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Abstract

In this paper, we deal with the uniqueness problems on entire and meromorphic functions con-
cerning differential polynomials that share fixed-points. Moreover, we generalise and improve
some results of Weichuan Lin, Hongxun Yi, Meng Chao, C. Y. Fang, M. L. Fang and Junfeng xu.

Keywords

Nevanlinna Theory, Uniqueness, Entire Functions, Meromorphic Functions, Differential
Polynomials, Fixed Points

1. Introduction

In this paper, the term “meromorphic” will always mean meromorphic in the complex plane C. Let a be a com-
plex number and «(z) be a meromorphic function such that T (r,a)=0{T (r, f)} We say f and g share the
value a CM,if f—-a and g-a assume the same zeros with the same multiplicities; if f(z)-«a(z) and
g(z)—a(z) assume the same zeros with the same multiplicities, then we say f(z) and g(z) share «(z)
CM, especially we say that f(z) and g(z) have the same fixed-points when «(z)=z. It is assumed that
the reader is familiar with the notations of the Nevanlinna theory that can be found, for instance, in [1]. We de-

note by S(r,f) any function satisfying
S(r, f)=o{T(r, )},

as r — oo, possibly outside of finite measure.

Set
N, r,L =N|r, ! +N| T, ! +oo+ N, r,L.
f-a f-a f-a f-a
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It is well known that if f and g share four distinct values CM, then f is a fractional transformation of g. In 1997,
corresponding to one famous question of Hayman, C. C. Yang and X. H. Hua showed the similar conclusions
hold for certain types of differential polynomials when they share only one value. They proved the following
result.

Theorem A ([2]). Let f and g be two non-constant meromorphic functions, n>11 be an integer and
aeC—{0}.If f"f’ and g"g’ share the value a CM, then either f =dg for some (n +1)th root of unity d
or g(z)=ce® and f(z)=c,e™, where c,c, and c, areconstantsand satisfy (c.,)"" c?=-a’.

In 2001, M. L. Fang and W. Hong obtained the following result.

Theorem B ([3]). Let f and g be two transcendental entire functions, n>11 an integer. If f”(f —l) f’
and g"(g-1)g’ sharethevalue 1 CM, then f=g.

Recently, W. C. Lin and H. X. Yi extended the above theorem with respect to fixed point. They proved the
following results.

Theorem C ([4]). Let f and g be two transcendental meromorphic functions, n>12 an integer. If
f"(f-1)f" and g"(g-1)g’ sharezCM, theneither f(z)=g(z) or

(n+2)h(1-h"") :(n+2)(1—h“+1)
(n+1)(1-h"?) "’ (n+1)(1-h"?)

where h is a nonconstant meromorphic function.

Theorem D ([4]). Let f and g be two transcendental meromorphic functions, n>13 an integer. If
f"(f-1)"f' and g"(g-1)°g' sharezCM,then f=g.

We generalise the above results and prove the following Theorem.

Theorem 1.1 Let f and g be two transcendental meromorphic functions, n>m+11 an integer. If
f*(f-1)" f' and g"(g-1)"g' share z CMthen f=g.

For m=1, we get Theorem C.

For m=2, we get Theorem D.

One may ask the following question, can the nature of the fixed point z be relaxed to IM in the above theo-
rems?

In 2008, Meng Chao answered to the above question and proved the following theorems.

Theorem E ([5]). Let f and g be two transcendental meromorphic functions, n>27 an integer. If
f"(f-1)f'" and g"(g-1)g’ sharezIM, theneither f(z)=g(z) or

(n+2)h(1-h"") :(n+2)(1—h””)
(n+1)(1-h"?) (n+1)(1-h"?)

where h is a nonconstant meromorphic function.

Theorem F([5]). Let f and g be two transcendental meromorphic functions, n>28 an integer. If
f"(f-1)°f' and g"(g-1)°g’ sharezIM,then f=g.

We generalise the above results and prove the following Theorem.

Theorem 1.2 Let f and g be two transcendental meromorphic functions, n>m+26 an integer. If
f*(f-1)"f" and g"(g-1)"g' share z IMthen f=g.

