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ABSTRACT 

The object matching and distribution problem is 
a traditional challenge in different kinds of 
networks, such as kidney distribution networks. 
Applying differential element analysis methods, 
decision tree, integer linear programming the-
ory and stochastic processes ideas, we propose 
models for the objects matching, the distribu-
tion network, the exchange system and the in-
dividual decision-making strategy, and thor-
oughly analyze the relationship between the 
matching rate and the waiting time, and their 
impacts on the efficiency of the donor-matching 
process. And as the experiments, we evaluate 
the algorithms and system by kidney matching, 
decision making and distribution problems on 
real world data. 
 
Keywords: biological system modeling; computer 
aided analysis; computer aided software engineer-
ing; decision-making 
 

1. INTRODUCTION 

The matching and distribution problem is not only a 
problem in mathematics, and computer science, but also 
in medical service. In this paper, we take kidney match-
ing and exchanging as a study case to try to shed light 
into the matching and distribution problem. 

Despite the advances in medicine and health technol-
ogy, the demand for organs for transplantation drasti-
cally exceeds the number of donors. Organs for trans-
plant are obtained either from a cadaver queue or from 
living donors. The keys for the effective use of the ca-
daver queue are cooperation and good communication 
throughout the network. But unfortunately, the network 
needs a lot of improvements to realize an efficient do-
nor-matching process, save and prolong more lives and 
provide strategies for the patients to get a better kidney. 

Based on mathematical models, IT, Ethnics, Sociol-

ogy, Medicine, laws, policies, criteria and so on, we de-
sign a scalable service oriented architecture (SOA) sys-
tem and network, which will improve the efficiency of 
the donor-matching process, the kidney distribution 
process, evaluate strategies for the patients to make the 
decision, and save and prolong more lives [16]. 

In this paper, we address and emphases mathematical 
models for better kidney matching, distribution, exchanges, 
and personal strategies. 

1.1. Scalable SOA Network System 

To make ways to share information on kidney donor, 
matching and transplant much faster, fairer and public, we 
should establish a national scalable service-oriented archi-
tecture (SOA) system and network (the development proc-
ess refers to Figure 1, and the architecture refers to Figure 2) 
to collect, organize and put out the information [11]. 

The aspects of the service definition in SOA: 
1. Services are defined by explicit, implementation- 

independent interfaces. 
2. Services are loosely bound and invoked through 

communication protocols that stress location transpar-
ency and interoperability. 

 

 

Figure 1. Development process [17,18]. 
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3. Services encapsulate reusable business function. 
4. Services to good communication and more donors 

for patients. 
The service flow is as Figure 3 shows. 
The system and network should also be designed to 

base on web service, which provide an emerging set of 
open-standard technologies that can be combined with 
proven existing technologies to implement the concepts 
and techniques of SOA. 

Based on this kind of scheme, the transplant network 
will come to a better status, that is, a better communica-
tion (which has been processed as services), a better ef-
ficiency, a better robustness and a better scalability [11], 
especially making the communication and information 
sharing aggregated services in a distributed heterogene-
ous network computing environment. 

2. MATHEMATICAL MODELS FOR THE 
TRANSPLANT NETWORK 

2.1. Analysis of the Problem 

The popular method nowadays is, to collect personal 

information, evaluate the patients’ situation and give a 
score, and then sort the patients by the score. When a 
kidney appears and is available, the patient who has a 
better matching rate, a higher priority and a higher score 
will get it. This kind of scheme may come to an ap-
proximate best result, but after our extensive research, a 
rigorous reasoning and innovative designs, we propose a 
new program which will should save and prolong lives 
as more as possible, and meanwhile cut the waiting time 
for the patient as short as possible. 

2.2. Assumptions 

1) Everybody’ life obeys exponential distribution. 
2) Malthus Model, Logistic Model and Regressive 

Model are applied to forecast the population changing in 
a short term (a year) [3]. 

3) The population can be divided into four classes: 
a) Normal persons live without nephropathy, and with 

two kidneys. 
b) Normal persons live with only one kidney because 

of a living donor. 

 

Figure 2. Service oriented architecture [16,17,18]. 
 

 
Figure 3. SOA service flow [17]. 
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c) The patients wait for cadaver and living donors, in-

cluding renal allograft dysfunctions after the first trans-
plant. 

d) The patients are healthy now after transplant. 
4) Because the demand for organs transplantation 

drastically exceeds the number of donors, we assume, 
physiologically, any kidney can get a match patient. 

