

Electron Correlation in High Temperature Cuprates

Takashi Yanagisawa¹, Mitake Miyazaki², Kunihiko Yamaji¹

 ¹Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Japan
 ²Hakodate National College of Technology, 14-1 Tokura, Hakodate, Japan Email: t-yanagisawa@aist.go.jp

Received January 2014

Abstract

Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, we examine the ground state of the three-band Hubbard model (d-p model) that explicitly includes oxygen p orbitals. We consider the half-filled case with the large on-site Coulomb repulsion U_d by using the variational Monte Carlo method. The ground state is insulating when U_d is large at half-filling. The ground state undergoes a transition from a metal to a Mott insulator when the level difference ε_p - ε_d is increased.

Keywords

High-Temperature Superconductor, Electron Correlation, Mott Insulator, Metal-Insulator Transition, Charge-Transfer Insulator

1. Introduction

The study of high-temperature superconductors has been addressed extensively since the discovery of cuprate superconductors [1]. The CuO_2 plane in cuprates plays a key role for the appearance of superconductivity [2-10] and the electron correlation in this plane is important [11-16].

Relationship between material parameters and critical temperature $T_{\rm C}$ is important to clarify the mechanism of high temperature superconductivity. We consider two kinds of material parameters. The first category includes transfer integrals $t_{\rm dp}$, $t_{\rm pp}$ and the level of d and p electrons. These parameters determine the band structure and the Fermi surface. The $t_{\rm dp}$ is the transfer integral between nearest d and p orbitals in the CuO₂ plane, and $t_{\rm pp}$ is that between nearest p orbitals. The other category is concerning with the strength of interactions such as the Coulomb interaction, $U_{\rm d}$ and $U_{\rm p}$, and the electron-phonon interaction. The transfer integrals play an important role to obtain a finite bulk limit of the superconducting condensation energy [12,13,17]. The parameter values were estimated in the early stage of research of high temperature cuprates [18-21].

In this paper, we investigate the ground state of the three-band d-p model in the half-filled case. When the Coulomb interaction U_d is large, the ground state is presumably insulating. We show, in fact, that there is a transition from a metallic state to an insulating state as the level difference between d and p electrons is increased.

2. Hamiltonian

The three-band Hamiltonian with d and p electrons is

$$H = \varepsilon_{d} \sum_{i\sigma} d_{i\sigma}^{+} d_{i\sigma} + \varepsilon_{p} \sum_{i\sigma} (p_{i+\bar{x}/2,\sigma}^{+} p_{i+\bar{x}/2,\sigma}^{+} + p_{i+\bar{y}/2,\sigma}^{+} p_{i+\bar{y}/2,\sigma}^{+}) + t_{dp} \sum_{i\sigma} [d_{i\sigma}^{+} (p_{i+\bar{x}/2,\sigma}^{+} + p_{i+\bar{y}/2,\sigma}^{-} - p_{i-\bar{x}/2,\sigma}^{-} - p_{i-\bar{y}/2,\sigma}^{-}) + h.c.]$$

$$+ t_{pp} \sum_{i\sigma} (p_{i+\bar{y}/2,\sigma}^{+} p_{i+\bar{x}/2,\sigma}^{-} - p_{i+\bar{y}/2,\sigma}^{+} p_{i-\bar{x}/2,\sigma}^{-} - p_{i-\bar{y}/2,\sigma}^{+} p_{i+\bar{x}/2,\sigma}^{-} + p_{i-\bar{y}/2,\sigma}^{+} p_{i-\bar{x}/2,\sigma}^{-} + h.c.) + t'_{d} \sum_{\langle ij \rangle \sigma} (d_{i\sigma}^{+} d_{j\sigma}^{-} + h.c.)$$

$$+ U_{d} \sum_{i} n_{i\uparrow}^{d} n_{i\downarrow}^{d} + U_{p} \sum_{i} (n_{i+\bar{x}/2\uparrow}^{p} n_{i+\bar{x}/2\downarrow}^{p} + n_{i+\bar{y}/2\uparrow}^{p} n_{i+\bar{y}/2\downarrow}^{p})$$

