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Abstract 
 
Semi-Markovian model of operation of a single-server queue system with losses and immediate service qual-
ity control has been built. In case of unsatisfactory request service quality, its re-servicing is carried out. 
Re-servicing is executed till it is regarded satisfactory. Time between request income, and request service 
time are assumed to be random values with distribution functions of general kind. An explicit form of the 
system stationary characteristics has been defined. 
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1. Introduction 
 
A large number of works [1-4] are dedicated to the queue 
systems with losses. In most of them the incoming flux 
of requests is supposed to be Poisson one or request ser-
vice time is considered to have exponential distribution. 
This admission allows efficient modeling of the system 
operation by means of Markovian processes. But if the 
incoming flux of requests makes a renewal process and 
request service time distribution is of general kind, es-
sential difficulties arise when defining system stationary 
characteristics in explicit form. To overcome them an 
apparatus of semi-Markovian processes with a common 
phase field of states is used in the works [5,6]. Thus, in 
[6] stationary characteristics of the single-server queue 
system 1 0GI G  with losses were found. In the pre- 
sent article analogical characteristics for the same system 
have been defined under the assumption that the server 
admits both satisfactory and unsatisfactory request ser-
vice. In case of the latter one the re-servicing begins im-
mediately. It is repeated until the service is regarded sa-
tisfactory. 

In the second chapter of the article the system opera-
tion is described, mathematical problem definition and 
research purpose are stated. In the third section semi- 
Markovian model of system operation is built, and sta-
tionary distribution of embedded Markovian chain is 

given. In the fourth section system stationary characteris-
tics are defined. These are: final probabilities that the 
server is free, is in state of service or re-servicing, and 
mean dwelling times in these states. Besides, formulas of 
the system stationary characteristics for some subcases 
are given here. One of them is the exponential distribu-
tion of time between request income and request service 
time.  
 
2. The Problem Definition 
 
Let us investigate the queue system (QS) 1 0GI G  with 
losses and a single server. Request service time is a ran-
dom value (RV)   with an absolutely continuous dis-
tribution function (DF)    F t P t   and density 
 f t . Time period between requests’ income is a RV 

  with an absolutely continuous DF    G t P t   
and density  g t . If the server is busy with request ser-
vice, all the incoming requests are lost. With the proba-
bility p  request service is regarded to be successful, 
and the queue system passes into a standby state that 
lasts till next request comes. With the probability 

1q p   the request service is considered unsatisfacto-
ry, and the server begins re-servicing immediately. Time 
period of such a kind of service is a RV   with an ab-
solutely continuous DF    t P t    and density 
 t . After re-servicing with the probability p  the 
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service is regarded satisfactory and with the probability 
q  the request is sent to re-servicing procedure. This pro- 
cess lasts until the service is considered sufficient. It is 
assumed that RV ,   and   are independent, have 
finite mathematical expectations , ,M M M    and 
variances , ,D D D    respectively. It is necessary to 
define the following stationary characteristics of the sys-
tem: the final probabilities that the queue system is in a 
standby state; that the system is busy with the primary 
service or re-servicing; mean time periods of system’s 
dwelling in the above-mentioned states. 
 
3. Semi-Markovian Model Building 
 
In order to build the model of the system operation an 
apparatus of semi-Markovian processes with a discrete- 
continuous phase field of states [6,7] is used. Let us de-
scribe the system operation with the help of semi- Marko- 
vian process (SMP)  t  with a phase field 

 21,10 , 21 , 22 , 12E x x x x . 

Let us write out the codes of the states: 
21 – service of the request that has come begins; 
10x – request service has been successfully completed, 

the server passes into a standby state that lasts time x (till 
the next request income); 

21x – the incoming request has been lost, the server is 
busy with the primary service that will last time x; 

22x – the incoming request has been lost, the server is 
busy with re-servicing that will last time x; 

12x – request service has been completed, and its re-  

servicing has begun, time x is left till the next request 
income. 

In Figure 1 time diagram of the system operation is 
shown, and in Figure 2 there is the system transition 
graph. 

System dwelling times in the states are defined by the 
formulas: 

21 10 21 22 12, , ,x x x xx x x                , 

where   is a sign of minimum.  
Let us define the probabilities and probability densities 

of the embedded Markovian chain (EMC)  , 0n n   
transitions: 
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Now we can proceed to EMC stationary distribution 
definition, the system of integral equations for its defini-
tion is the following one: 

         

         
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      (1) 

Let us introduce the following integral operators: 

           d , d , d ,g f
x x x

A g y x y y A y x y y A f y x y y      
  

         

           
0 0 0
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Figure 1. Time diagram of the system operation. 
 

 

Figure 2. System transition graph. 
 

Then the system of Equations (1) can be rewritten in 
such a way—Equation (2). 

We shall exclude  21x and  22x from the first 
and second equations of the system (2) respectively, and 
then substitute it in the third equation. The result is 
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  (3) 

Here          1
d ,g g
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
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   is the density of renewal function  

 gH x  generated by DF  G x . 

