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Abstract 
 
The scattering and transformation of the waves propagating in magnetized plasma on a heavy stationary 
charged particle located at a plane plasma-vacuum boundary is considered. The scattering (transformation) 
occurs due to the nonlinear coupling of the incident wave with the polarization (shielding) cloud surrounding 
the particle. It is shown that the problem is reduced to the determination of the nonlinear (three index) di-
electric tensor of magnetized plasma. The angular distribution and the cross section for scattering (transfor-
mation) of high-frequency ordinary and extraordinary waves and low-frequency upper-hybrid, low-hybrid, 
and magnetosonic waves are investigated within a cold plasma (hydrodynamic) model. 
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1. Introduction 
 
It is well known that in a medium with a certain fluctua-
tion level, the propagation of electromagnetic waves can 
lead to radiation of waves with new frequencies and 
wave numbers, i.e. scattered waves and also a new type 
of wave: transformed waves. The investigations of elec-
tromagnetic waves scattering and transformation proc-
esses are very important for studying such problems as 
plasma diagnostics, wave transformation mechanisms in 
plasma, definition of dispersion properties of plasma 
wave processes etc. In addition the study of the electro-
magnetic wave scattering spectra (both in laser and mi-
crowave wave ranges) is an efficient method of plasma 
diagnostics in laboratory fusion research devices as well 
as in the near and outer space. 

Electromagnetic wave scattering is caused by thermal 
fluctuations of plasma density and other plasma parame-
ters such as current density, electric and magnetic fields, 
etc. Spectra of scattered waves provide information on 
the density and temperature distributions in the plasma. 
A peculiarity of electromagnetic wave scattering in 
plasmas is coherent scattering by collective plasma exci-
tations-combination scattering that occurs along with 
Thompson incoherent scattering by individual plasma 
particles. Wave scattering by collective plasma fluctua-
tions, in particular, makes it possible to find relative 
concentrations of charged particles and temperatures of 

individual plasma components. The phenomenon of 
electromagnetic wave combination scattering by collec-
tive plasma excitations has been considered for the first 
time by Akhiezer et al. (see, e.g., [1]). Subsequently a 
theory of electromagnetic wave scattering in plasmas has 
been developed [1-7]. The detailed theory of scattering 
and transformation of waves in magnetized plasma has 
been worked out in [8] (see also [9,10] where useful re-
views of the electromagnetic wave scattering problem 
have been presented). The theory has been further de-
veloped and extended in the papers [11-15] (see also 
references therein), in particular, in the case of strongly 
magnetized turbulent plasma [14]. The scattering and 
transformation of high-frequency waves in dusty plasmas 
due to electron density inhomogeneities have been inves-
tigated in [15]. The scattering and transformation cross 
sections for two cases (the electrons in the shielding 
clouds around the charged dust particles and induced 
electron density fluctuations discreteness) have been 
calculated and it has been shown that both can be en-
hanced with respect to scattering from thermal fluctua-
tions. 

Another important mechanism for the wave scattering 
and transformation could be provided by the nonlinear 
interaction of the incident wave with the non-thermal 
density fluctuations (wakefield excitations) generated by 
the charged test particles moving in plasma. In particular, 
if such particle is at rest and heavy and does not oscillate 
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in the electromagnetic field of the incident wave the 
scattering occurs due to the nonlinear oscillation of the 
polarization (shielding) cloud surrounding the particle. It 
is clear that the cross section of this process essentially 
differs from the standard Thomson cross section when 
the wavelength of the incident wave is comparable or 
smaller the size of the polarization cloud which is typi-
cally given by the Debye screening length. Moreover, in 
a nonlinear regime the polarization cloud surrounding the 
particle may be affected by an external strong magnetic 
field which introduces a strong anisotropy in the screen-
ing properties of the plasma and as a result in angular 
distribution of the scattered (transformed) waves. 

In this paper we investigate this process in detail as-
suming that the heavy test particle is located at the plane 
boundary of plasma-vacuum interface. The plasma is 
assumed to be strongly magnetized so that the cyclotron 
frequency of the electrons is comparable or even larger 
than the plasma frequency. The case in which the inci-
dent wave propagates across the external magnetic field 
is considered. Within cold plasma model general expres-
sions are obtained for the angular distribution and the 
cross section for the scattered and transformed waves. The 
explicit calculations are done for specific high-frequency 
ordinary and extraordinary waves as well as for 
low-frequency upper-hybrid, lower-hybrid, and magne-
tosonic waves. 
 
