
Natural Science, 2014, 6, 495-502 
Published Online April 2014 in SciRes. http://www.scirp.org/journal/ns 
http://dx.doi.org/10.4236/ns.2014.67048  

How to cite this paper: Zotin, A.A. (2014) Why Linear Thermodynamics Does Describe Change of Entropy Production in 
Living Systems? Natural Science, 6, 495-502. http://dx.doi.org/10.4236/ns.2014.67048  

 
 

Why Linear Thermodynamics Does Describe 
Change of Entropy Production in Living 
Systems? 
Alexey A. Zotin 
N.K. Koltsov’s Institute of Developmental Biology RAS, Moscow, Russia 
Email: aazotin@mail.ru  
 
Received 4 January 2014; revised 4 February 2014; accepted 11 February 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
We propose a hypothesis according to which there is a hierarchy of included steady states in living 
systems. Each steady state is not stable and exists only in a certain frame of time, named characte- 
ristic time. Evolution of system to any steady state leads to a change of boundary conditions for all 
steady states having lesser characteristic time. It should not be very rapid. In the opposite case, 
the level of entropy production could change so much that the system achieves a critical unstable 
point of any included steady state. Passing through the critical point leads to reorganization of the 
entire hierarchy of the steady states or to the complete collapse of the system as a dissipative 
structure. Also one should take into account that living systems are the result of long-term biolog- 
ical evolution. The species that are able to maintain their integrity for the longest time interval 
have evolutionary advantage. Therefore, it is quite likely that difference between current value of 
the entropy production and value of the entropy production in nearest steady state is small 
enough to satisfy the laws of linear thermodynamics. Experimental data confirm the hypothesis. 
Limits of applicability of linear thermodynamics to biological systems are discussed. 
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1. Introduction 
The main advance in the classic thermodynamics of equilibrium processes in the field of biology is proof that 
the law of conservation of energy (First law of thermodynamics) is applicable to living systems [1]. However, 
all attempts to prove that the Second law is true for living systems from the standpoint of classic thermodynam- 
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ics have failed. 
Indeed, the Second law requires that a thermodynamic system evolve to equilibrium in such a way that the 

total entropy of the system would grow constantly, whereas the rate of its change would decrease. On the other 
hand, biological processes frequently follow another way, “prohibited” by the Second law. In particular, biolog- 
ical evolution [2] [3] and development of gametes [4] [5] are examples of such a process. 

Based on this fact, many scientists have spoken about the fundamental inapplicability of thermodynamics to 
biological objects [6]-[8]. The researchers who are committed to thermodynamics had to give some explanation 
to the observed contradiction. In particular, Bauer [9] believed that his law of stable non-equilibrium was not a 
thermodynamic but rather a purely biological law inapplicable to nonliving systems. 

Another direction appeared more beneficial, namely, the formulation of the concept of irreversible processes, 
which had eventually led to the Prigogine theory [10]-[14]. 

Initially, the theory of Prigogine was developed only for systems that are close enough to equilibrium to sa- 
tisfy the laws of linear form 
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Ji are thermodynamic flows; Xj are thermodynamic forces; Lij are phenomenological coefficients.  
Therefore, this branch of thermodynamics was referred to as “linear thermodynamics” [4] [15]. The main 

achievement of linear thermodynamics is partition of entropy rate into two components: 
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The entropy flow reflects the mass and energy exchange between a thermodynamic system and its environ- 
ment and can be both positive and negative. In the latter case, the rate of entropy output exceeds that of entropy 
input. 

Entropy production is connected with various processes within the system and, unlike entropy flow, cannot be 
negative. According to the Prigogine theory, entropy production is the criterion of evolution of a system. That is 
why the Second law of thermodynamics for open thermodynamic systems (including living systems) can be put  

down as 
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The correlation of entropy production with thermodynamic flows and forces is determined by the dissipative 
function, which serves as a measured for the energy dissipation, 
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Based on these postulates, Prigogine proved the theorem referred to as the principle of minimum energy dis- 
sipation. According to this theorem, any thermodynamic system complying with linear equations Equation (1) 
evolves in such a way that the energy dissipation determined by Equation (2) constantly decreases and tends to 
be minimal in a steady state, that is, 

d 0
dt
Ψ

≤ .                                      (3) 

Inequality Equation (3) is frequently referred to as the criterion of evolution of a thermodynamic system to a 
steady (or, as a special case, equilibrium) state [4] [16] [17]. 