5) The transplant kidney’s life obeys exponential dis-
tribution. 

6) The death rate of the patient in the waiting list is 
higher than that of the population, but after transplant 
operation, before the renal allograft dysfunctions occur, 
the death rate of the patient is considered to be the same 
as the normal, and from the study material, the death rate 
of the operation is very low, maybe can be considered to 
be 0. 

2.3. Definitions and Key Terms 

t  is time, unit: year. 

1x  is the percentage of the patients waiting for do-

nors in the total population. 

2x  is the percentage of healthy patients after trans-

plant in the total population. 
x3 is the percentage of available cadavers in the total 

population at . t
x4 is the percentage of healthy patients after living 

donors transplant in the total population at . t
( )N t  is the total population at . t

( ) ( )i iX t x N t ,  1,2,3,4.i 
a is the probability of serious kidney disease which 

the patients need transplant in the population in a time 
unit. 

b is the death rate of the patients in the waiting list. 
c is the rate of renal allograft dysfunction. 
d is the average death rate in the total population. 
h is the average number of kidneys from living donors 

for a patient. 
k is the productivity of the available cadavers in the 

total population. 

2.4. Design of the Model 

The variation of  at  is )(1 tX ],[ ttt  ( )X t t    
( )X t

Na (

bx 

which should include the new increasing patients, 
, from t to , the number of pa-

tients, , who have to wait for donors again be-
cause of renal allograft dysfunction and the variation, 

, because of death, cadavers and 
living donors. 

tXX  )21

tcx 2

1 32t x t h  

tt 

1 tx

So, 
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Let 0t , so 

1 1 2( ) ( ) ( ) 2 3X t a b h X c a X X aN        

while the variation of X2 mainly depends on renal al-
lograft dysfunction, the decrease from the normal death 
and the increase from cadaver and living donors, so 

2 2 1 2( ) ( ) [ ( ) 2 ]3X t t X t hX c d X X t          

And then, 

2 1 2( ) ( ) 2 3X t hX c d X X      

The variation of available cadavers, X3, is a direct ra-
tio with the number of the healthy people at t, but, the 
people who has made a living donor will only donate a 
kidney after death, so 

1 3 4

3 3 1 4 3 4
1

( ) ( ) ( )
2

1
( )

2

X t t X t k N X X X t kX t

k N X X X t

          

   
 

And then, 

3 1 2 4
1

( )
2

X t kX kX kX k     N

4

. 

Last but not least, we analyze the variation of X4. 
Based on common sense, we would come to an analy-

sis that the living donor always chooses a direct trans-
plant to relatives or friends, so the variation of X4 is 
strongly relative to the variation of X1, meanwhile, these 
donors with only one kidney left will live like a normal 
person with the same death rate if they get the proper 
care, so, 

4 1X kX dX  . 

Above all, 

1 1

2 2

3 3

4 4

2 0

2 0
0

1
0

2
0

0 0

a b h c aX X a
h c dX Xd

N
X Xdt k k k

X Xh d

                                                 

k

(1) 

The above equations describe our model system, and 
if given an initial value, the system can forecast the 
value of . Facts have proven that in 

some years the forecast is quite accurate. 

)()( 41 tXtX 

Coming to the goal of our network model design, it 
should save and prolong more lives, and meanwhile 
should cut the waiting time for the patient as short as 
possible. 

Let 
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J

the accumulative total waiting time in t t

the number of patients who get the proper kidney in t t



, 

which is our index function, and apparently , and 
the smaller J is, the better. 

J 0

Then we will calculate the expression of . J

'

0
1 1 0 ( )( ) ( )( )

f

f f

t
Numerator X t t t dt X t t t

t
   0

0 )

 

f

0
1 1 0

t
= ( ) ( ) ( )(f ft t dX t X t t t

t
    

f f
1 1 0 1 0

0 0

t=t t
= ( )( ) ( ) ( )( )

t=t tf 0fX t t t X t dt X t t t     

f
1 0

0

t
= ( )

t
X t dt , 

3 1
0

(2 )
ft

Denominator X hX dt
t

  , 

So, 

1

0

3 1 3

0 0 0

1

0

1

min
2 2

f

f f f

f

t
X dt

tNumerator
J

t t tDeno ator
X dt h X dt X dt

t t t
h

t
X dt

t

  






  



 

(2) 
Then, we will solve the (1), and analyze the extremum 

of  with the result. J


Let , T T
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Then the (1) becomes to be 

X
=AX+ N

d

dt


  
                 (3) 

Because , let  

, then 
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So the (3) will be 

0Nx+xN=(A x+ )N    

0x=A x+ x
N

N
 

    

0 4x=(A -I lnN)x+
d

dt
  . 