2. Theoretical Model 
 
The main problem in calculating the quantitative charac-
teristics of electromagnetic wave scattering and trans-
formation in plasmas is to find the current produced by 
the nonlinear interaction of the incident wave with the 
fluctuations of plasma parameters caused by the test par-
ticle. This current determines the scattered and trans-
formed wave fields. 

We consider an incident wave  
(where 0

0 0(0)
0 c.c.i i te   k rE

  is the complex amplitude) which propagates 
in magnetized homogeneous plasma and a heavy particle 
with charge Ze  (  is the charge of an electron) at 
rest. The amplitude of the magnetic field of the incident 
wave is determined by the Maxwell’s equation and has 
the form 

e

  0 0 0 0 . In the linear approxima-
tion the incident wave and the electric field 

c k 
 E r  

produced by the test particle are independent, and the 
Fourier transformed total electric field in plasma is 
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The amplitude and the frequency of the incident wave, 
for given values of the wave vector, are determined from 
the equations  and   0 0 0,  0ij jM  k

 0 0det , 0ijM w k  , respectively, where 

   
2

2 2 2
, , i j

ij ij ij

k k
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k c k

    k k        (2) 

and ij  are the Maxwellian and unit tensors, respec-
tively, and  ,ij k  is the dielectric tensor of the mag-
netized plasma. 

The electric field of the stationary heavy particle is 
expressed by the equations [16,17] 

 
   3 2

4

2 ,

iZe

k


  



k
E k

k 0
 .          (3) 

Here     2, ,i j ijk k k k k   is the longitudinal 
dielectric function of the plasma. We assume that the 
particle is heavy and does not oscillate in the field of the 
incident wave. Thus the scattering originates from oscil-
lations of the polarization cloud surrounding the particle. 

To find the electromagnetic field of the scattered 
(transformed) wave, we consider the second order ap-
proximation in Maxwell’s equations. As a result, for the 
electric field  (2) ,jE k  in the second order approxi-
mation we obtain the equation 

     (2)
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is the nonlinear current, associated with the nonlinear, 
three-index, dielectric tensor  , ; ,ijk   k k  of the 
magnetized plasma,   k k k , and     . 

The scattered waves originate from nonlinear coupling 
of the incident wave with the electric field of the test 
particle. The scattering current corresponding to such 
coupling is easily obtained from (1) and (5) if in the ex-
pression obtained for the current we neglect the terms 
proportional to 0 0j k   and , which 
determine the second harmonic generation and the sec-
ond order electric field of the test particle, respectively. 
The total scattering current is thus determined by the 
equation 

   j kE E  k k
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 (6) 

where the tensor ijl  characterizes the nonlinear prop-
erties of the medium [18]: 

S

    , ; , , ; , , ; ,ijl ijl iljS          k k k k k k    . (7) 

The electric field  ,iE  k  of the scattered wave is 
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


obtained from Maxwell’s Equation (4), in which 
 is replaced by the scattering current 
. Thus 
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Here  ,liT k

li

 is the tensor inverse to the Maxwel-
lian tensor, .    , ,T M   k kij lj

Since the intensity Ws of the scattered radiation is 
equal to (with the minus sign) the work performed by the 
source of the scattered radiation per unit time, neglecting 
damping of the scattered wave, we obtain 
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where 0 0 0 0    , ; , ej isl s s l , A S k k   k k k 0 0  e  
being the complex unit vector along the direction of the 
polarization of the incident wave. As one would expect, 
it is seen from (9) that the scattering (transformation) on 
a stationary charge occurs with no frequency change 
( 0   ). 

The total scattering cross section   is the ratio of the 
intensity sW  of the scattered radiation to the energy 
flux  2

0 2  0cS S  in the incident wave, where 
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Here  ,(H)
ij k  is the Hermitian part of the dielec-

tric tensor and 0 0g   v k  is the group velocity of 
the wave. 

