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Abstract 
The coastal marine habitats are often characterized by high biological activity. Therefore, moni-
toring programs and conservation plans of coastal environments are needed. So, in order to con-
tribute to decision making process of the Brazilian Information System of Coastal Management, 
this paper presents a preliminary analysis of the effects of simulated deletions of individual orga- 
nisms within a planktonic network as knowledge acquisition platform. An in situ scanning flow 
cytometer was used to data acquisition. A static and undirected food web is generated and re- 
presented by a fuzzy graph structure. Our results show through a series of indices the main 
changes of these networks. It was also verified similar traits and properties with other food webs 
found in the literature. 
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1. Introduction 
The Coastal Zone―CZ―is the area where interaction between the sea and land processes occurs giving rise to a 
number of habitats often characterized by high biological activity [1]. In Brazil, the CZ is a geopolitical concept 
and a territorial unit defined in legislation for the purpose of environmental management [2] to attempt to achi- 
eve sustainability. Along the Brazilian coast, the CZ of Rio de Janeiro state is of special interest since it presents 
four coastal sectors [3] according to its management challenges such as 1) the estuarine complex of Ilha Grande 
bay with harbors, nuclear power plants and a petroleum terminal in the green South Coast; 2) a high population 

http://www.scirp.org/journal/jilsa
http://dx.doi.org/10.4236/jilsa.2014.62009
http://dx.doi.org/10.4236/jilsa.2014.62009
http://www.scirp.org
mailto:gcp@coc.ufrj.br
mailto:lucio@vm.uff.br
mailto:rpespindola@uezo.rj.gov.br
mailto:nelson@ntt.ufrj.br
http://creativecommons.org/licenses/by/4.0/


G. C. Pereira et al. 
 

 
114 

pressure and two outfalls on the Coast of the Bay of Guanabara, as well as much of the petrochemical industries 
of the state beyond the port of Rio de Janeiro (middle coast); 3) a strong urbanization process and high touristic 
activity in the Coastal Lakes Region where an upwelling process takes place giving a great marine productivity; 
and 4) high oil prospecting activity in the North Coast besides the estuary of Paraíba do Sul river that cross the 
largest agricultural area of the state. Thus, some of the biggest obstacles for an effective coastal management of 
this state are the limited experience in coastal management; limited understanding of the interconnectedness of 
coastal and marine processes; low conservation of marine biodiversity; supervision inadequate; shortage of 
trained human resources, relevant technologies and appropriate monitoring equipment. 

So, the aim of this paper is to contribute to the Information System of the Coastal Management―SIGERCO, 
developing a system for monitoring the marine environment based on real time information. The main goal is to 
gain knowledge about the biological community structure through graphs that are representative of the interac-
tions among the planktonic organisms. We recently began investigating the use of network analysis based upon 
natural environmental co-occurrence patterns to examine the complex interactions among plankton communi-
ties.  

In the same way many authors [4]-[7] have used different approaches to evolve food web structures in order 
to analyze their many features. One of the most important is the interaction strength that has shown to be typi- 
cally characterized by few strong interactions embedded in a majority of weak links whose arrangement accord-
ing to [8] promotes community-level stability. However, in real food webs these interactions are very dynamic 
once for each time they present a different value giving a factor of great imprecision and uncertainty. In this way, 
[9] [10] have demonstrated the use of fuzzy cognitive maps to build prototype models of complex food webs.  

We stick to the restrictive use of the term food web because we recognize the diversity of other possible eco-
logical interactions that can be represented in a multigraph structure. For this reason it is not intended to gener-
ate a directional graph which is characteristic of the traditional food webs that indicate who eats whom. 