Let 0 4I lnN
d

A A
dt

  , we notice that the percentage 

of patients in the total population N(t) is very small, so in 
the situation that 0ft t  is not large, such as 1ft t  , 

we can apply the classic Malthusian Population Model to 

describe N(t), and get  0

0( ) ,
t t

N t N e
   so N

dt

d
ln  

const , and then, 
0 4

A A I  . 

Based on the above process, the solution of the origi-
nal equation can be calculated by the following formula, 

0( ) 1
1( ) A t tx t e C A    

, 
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0

0

1 ( )
!

A t t n

n
e A t

n


nt


  , and  is a 

regular vector to be determined. 

4
1 RC 

If given the initial condition 
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1 1

1 0 0 0( )C x A X N t A     
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, so 
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,    
0

[ , ]
f

t t t . 

And with ( ) ( ) ( )x t x t N t 
, we can expediently calcu-

late the value of ( )X t


. 

Substituting into J with the expression of X


, it has 
become the function of A. Considering a, b, c, d, h, k, 
which have be defined, we can get that the death per-
centage of the patients in the waiting list, b, closely re-
late to the average length of waiting time. If we apply 
Poisson distribution to describe the renal allograft dys-
function, so c approximately equals the reciprocal of the 
average length of life after transplant, which is related to 
requirements on the kidney medical matching before 
distribution. The more strict requirements on the kidney 
medical matching are, the longer the expected total 
length of life of transplants. But  and  nearly are 
effected by our kidney distribution policies because they 
will just effect only very few patients’ life length, while 

 and  reflect the psychological dynamics of the 
people, which will not be directly changed by our dis-
tribution policies. So we should take  and  as con-
trollable variables, while search , , ,  from 
the public data. 

a

a

d

h

h k

b
d

c
k
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We find that if c is given, J changes with b steadily, A natural idea is to let  and  as small as possible. 
In the actual operation, to decrease the average waiting 
time, we have to loose the condition, while the average 
waiting time will become longer, if we strict the re-
quirements on matching much more, so our goal is to get 
the best combination of  and c . 

b

b

c
while when c increases, J decreases rapidly. So the bot- 
tleneck of the current situation in America is c, that is, 
the rate of renal allograft dysfunction. Based on these 
analyses, we recommend that benefit the patients with 
higher matching rate, and reduce the weight of waiting 
time to let c as small as possible. Because (1) is resolvable, and the form of the solution 

ensures it is continuous derivative about t , so we substi-

tute X


)
 into it, and we can get the expressions of 

( ,J b c . In the actual work, this calculation is very com-

plex, but thanks to some powerful symbol computing 
mathematical software, it will be quickly done. 

Coming to the details, according to actual factors, you 
should determine the domain of J(b,c), and then find the 
nearest point (b0,c0) to axis c=0 in this area. If there are many 

such points, you should take the smallest value of b as . 
0

b

For example, considering 

From the results, we come to the conclusion that 
( , )J b c

( ,

 is continuous derivative about (b,c), and appar-

ently 0≤b≤1, 0≤c≤1. So it’s sure to get the minimum 
of )J b c . Theoretically speaking, we can apply 

2 1
40

0.05 0.8

0.01 0.2

b c
c

b

  


 
  


 

0

0

J
b

J
c

 
  


 
based on the above rules, we should take 0 0( , )b c   

 as data to assist guidance. You should adjust 
next year’ distribution policy, when you find (b, c) 
doesn’t accord last year’s statistical data. 

(0.1, 0.05)

0b b   and 

0c c  will not appear because 
2 1

40
b c
  . If , 

you should increase the weight of waiting time in the 

next year’s evaluation policy; if , you should in-

crease the weight of matching rate. 

0
b b

0
c c

to get the extremum from the solutions, and then screen 
out. But in the actual work, we can apply numerical 
methods to get the numerical solution, and even to ana-
lyze the trend of J by drawing the 3D imagines to guide 
policies. 

2.5. Testing and Result Analysis 

After the analysis of data (2004-2005) in America, we 
et the figure (Figure 4) about J(b,c) as follows. g    

 

Figure 4. J(b,c) situation analysis.  