$$(1)$$

where U_d and U_p indicate the on-site Coulomb interaction among d and p electrons, respectively. $d_{i\sigma}$ and $d^+_{i\sigma}$ are operators for the d electrons. $p_{i\pm\bar{x}/2,\sigma}$ and $p^+_{i\pm\bar{x}/2,\sigma}$ denote operators for the p electrons at the site $R_{i\pm\bar{x}/2}$, and in a similar way $p_{i\pm\bar{y}/2,\sigma}$ and $p^+_{i\pm\bar{y}/2,\sigma}$ are defined. $n^d_{i\sigma}$ and $n^p_{i+\bar{\mu}/2,\sigma}$ ($\mu = x, y$) are number operators for d and p electrons, respectively. We have introduced the parameter t'_d that is the transfer integral of d electrons between next nearest-neighbor cooper sites, where $\langle ij \rangle$ denotes a next nearest-neighbor pair of copper sites. The energy unit is given by t_{dp} in this paper. We use the notation $\Delta_{dp} = \varepsilon_p - \varepsilon_d$. The number of sites is denoted as N_s , and the total number of atoms is denoted as $N_a = 3N_s$. Our study is within the hole picture where the lowest band is occupied up to the Fermi energy μ . The non-interacting part is written as

$$H_{0} = \sum_{k\sigma} \left(d_{k\sigma}^{+} p_{xk\sigma}^{+} p_{yk\sigma}^{+} \right) \left(\begin{array}{ccc} \varepsilon_{dk} - \mu & \varepsilon_{xk} & \varepsilon_{yk} \\ -\varepsilon_{xk} & \varepsilon_{p} - \mu & \varepsilon_{pk} \\ -\varepsilon_{yk} & \varepsilon_{pk} & \varepsilon_{p} - \mu \end{array} \right) \left(\begin{array}{c} d_{k\sigma} \\ p_{xk\sigma} \\ p_{yk\sigma} \end{array} \right)$$
(2)

where $\varepsilon_{xk} = 2it_{dp}\sin(k_x/2)$, $\varepsilon_{yk} = 2it_{dp}\sin(k_y/2)$, $\varepsilon_{pk} = -4t_{pp}\sin(k_x/2)\sin(k_y/2)$ and $\varepsilon_{dk} = -4t'_{d}\cos(k_x)\cos(k_y)$. $p\mu_{k\sigma}$ and $d_{k\sigma}$, are Fourier transforms of $p_{i+j/2,\sigma}$ and $d_{i\sigma}$, respectively. The eigenvectors of this matrix give the corresponding weights of d and p electrons.

3. Mott State and Wave Function

3.1. Gutzwiller Function

We adopt the Gutzwiller ansatz for the wave function:

$$\psi_G = P_G^d \psi_0 \tag{3}$$

where $P_{\rm G}$ is the Gutzwiller projection operator given by

$$P_G^d = \prod_i \left[1 - (1 - g) n_{i\uparrow}^d n_{i\downarrow}^d \right] \tag{4}$$

with the variational parameter in the range from 0 to unity: $0 \le g \le 1$. The operator P_G controls the on-site electron correlation on the copper site. When we take into account U_p , the correlation among p electrons is also considered. In this case P_G is

$$P_G = P_G^d P_G^p \,, \tag{5}$$

where

$$P_{G}^{p} = \prod_{i} \left[1 - \left(1 - g_{p} \right) n_{i+\bar{x}/2\uparrow}^{p} n_{i+\bar{x}/2\downarrow}^{p} \right] \left[1 - \left(1 - g_{p} \right) n_{i+\bar{y}/2\uparrow}^{p} n_{i+\bar{y}/2\downarrow}^{p} \right]$$
(6)

with the parameter g_p in the range $0 \le g_p \le 1$. ψ_0 is a one-particle wave function. We can take various kinds of states for ψ_0 ; for example, the Fermi sea or the Hartree-Fock state with some order parameters.

3.2. Optimized Wave Function

There are several ways to improve the Gutzwiller function. One method is to consider an optimization operator:

$$\psi = \exp(\lambda K)\psi_G \tag{7}$$

where *K* is the kinetic part of the total Hamiltonian *H* and λ is a variational parameter [9]. The ground state energy is lowered appreciably by the introduction of λ [11]. This type of wave function is an approximation to the wave function in quantum Monte Carlo method [22-24].

We note that the Gutzwiller function ψ_G cannot describe an insulating state at half-filling because we have no kinetic energy gain in the limit $g \rightarrow 0$. A wave function for the Mott state has been proposed for the single-band Hubbard model by adopting the doublon-holon correlation factor [25]. In this paper, instead, we consider the optimized Gutzwiller function in Equation (7) in the limit $g \rightarrow 0$ as a Mott insulating state. This is an insulator of charge-transfer type [26] and is a metal-insulator transition in a multi-band system [27].