A variant of the Prigogine theory relative to biological objects is the phenomenological theory of ontogenesis, 
proposed by A. I. Zotin [18]-[22]. 

Spread of Prigogine’s theory on the non-equilibrium thermodynamic systems shows that, in general, linear 
thermodynamics formula Equation (1) (2) and the principle of minimum energy dissipation Equation (3) does 
not apply to them [13] [16] [17]. Such systems are characterized by excessive energy dissipation. Therefore, 
they are commonly referred to as “dissipative structures”. Now it became apparent that living systems are dis- 



A. A. Zotin 
 

 
497 

sipative structures [13]. On this basis, some authors believe that the formulas of linear thermodynamics are not 
applicable for biological processes [23]. 

Nevertheless, the linear thermodynamics is capable to describe a large number of biological processes at dif- 
ferent levels of organization of living systems: biochemical [24]-[26], ontogenetic [19] [20] [22] [27]-[29], en- 
vironmental [18] [30], evolutionary [2] [3]. 

In this paper, we propose a hypothesis that explains the use of linear equations of thermodynamics processes 
in biology. 

2. Theoretical Propositions 
According to modern ideas, there are two fundamentally different types of stable steady states [16] [17]. 

First type of the steady states is close to equilibrium. Entropy production in this steady state is positive and 
determined by the boundary conditions that support entropy production to be constant by external entropy flow. 
Therefore, it can be considered as a state of relative equilibrium. Special case of the state is absolute equilibrium 
when the dissipative function is 0. Absolute equilibrium can be achieved only in isolated systems. 

Second type is non-equilibrium stable steady states. These steady states should be separated from the state of 
relative equilibrium by at least one unstable steady state. Increased level of energy dissipation is a characteristic 
feature of systems in non-equilibrium stable steady state. Therefore, the systems that are near the non-equili- 
brium steady state were referred to as “dissipative structures”. These include, in particular, living systems. 

In this paper, we will consider the specific dissipative function as the main feature, which determines the de- 
gree of non-equilibrium systems. We assume the energy equivalent of mass specific rate of oxygen consumption 
(q) as a measure of specific dissipative function for living systems [4] [18]. 

We assume the boundary conditions (environmental conditions) constant throughout the consideration of a 
thermodynamic system. 

Let the rate of the mass specific dissipation function is a continuous function F(q). Let difference between q 
in relative equilibrium and in absolute equilibrium is negligibly small compared with the current value of q. 

Then the function F(q)/q can be expanded in a power series: 

( ) ( ) 1 2
i

iG q F q q a a q a q= = + + + +                          (4) 

In the steady state G(q) = 0. And the roots of the power series Equation (4) correspond to the non-equilibrium 
steady states. 

The dependence G(q) can be represented in the phase plane by curve intersects the abscissa axe at the points 
of steady states (Figure 1). Stable steady state alternate with unstable. (We don’t consider cases when the curve 

 
G(q) 

q0 q1 q2 q3 q4 

 
Figure 1. Schematic presentation of the function defined by Equation (4) on the phase 
plane. Abscissa: mass specific dissipation function. Arrows indicate the directions of evo- 
lution of the system. qi are the values of the mass specific dissipation function in the steady 
states: G(q) = 0. Steady state is stable for even i and unstable for odd i. 
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only touches zero point. Although system achieves unstable steady state in these points, the general direction of 
the G(q) does not change). The leftmost point (q0) corresponds to a stable relative equilibrium. Next steady state 
point (q1) is unstable. If system is not in steady state, it evolves to equilibrium by thermodynamic (left) branch 
or to the nearest point of stable non-equilibrium steady state by dissipative (right) branch. In the latter case, 
thermodynamic system forms a dissipative structure. 