HEALTH 
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2.6. Conclusions and Solutions 

When distributing kidneys, we are always tending to 
hesitate on balancing waiting time and the matching rate. 
Let’s take a case for example. A kidney matches a pa-
tient completely who just now entered the waiting list, 
while it is barely compatible for a patient who has 
waited for a year. Then the doctor will be puzzled how 
to distribute this precious kidney. By using our model, 
we could get the average latency time and the average 
matching rate. If in the average waiting time, we should 
consider the average matching rate firstly and distribute 
the kidney to the patient with the best match, while out 
of the average waiting time, we should distribute the 
kidney to the patient with the longest waiting time. 

The potential bottleneck is the contradiction between 
matching rate and waiting time. We will evaluate the 
latency risks during the waiting time in Ⅲ-A. 

It is hard to say that the network divided into smaller 
ones is good or not, because the situation varies from 
state to state. In some areas the kidney resource is very 
rare, while the situation is opposite in the other areas. 
Establishing a large network could balance resources in 
all fields. Of course, the patients must have an operation 
immediately because the warranty for a cadaver kidney 
is only 1-2 days [12]. For the reason of distance, it is 
more appropriate to choose a donor in a nearer area. 
Anyhow, it is feasible to substitute the data of the district 
into our model and evaluate overall. 

The ways to save and prolong more lives can be re-
flected by parameters b, c, h which are mentioned in our 
model. In our distribution network, the index function is 

0

0

      [ , ]

          [ , ]
f

f

J

the accumulative total waiting time at t t

the number of patients who get the proper kidney at t t


 

We can change it to be J =the number of patients who 
get the proper kidney. So we can decrease the restric-
tions to pursue the one and only target, saving and pro-
longing more lives, and the system will be more effec-
tive. 

3. DISTRIBUTION DECISION TREE 

3.1. Analysis of the Problem 

As the number of organs for transplanting is restricted, 
while a large number of patients need them, we have to 
consider how to distribute these organs fairly, reasonably 
and effectively. 

The typical approach for distribute is linear matching 

score (
1

n

i i
i

score w a b


   ), but we believe there are 

several defects in this method. 
1) Variables are difficult to normalize. For example, 

0<age<100, commonly, as there are A, B, AB and O four 
blood types. How to put them into a uniform and com-
parable range? 

2) The weight for each variable is hard to confirm. 
So we introduce the decision tree to get across this 

morass. A decision tree is flow-chart-like tree structure, 
where each internal node denotes a test on an attribute, 
each branch represents an outcome of the test, and leaf 
nodes represent classes or class distributions. 

3.2. Attributes for Decision 

We mainly consider these attributes while distributing: 
a. Transplant centre effects 
b. HLA match rate 
c. Incompatibility rate 
d. Patient renal disease 
e. Waiting time 
Each of them has characteristic itself. Based on these 

characteristics, we classify them as follows. 
Boolean Attribute: Transplant centre effects and Pa-

tient renal disease. Kidney transplanting should be oper-
ated as soon as possibly. If the distance between the 
kidney and the patient is too far, it will be impossible to 
make this operation. Based on this factor, patients should 
be classified into two parts, incompatibility and com-
patibility. If the patient is suffering other disease, e.g. 
AIDS or cancer, our advice is that they are not fit to dis-
tribute a kidney. 

Continuous Attribute: HLA match rate and Incom-
patibility rate。Based on the number of match points, the 
output results will be divided into many classes, such as 
r>90%, 90%>r>60%, and r<60% or the top 10%, 
20%~50%, and so on. Treatment will all depend on the 
situation. 

Consult Attribute: Waiting time. If a patient waits for 
a kidney for a long time, he will have a priority. 

The attributes we described are classic, and there are a 
quantity of attributes worth to interpret, e.g. psychology, 
age and so on. They can also be classified as we talked 
about before and we will make further discussions in 3.3. 

3.3. Description of Decision Tree 

The basic algorithm for decision tree induction is a 
greedy algorithm that constructs decision trees in a top- 
down recursive divide-and-conquer manner. The basic 
strategy is as follows. 

The tree starts as a single node representing the in-
formation of patients which maybe in large scale and the 
only kidney for distribute. 

A branch is created for each known value of the test 
attribute, and the patients are partitioned accordingly. 