3.3. Mott State in the Single-Band Case

Here we examine the Mott insulating state for the single-band Hubbard model [28]. We show the ground-state energy per site as a function of U in **Figure 1**, obtained by using the wave function in Equation (7). The curvature of the energy, as a function of U, changes near $U \sim 8$ and the parameter g vanishes simultaneously. The state with vanishing g would be an insulating state because of vanishingly small double occupancy.

3.4. Variational Parameters of the Band Structure

In the three-band case, we have additional band parameters as variational parameters in ψ_0 . The one-particle state ψ_0 contains the variational parameters \tilde{t}_{dp} , \tilde{t}_{pp} , \tilde{t}'_d , $\tilde{\varepsilon}_d$ and $\tilde{\varepsilon}_p$:

$$\psi_0 = \psi_0(\tilde{t}_{dp}, \tilde{t}_{pp}, \tilde{t}'_d, \tilde{\varepsilon}_d, \tilde{\varepsilon}_p)$$
(8)

In the non-interacting case, \tilde{t}_{dp} , \tilde{t}_{pp} and \tilde{t}'_d coincide with t_{dp} , t_{pp} and t'_d , respectively. The expectation values of physical quantities are calculated by employing the variational Monte Carlo method [6,7].

4. Mott State of Charge-Transfer Type

Our study on the Mott state of the three-band model is based on the wave function in Equation (7). The ground-state energy per site E/N_s - ε_d as a function of the level difference Δ_{dp} is shown in **Figure 2**. The parameters are $t_{pp} = 0.4$, $t'_d = 0.0$ and $U_d = 8$. We set $U_p = 0$ for simplicity because U_p is not important in the low doping case and also in the half-filled case. The parameter g for the optimized function ψ vanishes at $\Delta_{dp} \approx 2$ while that for the Gutzwiller function ψ_G remains finite even for large Δ_{dp} . The result shows that there is a transition from a metallic state to an insulating state at the critical value of $\Delta_{dp} \approx (\Delta_{dp})_c \sim 2$.

We find that the curvature of the energy, as a function of Δ_{dp} , is changed near $\Delta_{dp} \sim 2$. The energy is well fit-

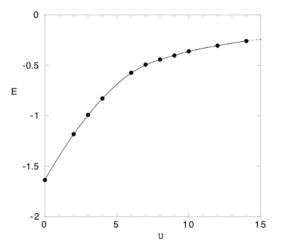


Figure 1. Ground state energy of the 2D singleband Hubbard model as a function of U at half-filling. The system size is 6×6 .

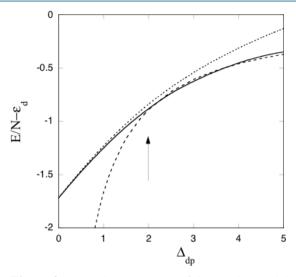


Figure 2. Ground-state energy of the 2D d-p model per site as a function of Δ_{dp} for $t_{pp} = 0.4$, $t'_d = 0.0$ and $U_d = 8$ (in units of t_{dp}) in the half-filled case on 6×6 lattice. The arrow indicates a transition point where the curvature is changed. The dotted curve is for the Gutzwiller function ψ_G (with $\lambda = 0$). The dashed curve indicates that given by a constant times $1/(\epsilon_p - \epsilon_d)$.

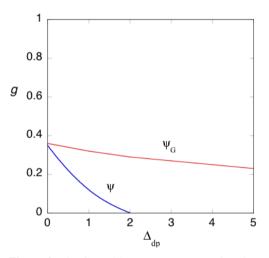


Figure 3. The Gutzwiller parameter *g* as a function of Δ_{dp} for ψ_G and the optimized wave function ψ . *g* for ψ decreases and vanishes as Δ_{dp} is increased.

ted by $1/\Delta_{dp}$ when Δ_{dp} is greater than $(\Delta_{dp})_c$. This is shown in **Figure 2** where the dashed curve indicates $1/\Delta_{dp}$. This shows that the most of energy gain comes from the exchange interaction between nearest neighbor d and p electrons. This exchange interaction is given by J_K :

$$J_{K} = t_{dp}^{2} \left(\frac{1}{\Delta_{dp}} + \frac{1}{U_{d} - \Delta_{dp}} \right)$$
(9)

In the insulating state, the energy gain is proportional to J_K , which is consistent with our result. We show the Gutawiller parameter g as a function of the level difference Δ_{dp} in **Figure 3**. g for the Gutzwiller function ψ_{G} descreases gradually when Δ_{dp} is increased. In contrast, *g* for the optimized function ψ shows a rapid decrease and almost vanishes near $(\Delta_{dp})_{c}$. This is consistent with the behavior of the energy shown in **Figure 2**, indicating that the ground state is an insulator when $\Delta_{dp} > (\Delta_{dp})_{c}$. When *g* vanishes, the double occupancy of d holes is completely excluded and we have exactly one hole on the copper site. This is the insulating state of charge-transfer type.