2. Material and Methods 
2.1. Studied Area 
The Ilha Grande bay (Figure 1), southern of Rio de Janeiro state, is a system formed by a large retract of the 
shoreline and has two access bars, one from 23˚06'13.35''S 43˚59'44.17''W (Marambaia tip) and another from 
23˚17'20.64''S 44˚29'06.85''W (Juatinga tip) due to location of the Ilha Grande island. Inside there are other 
smaller bays as of Sepetiba (northern part), Ribeira (middle) and Parity (southern part), a large number of coves, 
beaches and islands of great natural beauty that make the region a major tourist hub. Its shores are mountainous 
with a dense rainforest whose slopes plunge into the sea. This estuary is considered to be a biodiversity hotspot 
and includes a high number of protected areas [11]. Within the Ilha Grande bay are found the Itaguaí hub port, 
an oil terminal (TEBIG), the Verolme shipyard, two nuclear power plants for electricity generation besides an 
expanding industrial park [12]. Because of it, this region has undergone a significant increase in pollution over 
the last decades [13] [14] which has resulted in worsening of the degradation scenario. 

2.2. Data Acquisition and in Situ Flow Cytometry 
For real time data acquisition the CytoSense flow cytometry (CytoBuoy bv, Worden, The Netherlands) was used 
with the same configurations of [15]. This device is connected to the computer by Wi-Fi connection and data 
transferred by the Internet for remote operation. It can detect and record large suspended particles (>1 - 1000 
mm diameter) in relatively large volumes of water (more than 4 cm3 per sample).  

The CytoSense is equipped with a solid blue laser providing 20 mW at 488 nm, one frontal sensor named 
forward scatter (FWS) which measures the light deviation angle according to the passage of the particle through 
the laser, one side scatter (SWS, 446/500 nm) detector measuring the reflected light that has interacted with 
structures within the cells giving a sense of its granularity, and three others sensors to detect the red fluorescence 
produced by the amount of chlorophyll-a (FLR, 669/725 nm); one orange/yellow (FLO, 601/651) sensor and a 
green/yellow (FLY, 515/585 nm) sensor that measure the amount of phycocyanin and phycoerythrin fluores-
cences respectively [15]. 

The CytoSense is equipped with a solid blue laser providing 20 mW at 488 nm, one frontal sensor named 
forward scatter (FWS) which measures the light deviation angle according to the passage of the particle through  
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Figure 1. The Ilha Grande bay, south of Rio de Janeiro state—Brazil. 1 is the 
location of the two nuclear power plant for electricity generation, 2 is the 
TEBIG, an oil terminal and 3 is the CytoSub monitoring site.               

 
the laser, one side scatter (SWS, 446/500 nm) detector measuring the reflected light that has interacted with 
structures within the cells giving a sense of its granularity, and three others sensors to detect the red fluorescence 
produced by the amount of chlorophyll-a (FLR, 669/725 nm); one orange/yellow (FLO, 601/651) sensor and a 
green/yellow (FLY, 515/585 nm) sensor that measure the amount of phycocyanin and phycoerythrin fluores-
cences respectively [15]. 

In addition to the 5 basic parameters (FWS, SWS, FLR, FLO and FLY), some simple mathematical models 
were assigned to each signal shape: inertia, fill factor, asymmetry, number of peaks, length, and apparent size 
(FWS size) [16]. All these values were summarised in cytograms to facilitate the identification of groups of cells 
or organisms with similar optical properties derived from these models. However, data acquisition was perform- 
ed using the CytoUSB software provided by the manufacturer. 

2.3. Data Preparation 
As a result the CytoBuoy generated a file with a matrix of 30 columns and 2.700 lines regarding to integrated 
values of each cytometric parameter of pulse shape. This matrix is the result of the six mathematical model ap-
plied to the 5 primary parameters (sensors). Then, to reduce the matrix dimensionality without however losing 
information the first approach was to discard those variables with low variation, it means min and max values 
near its average value. A second approach was to perform a statistical correlation in order to determine which 
variables are the most important, in this case to retain those variables without statistical significance. 

2.4. Graphs and Networks Generation 
A network can be described as consisting of nodes (individuals) and edges (interconnections between them) 
usually displayed through graphs enabling analyze the patterns it contain. However, although the amount of col-
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lected data, there is no information on these pattern of connection. Therefore it is necessary to choose a method 
that can establish these edges. Given the dynamic nature of these interactions we have adopted a fuzzy logic 
based approach. 