Let us indicate K  and fK  integral operators 
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With regard to the introduced operators the Equation 
(3) will have the form 

     2112 12 .fx K x K g x           (4) 

Let us write down kernels of integral operators K , 

fK  in explicit forms and single out their probability 
sense 
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Here        
0

, d
t

g gv t x g t x g t x u h u u      is the 

density of the direct residual time t  for the renewal 
process generated by RV   1: t t t      [8]. The func-  

tions  , ,qk x y  and    ,
0

, dq fk x y g y y


  are densities  

of probabilities of system transition from the state 12y to 
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it is not difficult to ensure that the operator K  is the 

operator of contraction in the space of summable func-
tions. That is why the solution of Equation (4) can be 
found by means of successive approximations. This solu-
tion with regard to the identity 
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The rest of EMC stationary distributions are defined 
by the formulas 
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The stationary probability 21  of EMC’s dwelling in 
the state 21 is found with the help of normalization re-
quirement: 
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4. Definition of System Stationary  

Characteristics 
 
Mean values of system dwelling times in the states are 
defined by the formulas 

   
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Let us consider the following disjoint subsets of sys-
tem states:  0 10E x ,  1 21, 21E x ,  

 2 12 , 22E x x . Dwelling in the state 0E  means that 
the server is free and the system is in a standby mode. 
Dwelling in the state 1E  or 2E  signifies that the server 
is busy with the primary request service or with re-ser- 
vicing respectively.  

Let us introduce SMP  t  transition probabilities: 
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As it is known [9], under the condition of the unique 
EMC  , 0n n   of SMP  t  stationary distribution 
existence the following ratios take place 
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 (8) 

where  m e  is mean SMP  t  dwelling time in the 
state e E . 

With the help of Formulas (5)-(7) integrals contained 
in the Formula (8) are converted into: 
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Consequently, the final probability that the server is free is defined by the formula 
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and the final probabilities p1 and p2 that the server is busy either with the primary service or with the re-servicing are: 
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It is necessary to note that the ratio 
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determines an average value of requests lost per time unit 
of a complete request service. 

Let us define mean stationary dwelling times  iT E  

in the extracted subsets , 0 2iE i  . . According to [7] we  

have 
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(12) 

One can define the values of expressions in denomi-
nators of Formulas (12). To do it let us take integrals of 
both parts of the system (1) equations. The result is
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Consequently, mean system dwelling times in the extracted subsets are defined by the formulas 
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It is necessary to note that in case if with the probabil-
ity equal to 1 satisfactory request service is carried out 
the system characteristics defined by the Formulas (9), 
(10) and (13) coincide with ones found in [6]. 

To illustrate some subcases of the results gained let us 
write down QS 1 0, 1 0, 1 0M M M G GI M  cha- 
racteristics. 
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The system 1 0M G  stationary characteristics. In 
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The Formulas (9)-(11) and (13) for defining system 
stationary characteristics convert into  
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The system 1 0GI M  stationary characteristics. For 
this system the incoming flux of requests is generated by 
RV   with density  g t  of a general kind, and 
   , , 0t tf t e t e t       . Let us find the func-

tionals contained in the formulas for defining stationary 
characteristics. We have 
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From the recurrence formula 
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the recurrence formula for defining  nl   can be con-
cluded: 
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That is why the sum of series  
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Consequently, system stationary characteristics are 
defined by the following ratios 

  

   
    

0

1

0

1
1

1 ,

1 d
1

p

q
q

q
g

p
p

x g x g
M x

x g x




 


 





 
  

  
 

      
 





 


 

 

   
    

1

1

0

1
,

1 d
1

p

q
q

g
p

x g x g
M x

x g x






  








 
      

 





 


 

  

   
    

2

1

0

1

,

1 d
1

p

q
q

q
g

p
p

x g x g
M x

x g x






  








 
      

 





 


  

   1 2

1 1
, ,T E T E

p 
   

     
   

    

1

0
0

1 1
d .

1 1 1

p

qq x g x g q
T E M x

g g px g x

 
   

 
           

 


 

  
 

 
5. Conclusions 
 
In the present work semi-Markovian model of the opera-
tion of the single-server queue system 1 0GI G  with 
losses in which unsatisfactory request service quality is 
admitted has been built. Service quality control is carried 
out immediately, and in case of unsatisfactory service 
quality re-servicing is executed until the service is regar- 
ded as satisfactory. With the help of this model stationary 
characteristics in explicit form have been defined. These 
are: the final probabilities of system’s dwelling in a stan- 
dby state, in the states of primary service and re-servic- 
ing, and, besides, mean stationary dwelling times in these 
states. These characteristics depend on mean time periods 
between requests’ income, mean service time, average 
value of requests lost per time unit of a complete request 
service and the probability of unsatisfactory service. In 
case of satisfactory service only the characteristics found 
coincide with the formerly defined ones. 
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