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Abstract 
In this paper, we apply Exp-function method to give traveling wave solutions of second order sine- 
Bratu type equations. This method is straightforward, concise and effective. 
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1. Introduction 
Nonlinear differential equations have an important role in the study of nonlinear physical phenomena in science 
and technology. This paper investigates the exact solutions of nonlinear second order sine-Bratu type equations 
using the Exp-function method. Recently, several direct methods such as ( )G G′ -expansion method [1]-[3], 
sine-cosine method [4] [5], tanh-coth method [6] [7], He’s homotopy perturbation method [8] [9], F-expansion 
method [10] [11] and others have been proposed to obtain exact solutions of nonlinear partial differential equa-
tions. Using these methods many exact solutions, including the solitary wave solutions, shock wave solutions 
and periodic wave solutions are obtained for some kinds of nonlinear evolution equations. The application of 
Exp-function method to obtain more explicit traveling wave solutions to many nonlinear differential equations 
has been developed by many researchers [12]-[15]. The Exp-function method is based on the assumption that 
the travelling wave solutions can be expressed by a polynomial in Exp-function. It has been shown that this me-
thod is direct, concise, basic and effective. The solution procedure of this method, by the help of Maple, Matlab, 
or any mathematical package, is of utter simplicity. 
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2. Exp-Function Method 
We suppose that the given nonlinear differential ( )u x  to be in the form 

( ), , , , , 0.x y xx yyP u u u u u =                                (2.1) 

where P is a multivariate polynomial in its arguments. In the following, it is explained the basic for implement- 
ing Exp-function method. Taking the change of variable kx wyξ = + , gives ( ) ( )u x U ξ= , where k and w are 
constants parameter to be determined later. Substituting kx wyξ = +  into the Equation (2.1) yields an ODEs 
for ( )U ξ  of the form 

( )2 2, , , , , 0,Q U kU wU k U w U′ ′ ′′ ′′ =                            (2.2) 

where ( ) ( )d .
d

k
k

kU U ξ
ξ

=  So, if possible, integrate Equation (2.2), term by term one or more times. This intro-

duces one or more constants of integration. 
According to this method, we introduce the approach 

( ) ( ) ( )
( ) ( )

exp exp
,

exp exp
m n

p q

a m a n
U

b p b q
ξ ξ

ξ
ξ ξ

−

−

+ + −
=

+ + −




                        (2.3) 

where m, n, p, and q are positive integers, which could be freely chosen, ia  for , ,i n m= −   and jb  for 
, ,j q p= −   are unknown constants to be determined. Substituting Equation (2.3) into Equation (2.2) yields an 

algebraic equation in powers of the Exp-function. Then, to determine the values of m and p, we balance the li-
near and nonlinear terms of the highest order in the resulting algebraic equation. Similarly, to determine the 
values of n and q, we balance the linear terms of the lowest order in Equation (2.2) with the lowest order nonli-
near terms. 

3. Application of the Exp-Function Method 
Consider the following sine-Bratu type equation 

( ) ( )( ), sin , 0.u x y u x yλ∆ + =                              (3.1) 

In order to apply the ( )G G′  method, we use the transformation ,kx wtξ = +  and change Equation (3.1) 
into the form 

( )2 2 sin 0.k w U Uλ′′+ + =                               (3.2) 

And then we use the transformation ( ) ( )( )expv iUξ ξ= , so that 
1 1

sin , cos ,
2 2

v v v vU U
i

− −− +
= =  

which gives 
1

Arccos .
2

v vU
− +

=  
 

 

This transformation will change Equation (3.2) into the ODE in the form 

( )( ) ( )2 2 2 32 0,k w v v v v vλ′′ ′+ − + − =                           (3.3) 

where d
d

vv
ξ

′ = , 
2

2
d
d

vv
ξ

′′ = . Now, we assume that the solution of Equation (3.3) can be expressed in the form  

shown in Equation (2.3). To determine the constants m and p, we balance vv′′  with 3v , by simple calculation, 
we have 

( )
[ ]

1

2

exp 2 3
exp 5

c m p
vv

c p
ξ

ξ
+ +  ′′ =

+





                            (3.4) 
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and 

[ ]
[ ]

( )
[ ]

333

4 4

exp 3 2exp 3
.

exp 3 exp 5
c m pc m

v
c p c p

ξξ
ξ ξ

+ + +  = =
+ +





 

                      (3.5) 

then we get 2 3 3 2m p m p+ = +  which yields the leading term order m p= . Similarly, we balance the lowest 
order terms in Equations (3.4) and (3.5), to determine the values of n and q, we obtain 2 3 3 2n q n q+ = +  which 
leads to the result n q= . 