For m=1,weget n>24 which improves Theorem E.

For m=2,weget n>28, we get Theorem F.

In 2002, Fang and Fang [6] proved that there exists a differential polynomial d such that for any pair of non-
constant entire functions fand g we can get f =g,if d(f) and d(g) share one value CM.

Theorem G ([6]). Let f and g be two nonconstant entire functions, n>8 be a positive integer. If
f'(f-1)f" and g"(g-1)g’ share1CM,then f=g.

In 2004, Lin-Yi [7] and Qiu-Fang [8] proved that Theorem G remains valid for n>7.

Theorem H ([7] [8]). Let f and g be two nonconstant entire functions, n>7 be a positive integer. If
f'(f-1)f" and g"(g-1)g’ share1CM,then f=g.

We generalise the above results and prove the following theorem.

Theorem 1.3 Let f and g be two transcendental entire functions, n>m+6 an integer. If f"(f —1)m f'

and g"(g-1)"g’ sharezCMthen f=g.
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For m=1, n>7 we get Theorem H.

For m=2, n>8, we get new result.

Fang-Fang discussed Theorem H by replacing CM with IM and proved the following Theorem.

Theorem | ([6]). Let f and g be two nonconstant entire functions, n be a positive integer. If " (f —1) f’
and g"(g-1)g’ sharelIMand n>17,then f=g.

We generalise the above results and prove the following Theorem.

Theorem 1.4 Let f and g be two transcendental entire functions, n>m+15 an integer. If f"(f - ) f'
and g"(g-1)"g’ sharezIMthen f=g.

For m=1, n>16 whichimproves Theorem I.

For m=2, n>17, we get new result.

2. Some Lemmas

Lemma 2.1 ([9]) Let f be a nonconstant meromorphic function, n be a positive integer.

P(f)=a,f"+a,,f""+-+af whereaisameromorphic function satisfying T (r,a)=S(r,f)
(i=1,2,3,---,n). Then

T(r,P(f))=nT(r,f)+S(r,f).

Lemma 2.2 ([10]) Let f be a non-constant meromorphic function k be a positive integer, then

N (r f%k)j<NP+k( 1j+kN_(r,f)+S(r,f),

where N (r%} denotes the counting function of the zero’s of where a zero of multiplicity m is

1
f(k)

ted m times if m<p and p times if Clearly N|r % 1
countea mtumes i1 m_p an p Imesit m> p eary N r,w =N1 r,w .

Lemma 2.3 ([11] [12]) Let F and G be two nonconstant meromorphic functions sharing the value 1 IM. Let

Ho(F o, F )\ (G ,6 )
F’ F-1 G G-1
If H=0,then

T(r,F)+T(r,G)s2{N2(r,F)+ Nz(r’G)+Nz(rvéJ+Nz(r,1H

G

+3{|\_l(r, F)+N(r,G)+ l\_l[r,%}r N(%}}s(n F)+S(r.G).

Lemma 2.4 ([5]) Let f and g be two nonconstant meromorphic functions, m<7, n>7-m positive integers,
a(z) denotes as in section 1 and « =0, and let

F=f"(f-1)"f, G=g"(g-1)"¢’
if Fand G share «(z) IM, then S(r,f)=S(r,g).
Lemma 2.5 ([13]) Let H be defined as above. If H =0 and

_— N (r,é}r N(r,F)+ N(r,é}r N(r,G)

Foon T(r)

<1l rel,

where T(r)—max{T r F T r, G} andllsasetW|th infinite linear measurg, then F=G or FG=1.
Lemma 2.6 (14]) Let Q( )=(n=1)" (W' -1)(w"?* -1)-n(n-2)(w"* -1)", then

QW)= (W=1)" (W=5,)(W=1, ) (W= B )
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where g, eC \{0,1} (j=12,3,--,2n-6), which are distinct respectively.

3. Proofs of the Theorems

In this section, we present the proofs of the main results.
Proof of Theorem 1.2.
Lemma 2.4 implies that S(r, f)=S(r,g).

