an 
optically thick fluid it seems to be appeared in the 
literature as studied by many authors. England and 
Emery [1] have investigated the thermal radiation effects 
of an optically thin gray gas bounded by a stationary 
plate. The hydromagnetic free convection flow with ra- 
diative heat transfer in a rotating and optically thin fluid 
has been investigated by Bestman and Adiepong [2] and 
Naroua et al. [3]. Soundalgakar and Takhar [4] 
considered the radiative free convictive flow of an 
optically thin gray gas past a semi-infinite vertical 
plate.Takher et al. [5] have studied the radiation effects 
on MED free convection flow of a radiating gas past a 
semi-infinite vertical plate. Radiation effects on mixed 
convection along an isothermal vertical plate were 
studied by Hossain and Takhar [6]. Raptis and Perdikis 
[7] studied the effects of thermal radiation and free con- 
vection flow past a moving vertical plate. Thermal 
radiation effects of an optically thin gray gas were 
studied by Raptis and Perdikis [8]. Muthukumarswamy 

and Ganeshan [9] have considered radiation effects on 
flow past an impulsively started infinite vertical plate 
with variable temperature. Ghosh and Pop [10] have 
studied thermal radiation of an optically thick gray gas in 
the presence of indirect natural convection. Recently, 
several studies on radiative heat transfer have been 
reported by Raptis et al. [11], Duwairi and duwairi [12], 
Vasil’ev and Nesterov [13], Duwairi [14], Quaf MEM 
[15], Ghosh [16,17], Zueco [18], Samad and Rahman [19] 
and Beg and Ghosh [20]. In the light of Ghosh and Pop 
[10] work it is stated that the effect of pressure on 
velocity remains present at y   for > 0t  so that 
the pressure rise region near the leading edge of the hot 
plate leads to increase the velocity .Thus it comes to a 
justification of this problem leading to a fact that the 
pressure becomes absent due to a stagnation point flow. 
Since a thin radiation boundary layer is formed due to an 
optically thick fluid it is considered that the temperature 
varies linearly along the hot plate so that the temperature 
field is depend on the thickness of the radiation boundary  

layer   where 
x

L
   and the thickness of the radia-  

tion layer is considered to be unity. 
Although the radiation boundary layer thickness de- 

pends on Reynolds number the aim of the present inves- 
tigation of the problem is to a study of thermal radiation 
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of an optically thick gray gas in taking into account of an 
unsteady flow of an incompressible viscous fluid occu- 
pying a semi-infinite region of space bounded by an in- 
finite horizontal moving hot flat plate in the presence of 
indirect natural convection by way of induced pressure 
gradient. Since the temperature field depends on Rey- 
nolds number the wall temperature does not constant 
( wT   constant) as the temperature varies along the 
plate and the recovery factor is determined by the Rey- 
nolds number. An uniform wall temperature ( =wT  
constant) for an isothermal flat plate is fully understood 
if the value of Reynolds number is equal to 1. Thus it 
comes to a conclusion that since the temperature field 
depends on radiation layer thickness   it is a decisive 
importance to an isothermal flat plate ( =wT  constant) 
with regard to a finite thickness ( = 1 ) [see Ghosh and 
Pop [10]. In our present problem, the temperature field 
depends on Reynolds number so that the problem is to be 
considered non-isothermal case ( wT   constant) and the 
problem turns into isothermal case ( =wT  constant) 
when the value of Reynolds number is equal to 1. An in- 
teresting feature of this problem is to be determined an 
indirect natural convection flow where the induced 
pressure gradient is considered to be zero at infinity. 
 
2. Formulation of the Problem and Its  

Solution 
 
Consider the unsteady flow of a viscous incompressible 
fluid occupying a semi-infinite region of space bounded 
by an infinite horizontal plates moving with constant ve- 
locity 0u  with reference to indirect natural convection 
by way of induced pressure gradient. The flow is consi- 
dered optically thick gray gas with indirect natural con- 
vection and radiation. We choose the cartesian coordinate 
system is such a way that x-axis is taken along the plate 
in the direction of the flow and y-axis is normal to it [see 
Figure 1]. The induced pressure gradient lies in x-direc- 
tion to the origin of the flow parallel to the plate. All the 
fluid properties are considered constant expect the influ- 
ence of density variation in the body force term. The ra- 
diation heat flux in the x-direction is considered negli- 
gible in comparison to the y-axis. 

The momentum equations in component form can take 
the form  

2

2
= ,

u p u

t x y
   

 
  

             (1) 

0 = ,
p

g
y


 


               (2) 

where   is the fluids density, p the pressure,   the co-  

  

x

y

0u  

g  

  

O

 

Figure 1. Geometry of the problem. 

 
efficient of viscosity and g the acceleration due to gra- 
vity. 