Finally, every patient are labelled by a leaf which rep-
resenting the match rate of the patient and the kidney, in  
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Figure 5. Basic decision tree to make the distribution. 
 
fact, we can consider that they are classified. The patient 
who gets the best match rate will receive this kidney. 

The implementation and other interpreters of decision 
tree, you may refer to ID3 [8], C4.5 [6] and CART[7]. 

3.4. Improvement 

In this issue, we talk about the improvement be made on 
the tree when considering another attribute, e.g. ABO 
blood type. 

First, ascertain which class this attribute should be 
classified. ABO blood type is Boolean Attribute. 

ABO blood type is a very important attribute, it is 
suited be treated as a child of Transplant centre effects 
and a parent of HLA match rate. 

Since other part of the tree is needless to modify, we 
improve the tree, as in Figure 6. 

3.5. Conclusions 

This solution can be compared and evaluated according 
to the following criteria: 

Distribution accuracy: This refers to the ability of the 
model to correctly predict the class label of new or pre-
viously unseen data. In this model, every patient can 
receive an excellent estimate. 

Speed: Time cost of operations on the tree mostly is O 
(n). 

Robustness: If the condition of a patient is very spe-
cial. We can consider his attribute and improve the tree. 

Scalability: The efficiency of existing decision tree 
algorithms, such as ID3 and C4.5, has been well estab-
lished for relatively small data sets. Algorithms for the  

Tansplant 
Centre
Effects

Local

HLA 
Match Rate

Match Perfect

Non-
distribute

Outsides

Match Poorly
Match Basicly

ABO Blood 
Type Match

Yes

Non-
distribute

No

 
Figure 6. Advanced decision tree to make the distribution. 
 

induction of decision trees from very large training sets 
include SLIQ and SPRINT. 

4. PROCEDURES TO MAXIMIZE THE 
NUMBER AND QUALITY OF 
EXCHANGES 

4.1. Analysis of the Problem 

There are a number of patients and every patient has a 
willing donor. Some pairs are compatible, while the oth-
ers are afflictive because of blood-type incompatibility 
or poor HLA match and so on. For the compatible pairs, 
the transplants are convenient, while the opposite ones 
are helpless even though the donor is self-giving for his 
partner. “This is a significant loss to the donor popula-
tion and worthy of consideration when making new 
policies and procedures.” (http://www.optn.org/ latest 
Data/ view DataReports.asp) 

This situation may be improved by a kidney exchange 
system, which can take place either with a living donor 
or in the cadaver queue. Our goal in this part is to devise 
a procedure that more patients receive more compatible 
kidneys. 

4.2. Assumptions 

1) One pair is a patient with a donor. 
2) We focus on the matching rate which is based on 

the blood-type compatibility and HLA match. 
3) As for psychological dynamics, we assume that all 

donors who take part in the exchange system are so al-
truistic that they are willing to contribute their kidneys to 
any patient in the system. 

4) Every patient is healthy enough that he doesn’t 
need transplant immediately, that is, he has enough 
waiting time, while every donor is healthy and willing to 
donate any time. 

4.3. Definitions and Key Terms 

N is the number of pairs. 
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ijx    where  1 1,0x
ij
  iN, 1 j N, i, j    

Natural Number. If the patient in Pair i receives a kidney 
from Pair j , , otherwise, . 1ijx  0ijx 

ijr   ，where 1 iN, 1 j[0%,100%]ijr  N, i,j  

Natural Number.  It is the match rate of the patient 
from Pair i with the  kidney from Pair j. 

X    is the Matrix whose elements are ijx . 

R    is the Matrix whose elements are . ijr

4.4. Design of the Model 

We build an Integer Programming model to determine 
how to distribute all the kidneys to the appropriate pa-
tients. We have two kinds of best targets, which can be 
applied in different situation: 

1) The entity matching rate is maximal 
2) The number of successful exchange pairs is maxi-

mal 
First, Fill Matrix R using decision tree which we de-

scribed in session 3. 
MODEL:  

In Figure 7, the arrow shows a kidney is passed from
pa

ple, if we had not applied this exchange 
sy

R=[63     0    68      0      0     93     0      0     77    62 
82     0     0       0      0     0      89    70    79    76 
0       0     0       0      0    86      0      0     89     0 
0       0    77      0     58   68     67   100    0    94 
57     0     0       0      0     0      97     0      78    0 
0     75     0       0     74    0      78    89     93  100
0     61     0      89     0    67      0      0      0      0 
60    0      0       0      0    72     78     0      0     61 
90    0     67     63     0    83      0     65     0     60 
60    0      0      0      66    0       0     75     0     0]; 