Let
fr(f-1)" f’
F :—( ) , Q)
z
n _1 m !
9099 )
z
and
F* — 1 fn+m+1_ Cl fn+m+ Cz fn+m—1+“_+(_1)Pifn+l’ (3)
n+m+1 n+m n+m-1 n+1
. 1 "C "C 1
G = n+m+l 1 n+m 2 n+m-1 , -1 p_= n+1, 4
n+m+1 n+mg +n+m—1g " +( ) n+1g )
where p=0,1,2,---

Thus we obtain that F and G share the value 1 IM. Moreover, by Lemma 2.1, we have
T(r,F*):(n+m+1)T(r, f)+S(r, f), (5)
T(r,G*)=(n+m+1)T(r,g)+S(r,g). (6)

Noting that (F*), =Fz, we deduce

m(r, Fl*js m(r,%)+8(r, f)< m(r,éjﬂogws(r, f), @
and by the First Fundamental Theorem,
T(r,F*)gT(r, F)+ N(r, Fl*j—N(r,%jHogHS(r, f). (8)

Note that,

N(r,i*J:(nH)N[r,ijJrN[r, ! J+N(r, L ]+~--+N{r, ! J 9)
F f f-a f-a, f-a,

where a;,a,,---,a, are distinct roots of the algebraic equation

mC m m
0oz G zm*1+¢zm*2+-.-+(—1)”—:o,
n+m+1 n+m n+m-1

R e e R O @

Since F and G share 1 IM, by Lemma 2.3, we have

T(r,F)+T(r,G)< Z[NZ(“ F)+N,(r.G)+ Nz(r.é} Nz(r,éﬂ

1

+3{N_(r,F)+ N(r,G)+ N_(r,Ej+ N_(r,éﬂ+s(r,F)+S(r,G).

and

(11)



H. P. Waghamore, N. Shilpa

Obviously, we have

Nz(r,G)+Nz(r,—jgzﬁ(r,g)+2N£r%)+N r,(g_ll)m]JrN(r,—’jJrlogr
So, we have
T(r,F*)+T(r,G*)sT(r,F)+T(r,G)+N(r, Fl +N(r,é)—N(r,é)

—N(r,é)+2logr+8(r, f)+S(r,9).
From (5) to (14), we have
(n—=m—25)T(r, f)+(n-m-25)T(r,g)<6logr+S(r,f)+S(r,g).

We obtain that n<m+25 which contradicts n>m-+26.
Therefore H =0, that is

Fr,F 8,6
FF’ F-1 G G-1
By integration, we have

where A(;ﬁ 0) and B are constants. Thus
T(r,F)=T(r,G)+S(r,f).

Since,

we note that,

4 I\_l[r,(g _11)m} I\_l(r,%]+ N(r,éj+2logr+s(r, £),

T(r F)““(h%)=T[F,M]+m(r,%jo(r, £(f-1)")-logr.

Similarly, we have

and

T(flG)+m[r|$j2T(r,g" (9-1)")-logr.

()

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(1)

(22)
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From (19) to (22) and applying Lemma 2.5, we get

F=G or FG=1.
We discuss the following cases.
Case (i) Suppose that FG =1.
As in the proof of Theorem 1, in [5] we arrive at a contradiction.
Case (i) F=G,thus F =G’ thatis,

m m
1 f n+m+l Cl f n+m + Cz f n+m-1 T+ +(_1)p 1 .I: n+1

n+m+1 n+m n+m-1 n+1
1 n+m+1 mCl n+m mcz n+m-1 p 1 n+l
= - + +-4+(-1) — .
n+m+1 n+mg n+m—1g ( ) n+1g

Set h= i we substitute f =hg in the above, it follows that

g
(n+m)(n+m-1)---(n+1)g" (h"““+1 —1)— "C,(n+m+1)(n+m-1)--- 2
(n+1)g™* (h"" 1)+ +(=1)" (n+m+1)(n+m)--~(n)(h"* ~1) = 0.

If h is not a constant, using Lemma 2.6 and (23), we conclude that
[(n+m)(n+m=1)-(n+1)g(h™™* ~1)~(n+m-+1)(n+m-1).-(n+1)(h"" -1) |
=(n+m)"(n+m-1)"(n+1)" (W™ -1)" g" = "C, (n+m)"" (n+m-1)""..