A fuzzy relationship ( ) ( )( ) ( ){ }, , , , 0, ,RR x y x y x y x A y Bµ µ= ≥ ∈ ∈  has its degree of relevance given by  

[ ]: 0,1R A Bµ × → , which makes ( ),R x yµ  to be the strength of the relationship between x e y [17]. So any 
fuzzy relationship E  in a fuzzy subset V  of a set S  can denote a weighted graph, or fuzzy graph, so that  
the edge ( ),x y S S∈ ×  has a weight or force, as expressed by [18]. Formally, a fuzzy graph ( ), ,G S V E=    is a  

not empty set S  associated with a pair of functions [ ]: 0,1V S →  and [ ]: 0,1E S S× → , such that for every  

x  and y  belonging to S  has ( ) ( ) ( ),E x y V x V y≤ ∧   , considering ∧  as negligible [18]. In most general  
case, vertices and edges have relevance values, but in this work is used the special case assumption 
( ) 1V x x S= ∀ ∈ , which gives meaning to the use of values relevance only to the edges. Therefore, the fuzzy 

graph notation will simply be ( ),G V E=  . It was used a triangular membership function according to the fol-
lowing criteria: 

( ) 2

2 1

,A
a xx x X
a a

µ
−

= ∀ ∈
−

                               (1) 

in which the maximum value 2a  is the maximum distance found between the set target and all other particles 
in the sample while the minimum distance, assumed by 1a  is zero. The strategy is as the following steps: 

1) normalizing the data using the amplitude; 
2) creating a square matrix of distances using the Euclidean distance; 
3) create a triangular pertinence matrix, considering in turn each particle as a collection target unit; 
4) combine the pertinences through the operation of algebraic product, once the logic the above step establish 

two pertinences for each pair of particles; 
5) apply an alpha cut off as arbitrated in accordance with the desired granularity, so that the network is 

formed only by particles, which will be nodes, whose relevance is greater than alpha. 

2.5. Network Metrics 
All tasks of network generation, extraction of key features and application of indices were performed on Java 
programming language used with the JUNG (Java Universal Network/Graph) framework, both free license. The 
network metrics used was: 

Degree is the number of links (edges) from a node with whom it is directly affiliated—obtained by the arith-
metic mean of all degrees [19].  

Degree of variance, is a measure of how much the nodes differ in terms of activity [20]—calculated as: 

( )( )2

1
n

ii d n d
V

n
=

−
=
∑

.                                 (2) 

Density is a global measure that represents the proportion of existing edges in relation to the maximum possi-
ble edges [20], calculated as: 

( ) ( )
2

1 2 1
L L

n n n n
∆ = =

− −
.                               (3) 

Connectance is a special case of density that allows inferences about the network complexity and dynamics. 
Here it is measured as: 

2

LC
n

= .                                       (4) 

Diameter and Average degree of separation is the shortest path that separates node x from node y, If there are 
disconnected nodes will be zero-valued paths making ( ), :dist x y = ∞  The greatest distance between any two 
nodes defines the network diameter [19]. The average degree of separation can be calculated in an undirected 
network as: 
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Complementary cumulative distribution function (CCDF) [21] denotes the probability of a random variable X 
having a behavior given by: 

( )
n nx xF x p
≤

= ∑ .                                    (6) 

The degree distribution is an important structural property on any real network whose fraction of nodes with 
degree k is given by: 

( ) kn
f k

n
= .                                      (7) 

however the complementary cumulative distribution of the degree is more interesting since the CCDF graph 
provides good visualization of the degree distribution with heavy tail or power law patterns. So, applying (4) in 
(5), the complement can be obtained from: 

( ) ( )1
01 k

iF k f i−

=
= −∑ .                                  (8) 