The equation of energy is  
2

2
= ,r

p

qT T
c k

t yy


 


 
            (3) 

where pc  is the specific heat and k the thermal conduc- 
tivity. 

It is assumed that there is a temperature variation along 
the x-direction of the horizontal plate. The temperature of 
the flow can be written as  

 = ,T T Ax y              (4) 

where T is the temperature of the fluid, T  the tem- 
perature of the fluid far away the plate and  y  the di-  

mensionless temperature and 0=
u

A


. 

The equation of state becomes  

 0= 1 ,T T                   (5) 

where   is the density of the fluid,   the coefficient of 
thermal expansion and the other symbols have their usual 
meanings. 

From (2) and (5) we have  

   0 0= d .p gy g xA y y y y F x
y

   
 

     
  (6) 

Sine the temperature is uniform at infinity, it is rea-  

sonably assumed to be 0
y





 as y  . Thus 

y




  

is zero everywhere in the flow. Hence (6) becomes  

   0 0= .p gy g xAy y F x           (7) 

On the use of (7), the Equation (1) becomes  
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   
2

2
0

d1
= .

d

F xu u
g yA y

t x y
  


 

  
 

    (8) 

Using infinity conditions in (8), one find  

 
0

d1
= 0.

d

F x

x
  

Hence the Equation (8) reduced to  

 
2

2
= .

u u
g yA y

t y
   


 

          (9) 

The initial and boundary conditions are  

= 0, = for 0, 0,u T T y t          (10) 

0= , = at = 0, for > 0,

0, at , for > 0,

u u T T y t

u T T y t


  
  (11) 

From (4), it is stated that the temperature of the flow is 
dependent on Reynolds number. 

The dimensionless temperature with the help of (4), 
we get  

  1
= = ,

w x

T T

T T R
  



 
  

         (12) 

where    
=

w

y

T T


 


 and xR  the Reynolds number. 

In comparison to the study of Ghosh and Pop [10] with 
reference to the dimensionless temperature  

   
=

w

T T
y

T T







 
 

, where δ the radiation layer thick-  

ness and the other symbols have their usual meanings with  
x

L
   (L is the characteristic length), it is rigorously  

stated that the radiation layer thickness depends on Rey- 
nolds number and the plate temperatures does not cons- 
tant ( wT   constant). For an isothermal plate ( =wT  
constant), the thickness of the radiation layer should be 
taken finite value i.e. 1  . In this situation, Ghosh and 
Pop [10] have considered finite thickness of radiation 
layer with isothermal flat plate ( =wT  constant). The pre- 
sent investigation deals with non-isothermal, flat plate 
( wT   constant) as the temperature varies along the 
plate and the recovery factor is determined by the Rey- 
nolds number. It seems to be understood that this 
problem turns into isothermal case ( =wT  constant) if 
the Reynolds number = 1xR . 

Introduce the dimensionless quantities  

   2
0 0

1
0

= , = , = , = ,
w

yu u t u
y u

u T T


   

  
 

 

 

3
0

= , the Grashof number,

= , the dimensionless temperature,

w
r

w

q T T
G

u

T T

T T



 












 

0

= , the prandtl number

and = the Reynolds number,

p
r

x

c
P

k
u x

R





    (13) 

where  ,  , pc , k, g and   are, respectively, the co- 
efficient of viscosity, kinemetic coefficient of viscosity, 
specific heat at constant pressure, thermal conductivity, 
gravitational acceleration and the coefficient of thermal 
expansion and the other symbols have their usual mean- 
ings. 

On the use of (13), the Equation (9) becomes  
2

1 1
2

= .r

u u
G

t



 


 

              (14) 

The radiation flux vector can be found from Isachenko 
et al. [21], Equations (16)-(38), page 382 and its formula 
is derived on the basis of the diffusion concept of radia- 
tion heat transfer in the following way:  

44
= ,

3r

T
q

yk








              (15) 

where   and k  are, respectively, the Stefan-Boltzman 
constant and the spectral mean absorption coefficient of 
the medium. 

It is assumed that the temperature differences within 
the flow are sufficiently small such that 4T  may be re- 
garded as a linear function of the temperature. It can be 
established by expanding 4T  i.e. a Taylor series about 
T  and neglecting higher order term. Therefore, 4T  
can be expressed in the following form  

4 3 4= 4 3 .T T T T                 (16) 

Using Equations (15) and (16), the energy Equation (3) 
can be written in a dimensionless form subject to (13) 
such as 

 
2

2
= 1 ,r aP R

 
 
 


 

            (17) 

where 
316

=
3a

T
R

k k

 
  is the radiation paeameter. 