We solve the problem by Lingo 8.0, and the result is, 
Objective value: w=822.0000 
X( 1, 3)        1.000000           68.00000 
X( 2,10)       1.000000           76.00000 
X( 3, 9)        1.000000           89.00000 
X( 4, 8)        1.000000           100.0000 
X( 5, 7)        1.000000           97.00000 
X( 6, 2)        1.000000           75.00000 
X( 7, 4)        1.000000           89.00000 
X( 8, 6)        1.000000           72.00000 
X( 9, 1)        1.000000           90.00000 
X( 10,5)       1.000000            66.00000

Objective function: 

max result=               (4) TRX

Constraints: 

1

1
n

ik
i

X


 ; k=1, 2... n            (5) 

1

1
n

lj
j

X


 ; l=1, 2... n            (6) 

where (5) means one kidney can be only distributed to 
one patient, while (6) means one patient only gets one 
kidney. 

This model is a classical Integer Programming which 
can be solved by Lingo etc. 

Based on the model, we establish our algorithm: 
Step 1. Establish the database of all pairs, including 

the blood types, HLA characters, and other personal 
data like age, health situation etc. 

Step 2. Fill the Matrix R through decision tree (as 
we provide, or established by users themselves), refer-
ring to session 3. 

Step 3. Solve the model, and gain a nice exchange 
scheme. 

4.5. Testing and Sensitivity Analysis 

In order to illuminate how the procedure works, we 
simulate a representative example. 

We try our best to make sure that the data is random, 
in order to make it universal. The Matrix R produced by 
Matlab7.1 is as follows, 

 
ir j to pair i. 
In this exam
stem, only one pair can accomplish the transplant, that 

is, Pair 1 whose matching rate is 63. However, through 
taking part in the exchange system, all the pairs obtain 
the gratifying kidney. This weight matrix can be consid-
ered to be consummate, but then, there are situations that 
some pairs can not obtain appropriate kidneys even 
though they donate kidneys to others. With the quit of 
the satisfied pairs and entry of new pairs, this network is 
 

 
 

Figure 7. An example of kidney exchange system. 
dyna  will mic, and in the next distribution, these patients
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ger Programming, so the solution 

who would like to exchange their 

 of the matching problem, maybe some of the 
pa

5. STRATEGIES FOR THE PATIENT TO 

5.1

nd awkward situa-

on that whether to take a 
ba

5.2. Assumptions and Definitions 

have the priority to get donor or cadaver kidneys. 

4.6. Justification 

Because we apply Inte
maybe is the best, and we take the pairs in the system 
fairly, so the matching process and result is meaningful 
for the current exchange system. 

4.7. Conclusions 

In this model, all pairs 
organs register at first, and then the system collects the 
information which is useful in the organ matching. Fol-
lowing the procedure that is proposed in 4.4, we can get 
the data that how many more annual transplants will 
generate. 

Because
tients can’t get kidneys even though they have provided 

kidneys for others. But to advocate donors, as compensa-
tion these people will rank a higher priority in the waiting 
list, while patients in the current waiting list have a willing 
but incompatible donor will benefit for this exchange sys-
tem, and you will get the number of the more annual trans-
plants through the procedure we proposed. 

MAKE A BETTER DECISION 

. Analysis of the Problem 

A patient maybe always face a hard a
tion and need a strategy to decide whether to take an 
offered kidney, wait for a better match from the cadaver 
queue or to participate in a kidney exchange. We pro-
pose a strategy considering the risks, alternatives, and 
probabilities to help patients to make a better decision 
and come to a better result. 

When facing the situati
rely compatible kidney, the patient should consider 

and evaluate the risk of waiting, the effect of transplant, 
and the financial factors to make a decision. After study 
a mount of relative materials, we find out that there are 
different exchange modes in different countries. To be 
clear, we take a popular mode as an example to study 
and discuss, which is, once a patient decides to partici-
pate in a kidney exchange, and put out an offer, then he 
will get a very authorized promise that he will get a bet-
ter matching kidney in a given certain time. 

  is the left life length of the patient. 

  is the interval length between two offers(last offer 

he gave up, and this offer he is waiting for) for the pa-
tient. 

  is the normal life time length of the transplanted 

kidney. 
 ,  , and   all obey exponential distribution, and 

their parameters are expectable, and  ,  , and   are 

statistical independent. The parameters of  ,  , are 

relative to matching rate, the health conditio of e pa-

tients and the donors and the donors kidneys. Let 

n  th

  is 

directly proportional to the matching rate, that is, after a 
patient took a cadaver kidney, 1 (0)r   , where 

(0,1]r   is the matching rate. (0)

  is a const deter-

 the condition of the patient. Under the same 

condition, the living donors let 

m dine  by

1 (0)1
r

2   . 