Clustering coefficient determine whether a graph is a small-world network [22]. It is a local measure of a node 
that quantifies how close its neighbors are to being a clique (a subset of nodes). Ultimately it gives the average 
probability of two neighboring nodes of a node are also neighbors [23] and it is given by: 

( )
2

1
2
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,                                 (9) 

while the overall coefficient is obtained dividing the sum of the local coefficients and the total network nodes 
[23] as follow: 

icc
cc

n
= ∑ .                                     (10) 

Degree centrality is a simple measure, with exactly the degree of the node ( )( )d iC i d= , but allows interpre-
tations, as the assumption that more connected nodes have more influence on the network [23]. Getting high de-
gree a node also indicates the location of the points of greatest activity on the network [20]. 

Betweeness centrality quantifies the node participation in the shortest path between any pair of nodes in the 
network ranking those exerting greater control over the interactions between non-neighboring nodes within a 
network [20]. The numerical value of intermediation, for a given node i, is the sum of the ratios between the 
number of shortest paths between a node s and a node t that pass i and the total amount of existing shortest path 
between s and t. expressed by: 

( )
i
st

b
st st

n
C i

g
= ∑ .                                    (11) 

Closeness centrality is based on the concept of distance and the subject is to measure how close a node is to 
all others in the network, indicating the potential speed of your interactions [20]. To calculate the average geo-
desic distance of a node i, it is commonly used divide the sum of the geodesic distances between it and all other 
network nodes by the number of nodes minus 1, the node i itself: 

( )

1
ijj i
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≠=
−

∑
.                                    (12) 

However, this average shows lower values for more central nodes, and high values for most peripheral nodes. 
To maintain harmony with other measures of centrality, a proximity is calculated as the inverse of the mean: 
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c
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3. Results and Discussion 
Table 1 present the set of 20 selected variables after the data preparation procedure so that for the Length para-
meter, only the FWS was selected. The fluorescences FLY, FLO and FLR were selected to the Total, Inertia and 
Number of cells parameters while all the primary five variables (FWS, SWS, FLY, FLO, FLR) were selected for 
both Fill Factor and Asymmetry. 

The distribution of these twenty variables is present in the appendix and the correlation matrix between then 
can be seen in Table 2. 

First, regardless to the level of correlation, Table 2 demonstrate all variables are reasonably correlated each 
other. The greatest correlation coefficient is 0.92 and 0.77 between the variables Total FLO and Total FLR, and 
variables Total FLY and FLO respectively. The occurrence two (FLR and FLO or FLR and FLY) or three (FLR, 
FLO and FLY) fluorescences in the same particle is a feature of cyanobacteria. Second, the positive correlation 
between the Length FWS that determine the apparent size and the Number of Cell fluorescences is an indication 
of the occurrence of filamentous algae or colonies or aggregates of micro algae cells and/or cyanobacteria. 
Another interesting information in Table 2 is the negative values of the Number of Cell fluorescences and its 
asymmetry indicating a heterogeneous pattern on pigments distribution within the cells. 

The components or nodes of the planktonic network (Figure 2) represent many sort of marine planktonic 
or-ganisms, notedly coming from phytoplankton (eukaryotic algae, diatoms, cyanobacteria, dinoflagellates and 
coccolithophores) that support photosynthesis and zooplankton (small protozoans and metazoans) that feed on 
the other plankton and detritus generally with smaller sizes. So that the body size determines the position of or-
ganisms in plankton food webs [24]. Their classical size distribution are picoplankton with sizes less than 2 µm, 
nanoplankton comprising sizes between 2 and 20 µm, microplankton ranging from 20 to 200 µm and mesop-
lankton above 200 µm until 2 mm. It is worth to say, the maximum size detectable by the CytoSub instrument is 
1mm. Thus, the graph of Figure 2 depict different sized and colored circles representing a high diversity of au-
to-fluorescent particles, species of phytoplankton, and gray ellipses and rectangles referring to the primary and 
secondary consumers. An important observation is the phytoflagellates, any member of a group of flagellate 
protozoans, that have many characteristics in common with algae. They contain chlorophyll and various acces-
sory pigments enjoying a photosynthetic type of nutrition, although many organisms included in this group also 
exhibit heterotrophy or mixotrophy. 