The corresponding boundary conditions are  

1 = 0, = 0 for 0, < 0,u t          (18) 

1

1

1
= 1, = at = 0, for > 0,

0, 0 at , for > 0,
x

u t
R

u t

 

   
    (19) 
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The solutions for the velocity and temperature distri- 
butions can be obtained by applying Laplace transform 
technique subject to the boundary conditions (18) and 
(19) together with the Equations (14) and (17) become 

 

 

 

2
1 1

2

2 4
1

2
2 1

2

2 4
1 2

1
, = 1 erfc

6 2

1
4 e

3 π

1
erfc

6 2

1
4 e

3 π π

a

u A

A

a
A A a a

a
A a A






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

  
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

   





             

 

                  

 
   
 

 

(20) 

and  

  1
, = erfc ,

2x

a

R

  


 
  
 

          (21) 

where  

   1 22

2
= , = and = .

1 11
r r r

x ax

G a G P
A A a

a R Ra R  
 (21a) 

We shall now discuss some particular cases of interest 
Case I: In the absence of radiation parameter = 0aR  

and the prandtl number 1rP  , the solutions (20) and 
(21) reduce to  

 
2

2 4
1

2

24

, = erfc 2
42

erfc erfc
42 2
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2 2
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
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
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

   
 

  
 





      
    

     
    

     

  (22) 

and  

  1
, = erfc .

2xR

  


 
 
 

          (23) 

Case II: In the absence of radiation temperature  

( = 0aR ) and the pressure gradient = 0
p

x




 the Equa-  

tions (1)-(3) transform into a flat plate at zero incidence 
so that the velocity and the temperature fields are iden- 
tical when the prandtl number 1rP  .  
 
3. Discussion and Results 
 
The graphical representations of numerical results with 

different parameters rG , rP , aR , xR  and   for the 
velocity and temperature distributions are plotted against 
  in Figures 2-8. There is steep decline from the wall 
for all profiles in Figures 2-8 and no velocity and 
temperature overshoot. The profiles of spatial dimen- 
sionless velocity  1u  with distance from the wall, at 
various time    are shown in Figure 2. As time,  , 
increases from 0.02, 0.04 to 0.08. we observed that the 
velocity 1u  is increased markedly. With time in Figure 
2 the flow is therefore, accelerate in the downward direc- 
tion. Figure 3 reveals that the velocity 1u  slightly in- 
creases with increase in radiation parameter aR . The ra- 
diation conduction parameter aR  defines the relative con- 
tribution of radiation heat transfer to thermal conduction 
transfer. By applying Stefan-Boltzman constant for an 
optically dense medium it is stated from Figure 3 that an 
increase in radiation parameter aR  leads to a slightly 
rise in velocity 1u  for any value of aR . It is interesting to 
note that in a pressure rise region a slightly increase in 
velocity 1u  is a remarkable feature of an optically thick 
(dense) medium. It is shown from Figure 4 that an in- 
crease in Prandtl number rP  leads to decrease the ve- 
locity 1u . Usually the value of Prandtl number 1rP   
determines the highly ionized gas. In Figure 4 it reveals 
that the velocity 1u  always decreases with increase in 
prandtl number 1rP   for tri-atomic gas of its optical 
measurement. It is noticed from Figure 5 that the ve- 
locity 1u  increases with increase in Grashof number 

rG . This situation reveals that the buoyancy force acce- 
lerates the velocity field and no flow reversal occurs to 
prevent separation. Figures 6 and 7 demonstrate that the 
temperature   increases with increase in either time   
or radiation parameter aR . Figure 8 shows that an 
increase in Prandtl number Pr  leads to fall the tempe- 
rature. In relevance to the physical situation of interest it 
reveals that the temperature decreases with an increase in  

 

 
Figure 2. Velocity distributions u1 with Gr = 2.0, Pr = 4.4,  
Ra = 0.2, Rx = 1.0. 
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Figure 3. Velocity distributions u1 with Gr = 2.0, Pr = 4.4, τ = 
0.02, Rx = 1.0. 

 

 

Figure 4. Velocity distributions u1 with Gr = 2.0, Ra = 0.2, τ = 
0.02, Rx = 1.0. 
 

 

Figure 5. Velocity distributions u1 with Ra = 0.2, Pr = 4.4, τ = 
0.02, Rx = 1.0. 

 
Figure 6. Temperature distributions θ with Pr = 4.4, Ra = 
0.2, Rx = 1.0. 
 

 

Figure 7. Temperature distributions θ with Pr = 4.4, τ = 0.2, 
Rx = 1.0. 
 

 

Figure 8. Temperature distributions θ with Ra = 0.2, τ = 0.2, 
Rx = 1.0. 
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Prandtl number Pr 1  for highly ionized gas. 
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