Assuming the group velocities of the incident and 
scattered waves to be considerably larger than the elec-
tron thermal velocity, we use cold plasma approximation. 
Within this model we write the expression for the linear 
dielectric tensor in the form [17, 18] 
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where b is the unit vector in the direction of the external 
magnetic field,  is a fully antisymmetric unit tensor, 
and 
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The summation in (12) and (13) is carried out over all 
plasma species , a pa  and 0 /ca a ae B m c   are the 
plasma and cyclotron frequencies of particles of the kind 

, and a   is the effective frequency of electron-ion 
collisions. 

For the vector 0S  we obtain from (10) and (11) 
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An expression for the tensor ipl  in the cold plasma 
approximation and in the absence of particle collisions 
was obtained in [18]. With allowance for the collisions, 
the expression for  takes the form 
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where        ( )a
ij a ij a i j a ijl lg h b b il e         b .  

It should be noted that at 0   (  ) the tensor 

ipl  has a singularity, due to the adopted cold plasma 
model. Taking into account the thermal motion of the 
plasma particles the frequency change, in the scattering 
process, is on the order of 

S

  0v c~ Tekv Te  , where 

Te  is the electron thermal velocity. We introduce the 
truncation parameter T , which is related to the fre-
quency change 

v

  by the relation 1 T  . Obvi-
ously at    we have 0 ~T c Tev . 

Let us consider the case when the test particle is at rest 
at a plane plasma-vacuum boundary. We consider the 
radiation escaping from the plasma into the vacuum due 
to the scattering (or transformation) of the magnetized 
plasma waves on this stationary particle. A more rigor-
ous statement of the problem (boundary-value problem) 
requires that the generated surface waves are also taken 
into account. However, it should be emphasized that 
their intensity decays exponentially with distance from 
the boundary. Here we are interested only in the scat-
tered bulk waves and the influence of the plasma bound-
ary is neglected. 

Consider Equation (9) for the intensity of the scattered 
radiation in the vacuum, where . For 
the tensor  in this limit we obtain 
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where kn k  is the unit vector in the direction of the 
wave vector  of the scattered waves. It thus follows 
from (16) that the scattering process occurs with no fre-
quency change, while the wavelength differs from that of 
the incident waves (

k

0 0 0k k k c  



) owing to the 
difference between the phase velocities of the plasma 
waves and the speed of light in a vacuum. 

Using Equations (9), (15), and (16) as well as the rela-
tion  for the static dielectric func-
tion, where 
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,0 1 Dk  k

D  is the Debye screening length of the 
plasma, for the total intensity of the scattered waves after 
lengthy but straightforward calculations we finally obtain 
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kn k
k  0,I n n  is 

the angular distribution of the scattered radiation, 

     
 

22
0 0 0

0 22 2 2
0

,
,

1 / 2D

I Z T
I



   



    

n n
n n

n n
,


   (18) 

    

 

( ) ( )
0 0

;

0

, ,

, , ,

a b
a b

a b

ab

 



   



n n n n n n

n n

0,



    (19) 

        22( )
0 0 0,a

a aG H       n n n n n b n b , 

(20) 

     

       
   


 

       

        

      
        
 

* 2
0

2 2*

2 2*

2**

2**

* * *

** *

, , 1 | |

1

ab a b

a b

a b

a b

b a

a b

b a

g g

l l

h h

g h

g h

ig l

ig l

i

  

 

 

 

 

 

 

     

    

     
      
      

             
         

 

n n n e

e b n e b

e b n b

n b n e e b e b

n b n e e b e b

e b e n e n e b

e b e n e n e b

n b e       

      

* *

* *

( )

.

a b

b a

l h

l h

 

 

   
      

b n e b

e b n e b









  (21) 

In Equations (18)-(21) we have introduced the fol-
lowing notations: 01 k   is the wavelength of the  

incident wave,  2 2
0 0 02πI c r  , 2

0r e mc 2  is the  

electron classical radius, and  0a aG ig  ,  
 0a aH ih , a a ame m e  . 

Below, in Sections 3 and 4, in the case of scattering 
and transformations of the high-frequency plasma waves 

we consider the interaction of the incident wave only 
with the electron component of the plasma omitting the 
index a in expressions (19)-(21), assuming that the quan-
tities  g  ,  h  ,  l  , , and G H  are related to 
the electrons. However, the ion component of the plasma 
must be taken into account in the case of low-frequency 
incident waves when 0 ~ ,ci pi    (Sections 5 and 6). 
Furthermore, we consider the general expressions 
(18)-(21) in some special cases, assuming that the inci-
dent wave propagates perpendicular to the magnetic field 

direction. We also assume that the incident wave 
propagates perpendicular to the plasma-vacuum interface 
(i.e., we choose the magnetic field to be parallel to the 
plasma boundary). 