It is possible to choose the difference values of m, n, p and q. It is seen that when the equation has multiple 
solutions (like solitons) the Exp-function method is able to give us these solutions with the aid of using different 
m, n, p and q. Although it worth mentioning that different parameters may lead to equivalent solutions. 

Case 1: 1p m= =  and 1q n= =  
For simplicity, we choose 1p m= =  and 1q n= = , the trial function, Equation (2.3) becomes as 

( ) ( ) ( )
( ) ( )

1 0 1

0 1

exp exp
,

exp exp
a a a

v
b b

ξ ξ
ξ

ξ ξ
−

−

+ + −
=

+ + −
                           (3.6) 

Substituting Equation (3.6) into Equation (3.3) and taking the coefficients of ( )exp nξ  in each term zero yield 
a set of algebraic equations for 1 0 1 0 1, , , , ,a a a b b w− − , and k. Solving this system of algebraic equations with the aid 
of Maple, we obtain 

2 2 2 2
1 0 0 0 1 1 0 0 0

1 1, , , , 1, , ,
4 4

w w k w a b a b a b b b bλ − −= = − = − = = − = =               (3.7) 

where w and 0b  are free parameters. Substituting Equation (3.7) into Equation (3.6), it is obtained the following 
exact solution 

( )
( ) ( )

( ) ( ) ( ) ( )

0
0

1

0 0

1exp exp 24 1 ,
1 1exp exp exp exp
4 4

b b
v

b b

ξ ξ
ξ

ξ ξ ξ ξ

− + − −
= = − +

+ + − + + −
              (3.8) 

so 

( )
( ) ( )

0
1 2

2
0

2
, π Arccos 1 .

1exp exp
4

b
u x y

bξ ξ

 
 
 = − −   + − −    

 

Case 2: 2p m= =  and 1q n= =  
When the parameters p, m, q and n are chosen 2p m= =  and 1q n= = , the solution is of the following form: 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 1 0 1

1 0 1

exp 2 exp exp
.

exp 2 exp exp
a a a a

v
b b b

ξ ξ ξ
ξ

ξ ξ ξ
−

−

+ + + −
=

+ + + −
                     (3.9) 

Proceeding in a similar way as illustrated in case 1, we can identify parameters, 2 1 0 1 1 0 1, , , , , , , ,a a a a b b b w− −  and 
k in Equation (3.9) as follows: 

( ) ( )

( )( )

( ) ( )

( )( )

22 2
1 1 1 1 1

0 1 1 1 1 1 1

2

2 1 1 1 1 1

0 1 1 1 1 1 1

1, , ,
32

1 5 3 , ,
16

11, ,
32

1 3 5 , ,
16

w w k w a a b a b

a a b a b a a

a b a b a b

b a b a b b b

λ −

−

= = − = + −

= − − + =

= − = − + −

= − − + =

                    (3.10) 
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where w , 1a  and 1b  are free parameters. Similarly 

( )
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

2

1 1 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1 1 1 1

1 1 1 1

2

1 1 1 1 1 1 1 1 1

1 1exp 2 exp 5 3 exp
16 32
1 1exp 2 exp 3 5 exp

16 32
1exp
21 .

1 1exp 2 exp 3 5 exp
16 32

a a b a b a b a b
v

b a b a b a b a b

a b a b

b a b a b a b a b

ξ ξ ξ
ξ

ξ ξ ξ

ξ

ξ ξ ξ

− + − − + + + − −
=

+ − − + − + − −

 + − −  = +
+ − − + − + − −

     (3.11) 

So, 

( )
1

4 4
2 , Arccos .