Our goal is to design the bes  tht strategy for e patient 
w

eir in

y the distribution policies in the 

the

hen he faces the situation that whether he should take 
the offer. So we don’t consider the death caused by other 
factors other than nephropathy. For a certain patient, r , 

a random variable, obeys uniform distribution on 
0

[ ,1r . 

(Other distributions can be solved by applying th -
verse functions, which refer to Angel R. Martinez and 
Wendy L. Martinez). 

0r  is determined b

]

network.(e.g. some network only distributes kidney to 
the patient with the matching rate higher than 50%, so 

0r =0.6). Because the probability of the death caused by 

 transplant operating is very small and minimally 
different for different patients, so we assume the patients 
will not die on the operating table. 

5.3. Design of the Model 

Let {  }L p transplant success E , because during the 

in

 

th

use the offers whose matching 
ra

, and -
ch

waiti ace the nephropathy 
death risk, and after successful transplant, before the 
renal allograft dysfunctions, the patients will enjoy the 
normal life, so L  characterizes the expectation of the 
patient after mak g a decision, which is our index func-
tion. 

Our goal is to propose a strategy for the patients to let
L

ng time, the patients will f

 maximum. And the alternative programs are: 
Strategy 1. Take the first offer without hesitation, and 
e matching rate is fr . 

Strategy 2. Always ref
te is lower than er , until get the kidney with er r . 

Strategy 3. Participate in a kidney exchange  ex
ange the barely compatible kidney with our needy 

patients. 
The details of the model are as follows. 
Take the first offer without hesitation. 
Based on assumption 5 (Ⅱ,B), 

{  } 1P successful transplant   
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So, 

1)  [1] 

Wait for a match fr adaver queue. 

1 (0)
1 1 (fE r     L 

er r  om the c

{  }successful ant

{        }

P transpl

P the cadaver kidney arrives before the patient dies

1

{        }

* {        } 
n

e

th

th

P the n offer arrives before the patient dies

P the first time that the n offer satisfies r r











1
0

1 0 0

1{ }*( )
1 1

n
e e

n
n

r r rP
r r

 




  
  . 

Because n  is independent identical distribution 

with  .   and   are statistical independent, so 

{  }P s cessful transplant

0

{ }
x y

y x

uc

P

e e dxdy  
 

 

  

 

 

 
 

0 0
{ }

x
dx EXP x y dy      


    



 


 




. 

So, 

2

1

(0) 1

*

( )

(1 )
( )

2( )
e

L E

r



 




 




 




 




 




 
















 

Participate in a kidney exchange. 
fer obeys truncated 

ex
The waiting time for the next of
ponential distribution, and let T the longest time to get 

the promised kidney, so 

( ) {F t P

0

}

1

{ } 0

0 0

t
 

t

if t T

EXP t dt if   t T

if t

 














  



                             

                           

 



And then, 

}{P successf  } {ul transplant P     

0

( )x

y x

e dxdF y
  

 

   

0
( ( ) (0))xe F x F d

  
   x

xdx

dx

x

 

0 0
( )

T xx y

T
e e dy dx e    

    
       

0
(1 )

T x x x

T
e e dx e    

  
       

( )

0
1

T xe d  


     

( )1 (1 Te   

 


 

   


)  

( )Te    

   

 
   

  
 

. 

So, 

3

1

{  }*

{  }

L P successful transplant E

P successful transplant 



 




 

(0) 11
{  }2(1 ) (

2fP successful transplant r  )   

( ) (0) 1(1 )[ ]( )T

fr e a   


   

 


   
    

 
. 

5.4. Testing and Sensitivity Analysis 

If we want to compare  and , just need to know 

the values of 
1L

,
3L

, ,fr T    , and  are all already 

known. Because 

,fr T

  and   all obey exponential dis-

tribution, so 1 1
,E E

 
     , and then  1

( ) ,E

  

1
( )E


   . 

Because E  is the expected left life length of the pa-

tient without transplant, while E  is the average wait-

ing time length for the next kidney, which can all be 
estimated from the public data. 