Figure 3 shows the size distribution of all network nodes based on their forward scatter signals that was pre-
viously calibrated in accordance to [25]. Therefore any one can verify that 12.93% of the occurrences (323 par-
ticles) belongs to picoplankton individuals, a great dominance is exhibited by nanoplankton with 86.43% (2159 
particles) and only 0.64% (16 particles) representing the microplankton species. 

The nanoplankton particles suggest, according [26], it is a dynamic “food web”. However, this is also a fea-
ture of oligotrophic systems which are usually dominated by flagellates as the main grazers of pico-sized auto-
trophs [27] despite this site being an estuary where heterotrophic dinoflagellates (mixotrophic as well) with high 
feeding plasticity is another potential grazer [28]. In fact the plankton abundance and distribution are strongly 
dependent on factors such as nutrient concentrations and the physical state of the water column. 

Table 3 presents the network properties values according the applied indexes. In networks, we call degree of 
a node the number of edges which are adjacent to it. So, the basic structure of this network present a total of 
2498 nodes interconnected by 107,741 edges which would give an average of 43.131 edges per node. However, 
the edge distribution is not uniform. There are many nodes connected by a single edge (minimum degree = 1), 
while others have many ones (maximum degree = 555) resulting in a network mean degree of 86.262. This fact 
reveals topological differences in the network architecture. In another way, in relation to the network hetero-
geneity, differences in node activity can be represented by the variance degree values that, in our network, is 
9220.385. The overall density or the ratio of the existing edges and the maximum possible edges in the network, 
is 0.035. It gives a sense of network cohesion. Another measure widely used in ecological networks analysis is 
the connectance. It is the proportion of possible trophic links that are actually observed [29]. Essentially it is the 
density of interactions, that in our planktonic network, has a connectance value of 0.017. On the other hand, this 
network presents a diameter value of 13 that means it is larger number of paths connecting two nodes within the 
network. The characteristic path length and the clustering coefficient are another two index of the small world 
property that have been identified [30]-[34]. 

The clustering coefficient not only proves the existence of triangles, expected in any real network, but the  
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Table 1. Cytometric variables selected to each mathematical model.                                               

Math Models Variables 
Length FWS 
Total FLY, FLO, FLR 

Inertia FLY, FLO, FLR 
Fill Factor FWS, SWS, FLY, FLO, FLR 
Assimetry FWS, SWS, FLY, FLO, FLR 

Number of cells FLY, FLO, FLR 

 
Table 2. Correlation of the 20 selected variables performed in the Statistica 9 package software. Significance in red numbers. 
Level of significance p < 0.5.                                                                              

 Lengt
h FWS 

Total Inertia Fill factor Asymmetry Number of cells 
FLY FLO FLR FLY FLO FLR FWS SWS FLY FLO FLR FWS SWS FLY FLO FLR FLY FLO FLR 

Length 
FWS 1.00                    

T
ot

al
 FLY 0.36 1.00                   

FLO 0.55 0.77 1.00                  
FLR 0.50 0.65 0.92 1.00                 

In
er

tia
 FLY 0.00 −0.06 −0.06 −0.07 1.00                

FLO 0.01 −0.06 −0.05 −0.06 0.12 1.00               
FLR −0.07 −0.10 −0.13 −0.17 0.09 0.10 1.00              

Fi
ll 

fa
ct

or
 

FWS 0.21 −0.06 −0.11 −0.08 −0.06 −0.07 0.00 1.00             
SWS 0.07 −0.07 −0.13 −0.10 −0.07 −0.08 −0.01 0.66 1.00            
FLY −0.02 0.02 −0.09 −0.10 0.25 0.02 0.04 0.00 0.01 1.00           
FLO −0.02 −0.08 0.00 −0.09 0.03 0.24 0.04 −0.01 −0.01 0.04 1.00          
FLR −0.18 −0.17 −0.24 −0.24 0.05 0.05 0.41 0.07 0.08 0.04 0.05 1.00         