5. Summary

We have investigated the ground state of the three-band d-p model at half-filling by using the variational Monte Carlo method. We have proposed the wave function for an insulating state of charge-transfer type with an optimization operator on the basis of the Gutzwiller wave function. We have shown that this wave function describes a transition from a metallic state to an insulating state as the level difference Δ_{dp} is increased. The critical value of Δ_{dp} would depend on U_d and band parameters.

Acknowledgements

We thank J. Kondo and I. Hase for useful discussions.

References

- [1] Bennemann, K.H. and Ketterson, J.B. (2003) The Physics of Superconductors Vol. 1 and Vol. II. Springer-Verlag, Berlin.
- [2] Hirsch, J.E., Loh, D., Scalapio, D.J. and Tang, S. (1989) Physical Review, B39, 243.
- [3] Scalettar, R.T., Scalapino, D.J., Sugar, R.L. and White, S.R. (1989) *Physical Review*, **B39**, 243.
- [4] Guerrero, M., Gubernatis, J.E. and Zhang, S. (1998) Physical Review, B57, 11980.
- [5] Koikegami, S. and Yamada, K. (2000) Journal of the Physical Society of Japan, 69, 768.
- [6] Yanagisawa, T., Koike, S. and Yamaji, K. (2001) Physical Review, B64, 184509.
- [7] Yanagisawa, T., Koike, S. and Yamaji, K. (2003) Physical Review, B67, 132408.
- [8] Weber, C., Lauchi, A., Mila, F. and Giamarchi, T. (2009) Physical Review Letters, 102, 017005.
- [9] Yanagisawa, T., Miyazaki, M. and Yamaji, K. (2009) Journal of the Physical Society of Japan, 78, 013706.
- [10] Lau, B., Berciu, M. and Sawatzky, G.A. (2011) Physical Review Letters, 106, 036401.
- [11] Yanagisawa, T., Koike, S. and Yamaji, K.(1998) Journal of the Physical Society of Japan, 67, 3867.
- [12] Koike, S., Yamaji, K. and Yanagisawa, T. (1999) Journal of the Physical Society of Japan, 68, 1657.
- [13] Yamaji, K., Yanagisawa, T. and Koike, S. (2000) Physica, B284-288, 415.
- [14] Yamaji, K., Shimoi, Y. and Yanagisawa, T. (1994) Physica, C235-240, 2221.
- [15] Miyazaki, M., Yanagisawa, T. and Yamaji, K. (2004) Journal of the Physical Society of Japan, 73, 1643.
- [16] Miyazaki, M., Yamaji, K., Yanagisawa, T. and Kadono, R. (2009) Journal of the Physical Society of Japan, 78, 043706.
- [17] Yamaji, K. and Yanagisawa, T. (2010) Journal of the Physical Society of Japan, 80, 083702.
- [18] Hybertsen, M.S., Schluter, M. and Christensen, N.E. (1989) Physical Review, B39, 9028.
- [19] Eskes, H., Sawatzky, G.A. and Feiner, L.F. (1989) Physica, C160, 424.
- [20] McMahan, A.K., Annett, J.F. and Martin, R.M. (1990) Physical Review, B42, 6268.
- [21] Eskes, H. and Sawatzky, G.A. (1991) Physical Review, B43, 119.
- [22] Hirsch, J.E., Scalapino, D.J. and Sugar, R.L. (1981) Physical Review Letters, 47, 1628.
- [23] Yanagisawa, T. (2007) Physical Review, B75, 224503.
- [24] Yanagisawa, T. (2013) New Journal of Physics, 15, 033012.
- [25] Yokoyama, H., Ogata, M. and Tanaka, Y. (2006) Journal of the Physical Society of Japan, 75, 114706.
- [26] Zaanen, J., Sawatzky, G.A. and Allen, J.W. (1985) Physical Review Letters, 55, 418.
- [27] Blawid, S., Tuan, H.A., Yanagisawa, T. and Fulde, P. (1996) Physical Review, B54, 7771.
- [28] Hubbard, J. (1963) Proceedings of the Royal Society, A276, 237.