2
v vu x y

− +
=  

 
 

Case 3: 2p m= =  and 2q n= =  
As mentioned earlier, the values of m and n can be freely chosen, now we set 2p m= =  and 2q n= = , 

Equation (2.3) turns to the following form: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 0 1 2

1 0 1 2

exp 2 exp exp exp 2
,

exp 2 exp exp exp 2
a a a a a

v
b b b b

ξ ξ ξ ξ
ξ

ξ ξ ξ ξ
− −

− −

+ + + − + −
=

+ + + − + −
             (3.12) 

By the same manipulation as illustrated earlier, the following relations is obtained 

2 2
2 0 1 0 0 1

2
2 2 0 1 0 0 1

1 1, , , 0, , 0,
2 4

11, , 0, , 0,
4

w w k a b a a b a

a b b b b b b

λ − −

− −

= = = − = = =

= − = − = = =
                  (3.13) 

where w  and 0b  are free parameters. By substituting Equation (3.13) into Equation (3.12), the following exact 
solution is obtained 

( )
( ) ( )

( ) ( ) ( ) ( )

2
0 0

0
3

2 2
0 0 0 0

1exp 2 exp 2 24 1 ,
1 1exp 2 exp 2 exp 2 exp 2
4 4

b b b
v

b b b b

ξ ξ
ξ

ξ ξ ξ ξ

− + − −
= = − +

+ + − + + −
        (3.14) 

So 

( )
1

3 3
3 , Arccos .

2
v v

u x y
− +

=  
 

 

or 
2

4 2 2 2 3 3 2 4
2 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

3 2 2 3
1 1 1 1 1 0 1 1 1 1 0

2 2
0 1 1 0 1 1 2

3 2
0 0 1 1 1 1 1 1

, 2 ,
5 1 3 3 1 1 1 3 ,

256 16 128 64 64 16 8 256
1 1 1 1 3 1 ,
8 4 2 16 16 2
1 1 , , 1,
2 2

1 3 1, ,
16 16 2

w w k

a b b b a b a b a b a b a b b a

a a b a a b a b b b b

a a b b a a a

b b b b b a b a a

λ

−

−

−

= =

= − + + − − − −

= − + + − +

= − + − = = −

= = = − + 3
1 0 1 1 0

4 2 2 2 3 3 2 4
2 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

1 1 ,
8 2

5 1 3 3 1 1 1 3 ,
256 16 128 64 64 16 8 256

b b b b

b b b b a b a b a b a b a b b a−











 − +

 = − + − − + + + +

      (3.15) 
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where 1 1, ,w a b  and 0b  are free parameters. Substituting Equation (3.15) into Equation (3.14), we obtain the 
following exact solution 

( ) ( ) ( )

( )

( )

( ) ( )

2 2
4 1 1 1 0

3 2 2 3
1 1 1 1 0 1 1 1 1 0

4 2 2 2 3 3 2 4
1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

1 0

1 1exp 2 exp
2 2

1 1 1 1 3 1 exp
8 4 2 16 16 2

5 1 3 3 1 1 1 3 exp 2
256 6 128 64 64 16 8 256

exp 2 exp

v a a b b

a b a a b a b b b b

b b b a b a b a b a b a b b a

b b

ξ ξ ξ

ξ

ξ

ξ ξ

  = − + + − + −   
 + − + + − + − 
 

 + − + + − − − − −    

÷ + + + ( )

( )

3 2 3
1 1 1 1 0 1 1 0

4 2 2 2 3 3 2 4
1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

1 3 1 1 1 exp
16 16 2 8 2

5 1 3 3 1 1 1 3 exp 2 .
256 16 128 64 64 16 8 256

a b a a b b b b

b b b a b a b a b a b a b b a

ξ

ξ

  − + − + −   
 + − + − − + + + + −    

  (3.16) 

So 

( )
1

4 4
4 , Arccos .

2
v vu x y

− +
=  

 
 

4. Conclusion 
In this paper, we have obtained the exact solution of sine-Bratu type equation. We achieved the solution by ap-
plying Exp-function method. The results show that Exp-function method is a powerful tool for obtaining solitary 
solution. It may be concluded that the Exp-function method can be easily extended to all kinds of nonlinear equ-
ations. The advantage of this method over other methods is that we can obtain the exact solution by using a simple 
computer program. The computations associated in this work were performed by using Maple 15. 
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