A
sy

m
m

et
ry

 FWS −0.08 −0.01 −0.02 −0.02 0.00 0.00 0.02 −0.11 0.12 0.00 0.00 0.01 1.00        
SWS 0.02 0.02 0.03 0.04 −0.02 −0.03 −0.02 0.06 0.05 −0.01 −0.01 −0.02 0.20 1.00       
FLY −0.05 −0.08 −0.04 −0.03 −0.29 0.00 0.02 0.03 0.04 −0.68 0.00 0.03 0.01 0.01 1.00      
FLO −0.06 −0.03 −0.09 −0.04 −0.01 −0.27 0.01 0.07 0.08 0.00 −0.59 0.03 0.01 0.01 0.02 1.00     
FLR −0.03 −0.01 −0.02 −0.02 0.01 0.01 −0.06 0.01 0.01 0.01 0.00 −0.49 0.01 0.01 0.01 0.01 1.00    

N
um

be
r 

of
 

ce
lls

 FLY 0.37 0.17 0.23 0.18 0.59 0.11 0.05 −0.20 −0.22 0.51 0.03 −0.06 −0.01 −0.01 −0.39 −0.07 −0.01 1.00   
FLO 0.43 0.15 0.29 0.22 0.10 0.57 0.04 −0.21 −0.23 0.02 0.47 −0.08 −0.01 −0.01 −0.04 −0.35 −0.01 0.40 1.00  
FLR 0.29 0.08 0.17 0.09 0.09 0.10 0.67 −0.16 −0.17 0.02 0.03 0.48 0.01 −0.02 −0.02 −0.05 −0.23 0.31 0.34 1.00 

 
value of 0.437 is compatible with other biological networks, such as that 16 food webs analyzed by Dunne and 
colleagues whose coefficients vary from 0.02 to 0.43. The average degree of separation of these networks, that is 
equivalent to the characteristic path length, were set around 2.2, while the test with our one showed a value close 
to 3.204. In the same way the marine microbial network analyzed by [35], present a clustering coefficient of 
0.265 and an average degree of separation of 0.3 that are both values near that found in our planktonic network.  

Figure 4 shows us the degree distribution of the generated planktonic network. 
The long tail depicted in Figure 4(a) shows a high occurrence of nodes with low degree at the same time 

many nodes having high degree in accordance with a power law distribution characteristic of free scale pattern 
also verified by [30] [36] in food webs. Figure 4(b) presents the same but in a log-log plot with the R2 values 
allowing seeing the adjustment of all degrees to its straight-line. 

The ultimate goal in environmental management is the impact assessment. It can be achieved by simulation. 
In this way Table 4 present the values of a series of network properties according to progressive node deletions 
chosen by their highest degree, betweeness and closeness centralities. 

Table 4 show us that while the network nodes were progressively deleted, consequently their respective edges, 
the network diameter (the distance from any given node to another) remain almost the same or had a  
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Figure 2. Representative graph of the planktonic network. Green and Yellow 
circles refer to chlorophylla and phycoerythrin fluorescence particles. Circle 
sizes refer to particles whose length is based on its forward scatter signal. 
Gray rectangles and ellipses refer to non-fluorescent particles as carnivores 
and herbivores respectively. Lines are edges linking two or more organisms.   

 

 
Figure 3. Number of individuals within each classical size class 
based on forward scatter signals.                           