For example, in a country, the average lasting time for 
a patient without transplant is 10 years, and the average 
waiting time for a patient to get transplant is 5 years, so 

. 0.1, 0.2   

If 60%, 5fr T  , then 

(0) 1 (0) 1 (0) 1
1

0.2 2
60% ( ) ( ) 0.4( )

0.1 0.2 5
L           



(0) 1
3

(0) 1

1.50.2 0.1
(1 60%) [ ] ( )

0.1 0.2 0.1 0.2

1.1857( )

L e 




     
 


 

So in this situation, the patient should take part in ex-
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change. 
From the above process, we can come to the conclu-

sion that, the larger  , fr  and T are, the smaller   

is, and then the strategy should be taking the offer right 

now; the smaller  , fr  and T are, the larger   is, 

then the strategy should be taking part in exchange and 
waiting for a better kidney. 

5.5. Strength and Weakness 

Based on our assumptions, the distribution of any event 
a patient may face is clear, that is, we can expediently 
calculate the expected values, variances and so on. So 
we have conditions to design different index functions. 

We tried the following index functions, 

{       

    

|      ,

   }

i

th

 

 

K E the left life time of the patients

who are making the decision

at most transplant kidneys two times

choose the i strategy



 

1, 2,3i   

After analyze the decision tree, we can get the expres-

sions of K1, 2
K , and 

3
K , and easily solve them. But 

finally we discard it, because of the following analysis. 
The average life length of transplant kidneys is almost 
10 years, we can not forecast what will happen in this 10 
year, such as the death caused by other factors, and the 
man-made kidney technology progress rapidly, so it’s 
not meaningful to make a 20-years forecast ( transplant 
kidneys two times). 

{   

  

|    }

i

th

C E the expense before

the first transplant

choose the i strategy

  

1, 2, 3i ,  

Because C increases with the expected waiting time 
for the first transplant, and for the same person, the pro-
portion coefficient is the same, so we can let it 1. 

So 

1 0C  ; 

2

0 0

{min{ , } | 2}

( ) ( ) ( ) ( )
x y y x

C E

xdF x dF y ydF x dF y   

 

   



    

'

' ' '

1 1 


'

2

     

 
      

   
  

, 

where '

0

1
1

e
y

r
r 


, so 

0
2

0

2(1 )

(1 ) (1 )e

r
C

r r  



  

. 

3

0 0

{min{ , } | 3}

( ) ( ) ( ) ( )
x y y x

C E

xdF x dF y ydF x dF y   

 

   



    

0 0 0
( ) ( )

T y xx

T
dF y xe dx dF ydF y

 

       

C can be applied as the index to evaluate strategies, 
which is the smaller the better. 

5.6. Conclusions 

By far we have established the model with all the ex-
pressions and equations for the strategy. After the sys-
tem calculate the three results, ,  and , the 

patient just need to compare and choose the maximum. 
1L 2L 3L

Note: Considering
0

0 1
f e

r r r ,   

3 2 0L L 

  

, and T , we can get . 

(0)
, , ,     

0 0
So in the actual strategy, the patients just need to 

choose between “take it right now” and “take part in 
exchange”. It is apparent and easy to explain that, re-
ceiving an offer is an opportunity, but in strategy 2, the 
patient gives it up just because it’s not satisfied, while in 
strategy 3, this opportunity is used fully and becomes an 
advantage. 

6. DISCUSSIONS AND PROSPECTS 

In the donor kidney distribution, whether an individ-
ual or entity, the matching rate is very important and 
we should try our best to match the kidneys. While 
the waiting time is not necessarily the most important 
factor, so the patient should participate in kidney ex-
change, rather than get a rarely matching kidney. 
Because in some acceptable wait time, he has a very 
high probability of getting a good matching rate kid-
ney. 

In the waiting list, the patient with the payback who 
has given up a kidney should get the highest priority. 

The illness condition of the patient is another impor-
tant factor to determine the order of the patient in the 
waiting list. When the condition is quite serious, so the 
more time the patient waits, the greater the probability of 
his death is. For this kind of patients, it is necessary to 
loose the matching requirements and give them priority 
to get kidneys. And our system can achieve the ap-
proximate global optimal solution. 

Our model can also be applied to online products dis-
tribution, the satisfaction rate of the customs is just like 
the matching rate in our model. 

With the progress of the technology and society, 
maybe we should pay close attention to organ clone 
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