(n+1)m_1(n+m+1)(n+m—l)-~~(n+1)(h”*””l—1)m71(h””” ~1)g™*
+o4 (=) (n+m+1)" (n+m-1)" - (n+12)" (h"" -1)"
:(n+m)"”(mm_1)m'1...(n+1)m'1(hn+m+1_1)”"1{(n+m)(n+m_1)...
(n+l)g"‘(h"+m+1—l)—mcl(n+m+1)(n+m—1)~--(n+l)gm‘1(h"+m—1)+---}
+(-1)" (n+m+1)" (n+m-1)"+-(n+12)" (h"" -1)"
By (23), we get
=(n+m)m'l(n+m—1)m'l~--(n+1)m'1(h”*m*1—1)m71{—(n+m+1)(n+m)--~
(h"*=2)f+(n+m+1)" (n+m-1)" - (n+1)" ("7 ~1)"
:(n+m+1)(n+m_1)m*1...(n+1)”‘*1{(n+m)”‘(hn+m+1_1)”"l(hn+1_1)
—(n+m+1)"* (n+m=1)-(n+1)" (h"" _1)"‘}
=(n+m+1)(n+m-1)""-(n+1)"" Q(h),
where
Q(h)=(n+m)" (N —1)" " (" ~1)~(n+m+1)"* (n+m-1)---(n+1)" (" -1)".
Using Lemma 2.6, we get
Qh=(h=1)" (h=4)(N=1,) (N~ Banizm 4)-

where g, e C\{0,1},(j=12,---,2n+2m—4) which are pairwise distinct.
This implies that every zero of h-j, (j=1,2,---,2n) has a multiplicity of at least n. By the Second Fun-

()
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damental Theorem, we obtain that n<m, which is again a contradiction.
Therefore h is a constant. We have from (23) that h"* —-1=0, h"™™ —-1=0, which imply h=1, and hence

f=g.

Proof of Theorem 1.1. Let F and G be given by (1) and (2). Suppose H is given as in Lemma 2.3, and
H = 0. Proceeding as in the proof of Theorem 1.2 we can obtain (3) to (10). Since F and G share 1 CM, by
Lemma 2.3, we have

T(rf)< Nz(r,F)+N2(r,G)+Nz(r,éjJer(r,é).
Hence from (3) to (10) and (12) to (14), we get
(n=m-10)T (r, f)+(n—-m-10)T (r,g) < S(r, f)+S(r,9).
Hence n<m+10, which contradicts that n>m+11.
Proof of Theorem 1.4. Let F and G be given by (1) and (2). Suppose H is given as in Lemma 2.3, and

H = 0. Proceeding as in the proof of Theorem 1.2 we can obtain (3) to (10) and (11). Since F and G share 1 IM,
by Lemma 2.3, obviously we have,

N, (r,F)+ Nz[r,éjs 2N [r,%j+ N [r,(f _11)m ]+ N [r%j
N, (r,G)+ N{r,é}s 2N [r%}r N {r’(g—;l)m} N (r&]

therefore (14) reduces to
(n—=m-14)T (r, f)+(n—-m-14)T (r,g) < S(r, f)+S(r,9).

Hence n<m-+14, which contradicts that n>m+15. Proceeding in the same way as in Theorem 1.2 we get

f=g.

Proof of Theorem 1.3. Let F and G be given by (1) and (2). Suppose H is given as in Lemma 2.3, and
H = 0. Proceeding as in the proof of Theorem 1.2 we can obtain (3) to (10). Since F and G share 1 CM, by
Lemma 2.3, we have

1 1
T(r,F)<N,(r,F)+ Nz(r,EJ+ N, (r,G)+ Nz(r,aj.
Hence from (3) to (10) and (12) to (14), we get
(n=m-5)T(r, f)+(n—-m-5)T(r,g)<S(r, f)+S(r,g).

Hence n<m+5, which contradicts that n>m+6. Proceeding in the same way as in Theorem 1.2, we get
f=g.
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