One expands the function G(q) in a power series with respect to the nearest to the current q stable steady state 
point qj: 

( ) ( ) ( ) ( )2
1 21 1 1

i
j j i jG q k q q k q q k q q= − + − + + − +   

When G(q) is close to the steady state it is mainly determined by the linear member of the series: 
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A = (1 – qi/q0); q0 is value of q at initial time; k = k1. 
Equation (5) is equivalent to the corresponding one of linear thermodynamics. The difference consists in the 

fact that for the nonlinear case k can be a complex number. The real part of the complex number k determines 
the rate of the system evolution to the steady state. Evolution goes by thermodynamic branch if q0 > qi, and by 
dissipative branch in the opposite case. The imaginary part corresponds to the oscillation process. 

Each stable steady state exists only in a certain period, named characteristic time. If we consider a period 
much more then characteristic time, the change of entropy production in system cannot be neglected. So, one 
should include in consideration next stable steady state with more characteristic time. Again increasing the time 
interval, we obtain the following steady state. 

Thus, we can speak about a hierarchy of inserted steady states. 
Evolution of the system to the last stable steady state taken into account leads to a change of boundary condi- 

tions for all steady states with lesser characteristic time. As a result, for all included steady states qi from Equa- 
tion (5) is changed. Moreover, if the system is far from the last steady state, changes could be so rapid that one 
or more inserted steady states could reach the point of bifurcation corresponding to the unstable steady state. 
When passing this critical point, the whole hierarchy of steady states could be disturbed. This will eventually 
lead to either build a new hierarchy of steady states, or to the complete collapse of the system as a dissipative 
structure. 

Until now, we did not touch the biological characteristics of living systems. These features are due primarily 
to ensure that all of the currently existing organisms are the result of a prolonged process of biological evolution, 
the driving force for which is the survival of the most adapted to the environment species [31]. 

In particular, ceteris paribus, those species survive better that are less affected by changes in environmental 
conditions. The reaction of a living system to change of the environment the weaker the closer it is to the steady 
state. 

Another feature of living systems associated with the survival of organisms, is their ability to alter the level of 
metabolism spontaneously and, accordingly, the rate of production of entropy. This ability allows organisms to 
survive adverse environmental conditions. Cases of decreasing in energy metabolism in adverse conditions are 
widely known. Processes of sporulation, the transition to a hibernation state, falling into a stupor when food or 
water absent are examples [31]. Those living systems have evolutionary advantages which are closer to the 
nearest steady state. It is likely that in most cases the deviation of living systems from the steady state is so small 
that the evolution towards it performs a linear law Equation (1). Then, taking into account Equation (2), the rate 
of entropy production should change according to the quadratic equation Equation (5). 

3. Compliance of the Theoretical Provisions to Experimental Data 

Certainly, the use of linear laws to living systems has several limitations. In particular, they are valid only when 
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the changes of boundary conditions can be neglected. That is, parameters of the environment should not change 
greatly during the data acquisition. One should organize measurements in such a way that the characteristic time 
of the investigated process would be comparable with the period and the frequency of measurements. 

The condition of the organism is also important. At least at the given period it should be only one not yet 
reached steady state, the evolution to which is the aim of the study. Otherwise, the non-linearity of the system is 
obvious and application of linear laws becomes impossible. 

As an example, we will focus on studies of mass specific rate of oxygen consumption in post-embryonic on- 
togeny animals. According to some authors, this option, as well as the mass specific rate of heat production, is a 
measure of the dissipative function in living systems [4] [18]. In these studies the authors usually interested in 
the change of energy metabolism during aging. 

Most authors distinguish only two types of steady states associated with ontogeny: the current steady state 
with a relatively small characteristic time, and final one, the characteristic time of which is comparable to the 
lifetime. In order to eliminate the influence of the living system evolution to the current steady state, animals are 
adapted to the experimental conditions and are led to a state of relative calm. The rate of the oxygen consump- 
tion in these animals is called a standard metabolism. To exclude the influence of growth, standard metabolism 
is usually divided by a unit mass [4]. 

Literature dedicated to the study of dependence of the standard metabolism on age is sparse. Nevertheless, all 
available data confirm the possibility of using the linear law Equation (5) in biology (Figure 2). Values of the 
coefficients of Equation (5) for different species are presented in Table 1. 
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Figure 2. Age-related changes of mass specific rate of oxygen consump- 
tion for different species (from [28]): (a) Mytilus edulis; (b) Lymnaea stag-
nalis; (c) Acheta domesticus; (d) Drosophila melanogaster; (e) Ambystoma 
mexicanum; (f) Homo sapiens. Circles are experimental data. Curves are 
approximation by Equation (5). 
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Table 1. Coefficients of Equation (5) for post-embryonic development of different species. 