 
Table 3. The planktonic network properties.                                                                  

Network properties 
Nodes 2498 
Edges 107,741 

Edge average 43.131 
Minimum/Maximum degree 1/555 

Mean degree 86.262 
Variance 9220.385 
Density 0.035 

Connectance 0.017 
Diameter 13 

Characteristic path length 3.204 
Clustering coefficient 0.437 
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Figure 4. Degree distribution of the planktonic network.                                                         
 
Table 4. Values of network properties according progressive deletions of nodes.                                      

Network properties 
Highest degree Highest betweeness Highest closeness 

10% 25% 50% 10% 25% 50% 10% 25% 50% 
Nodes 2249 1873 1241 2213 1798 1072 2249 1873 1229 
Edges 49,464 19,702 4683 67,400 33,627 8250 51,615 20,381 5350 

Minimum/Maximum degree 1/174 1/90 1/30 1/337 1/219 1/86 1/223 1/89 1/47 
Mean degree 43.99 21.04 7.55 60.91 37.41 15.39 45.90 21.76 8.71 

Variance 1474.6 247.3 30.3 4379.2 1654.3 255.5 1835.5 286.87 48.41 
Connectance 0.010 0.006 0.003 0.014 0.010 0.007 0.010 0.006 0.004 

Diameter 13 13 16 16 19 18 13 14 16 
Characteristic path length 3.452 3.916 5.438 3.449 3.819 4.588 3.487 3.994 5.499 

Clustering coefficient 0.386 0.354 0.328 0.401 0.374 0.342 0.393 0.361 0.360 
R2 0.6851 0.6098 0.6763 0.7749 0.8053 0.8436 0.7353 0.6311 0.7478 

 
small increasing. However, it was verified a marked increase in the characteristic path length and a slack de-
crease in the clustering coefficient. This follows from the fact that most shortest paths between nodes flow 
through hubs instead of peripheral. The clustering coefficient reduction indicates the loss of triangles and other 
possible clicks. Table 4 still present the R2 values of each simulation that can also be graphically observed in 
Figure 5. 

From Figure 5(a) to Figure 5(i), are showing the deletions effect of the network core nodes. This set of si-
mulation present a similar behavioral pattern. At 10% and 25% level of deletions there are progressive loss in 
the adjustment of points to the power law pattern but a recovery is also verified when the 50% deletion level are 
reached, may be due to more permanence of nodes with smaller degree. 

On the other hand, the Figure 5(j) to Figure 5(l) present the results if the causative agent of environmental 
impact was more effective upon nodes with lowest degree. In this case the adjustment of points is always de-
creasing since the distribution has become much less dispersed, with the degree of the remaining nodes near the 
network average. The network diameter underwent a sharp decline followed by slight decrease in the characte-
ristic path length values and a lazy increasing of the clustering coefficient and connectance (Table 5) showing 
that some highly connected nodes still maintains relations with varied roles within the network. 

4. Conclusions 
The planktonic fuzzy network evolved in this work showed most of nodes having small degree despite many of 
them with high degree values in addition to high clustering coefficient can be taken as a sign that these structural 
features suggest it is a small-world network. It has been hypothesized that the prevalence of small world net-
works in biological systems may reflect an evolutionary advantage of such an architecture. One possibility is 
that these structures are more robust to perturbations than other architectures. All species are embedded in com-
plex networks of interactions [37], so understanding species interactions and the robustness of interaction  
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Figure 5. Graphical visualization of the progressive network node deletions in logarithm scale.                          
 
Table 5. Values of network properties according progressive deletions of lowest degree nodes.                          

Network properties 
Lowest degree 

10% 25% 50% 
Nodes 2249 1874 1249 
Edges 107,276 104,890 92,050 

Minimum/Maximum degree 1/555 6/555 26/547 
Mean degree 95.34 111.94 147.40 

Variance 9397.3 9536.7 8848.4 
Connectance 0.021 0.030 0.059 

Diameter 9 7 4 
Characteristic path length 2,857 2,518 2.073 

Clustering coefficient 0.452 0.467 0.494 
R2 0.6647 0.6200 0.4993 
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within networks to species loss is essential to understand the effect of species decline and extinctions. 
Whether our results are ecologically meaningful depends crucially on our ability to attack an ecological inter-

pretation the decisive properties that are identified.  
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