Species qi, ml O2/(h·g) k, year−1 Source of data 

Bivalvia 

Blue mussel Mytilus edulis 0.0401 ± 0.0057 0.194 ± 0.002 [33] 

Duck mussel Anodonta anatina 0.0054 ± 0.0004 0.274 ± 0.009 [32] 

Painter’s mussel Unio pictorum 0.0125 ± 0.0007 0.193 ± 0.005 [32] 

Swollen river mussel U. tumidus 0.0120 ± 0.0011 0.145 ± 0.007 [32] 

Smooth pearl mussel Margaritifera laevis 0.0138 ± 0.0006 0.054 ± 0.001 [32] 

European pearl mussel M. margaritifera 0.0167 ± 0.0005 0.056 ± 0.001 [32] 

Gastropoda 

Great pond snail Lymnaea stagnalis 0.0588 ± 0.0190 10.5 ± 0.4 [35] 

Insecta 

House cricket Acheta domesticus 0.765 ± 0.036 5.33 ± 0.14 [36] 

Fruit fly Drosophila melanogaster 0.0478 ± 0.0060 6.02 ± 0.96 [37] 

Amphibia 

Axolotl Ambystoma mexicanum 23.2 ± 0.6 1.32 ± 0.05 [38] 

Mammalia 

Brown rat Ratus norvegicus 604 ± 54 2.99 ± 0.43 [39] 

Cattle Bos taurus 33 ± 3 0.10 ± 0.02 [40] 

Domestic horse Equus ferus 100 ± 2 0.47 ± 0.02 [40] 

Domestic sheep Ovis aries 190 ± 1 1.49 ± 0.03 [40] 

Domestic pig Sus scrofa 148 ± 2 1.05 ± 0.03 [40] 

Human Homo sapiens 169 ± 4 0.037 ± 0.002 [41] 

Aves 

Duck Anas platyrhynchos 348 ± 59 1.13 ± 0.27 [40] 

Chicken Gallus gallus  134 ± 14 0.10 ± 0.01 [40] 

Notes: values qi are given at 20˚C for poikilothermes and in the thermoneutral zone for homoiotherms. Calculations of qi for bi-
valves are based on the weight of soft tissues (without shell). 

 
Equation (5) contains only three easily interpretable constants: qi is the value of q in the steady state; k is the 

coefficient associated with the characteristic time of the process; A is the constant of initial conditions. 
Simplicity of the equation allows its use in biology to determine species’ longevity, to compare the level of 

standard metabolism in different individuals, populations, and species [28] [32]-[35], etc. 
Of course, the formula Equation (5) describes only the basic trend of evolution to only one steady state. For a 

complete description, we should also take into account the evolution of the system to all the unreached steady 
states and wave processes that accompany each steady state. We will consider these problems later. 

4. Conclusions 
Thus, dissipative structures, which include living systems, have several steady states with different characteristic 
time of their achievement. Change of one of the stationary states leads to change in boundary conditions for all 
stationary states with lesser characteristic time. The greater the change, the greater the probability that the bifur- 
cation point will be achieved by deviation from at least one stationary state. If it happens, restructuring of the 
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entire hierarchy of stationary states take place or the system will cease to exist as a dissipative structure. The 
more system deviates from the steady state, the faster boundary conditions for “embedded” steady states 
changes, and the greater the probability of destruction of the system is. 

One usually calls the entire hierarchy steady states by the term “homeostasis”. Existing living systems are the 
result of long-term biological evolution. It is clear that an evolutionary advantage given to those organisms that 
ceteris paribus are able to maintain a state of homeostasis for a longer time. Therefore, biological evolution 
should lead to the formation of systems with minimal possible deviation from the stationary states. The proxim- 
ity of living systems to any of the steady states leads to opportunity of linear approximation for the description 
of system evolution to this steady state. I believe that this explains the possibility of linear thermodynamics to 
describe the processes in living systems, including change of entropy production. 
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