B

 
3. Scattering of Ordinary Waves 
 
We first consider the scattering of ordinary waves from a 
stationary charged particle. It is well known [17] that an 
ordinary wave is a linearly polarized transverse ( 0 0E k , 
where 0 02 E ) electromagnetic wave propagating 
across a magnetic field. The polarization vector of this 
wave is parallel to the external magnetic field, 0 ||E B , 
while its frequency is related to the wave vector by the 
usual dispersion equation for transverse electromagnetic  

waves propagating in a plasma, . The 

amplitude of the magnetic field of the incident wave is  

2 2 2
0 p k c   2

0

determined by the relation   0 0 0c  B k 0E . 

We introduce a spherical coordinate system with the 
polar z axis in the direction of the vector  and the y 
axis in the direction of the vectors 0

0k
E  and  (Figure 

1). The angle 
B

  is determined from the direction of the  
 

k0

k 

B 

E0 

   

 

)2(
0E

   

)1(
0E

 

  z 

y 

 x 
 

Figure 1. Diagram illustrating the scattering of an ordinary 
wave from a stationary charged particle located at the 
plane of a plasma-vacuum interface. The wave is traveling 
perpendicular to the plasma surface toward its boundary. 
The magnetic field is parallel to the interface and is di-
rected along the polarization vector of the incident wave. 
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x  axis. Then, taking into account the dispersion law for 
the incident ordinary wave and neglecting the ion com-
ponent of the plasma, from (18) we obtain 

       
 

22 2
0 0

0 22 2 2

, , ,
, ,

1 / 2 cosD

Z T
I I

     
 

    

 


  
  (22) 

where 2 2 21 p    , p pec  , 

   2 2, 1 2 cos sin sG H 2 2in            , (23) 

   
2

2 2
2 2

, , 1 sin sinpe
    

 
  


,    (24) 

and the angle   varies in the range 0 2   . The 
collision frequency   can be omitted from (24), since 

0   for any . 0

The wave vector of the scattered wave is easily deter-
mined by equating to zero the argument of the delta 
function in (16), 

k

0 0k c k  . This relation indicates 
that a long wavelength ordinary wave is transformed into 
short wavelength electromagnetic radiation in a vacuum. 

Let us briefly consider the results which follow from 
(22) in the absence of a magnetic field 
( ,0H  peG   ). In this case and for p   the 
radiation is concentrated mainly in the direction perpen-
dicular to the zy plane, i.e., the scattered wave escapes 
into the vacuum almost parallel to the vacuum-plasma 
interface. For scattering of a long waves ( p  ) the 
radiation is uniformly distributed (i.e., it does not depend 
on the angle  ) in the xz plane. 

In the limit of wavelengths that are large compared to 

p  the intensity of the scattered radiation does not de-
pend on wavelength, in accordance with (22) and (23), 
and has the form 

     24 2 2 2 2
0

2
2 2

, 1 si

1 sin sin ,

peI I G Z T

H

G

n sin    

 

 

   
 


  (25) 

where 1p D   



. From (25) it is seen that in the 
absence of a magnetic field ( ) the scattering oc-
curs just as from a point charge Ze (Thomson scattering) 
having an effective mass 

0H 

2
effm Z pe  [16]. 

Thus, the term proportional to 
m TG 

H  in (25) determines 
the scattering of long waves due to plasma anisotropy. 

It will be shown below that a sufficiently strong mag-
netic field ( ce   or H G ) can significantly affect 
the scattering pattern observed in the absence of an ex-
ternal magnetic field. The angular distribution of the in-
tensity of scattered radiation in this case has a maximum, 
the position of which is determined by the relation 

 
2 2

2 2 2 2
sin sin

3
ce 

 


  n b .     (26) 

From (26) it is seen that the maximum of the intensity 
exists only for sufficiently strong magnetic fields, 

2ce  . In the opposite case with 2ce   the 
intensity decreases monotonically, while for sufficiently 
small angle   (  2 2 2sin 2 / 3ce    ) but for 

2ce   it increases monotonically with  . From 
(25) and (26) it follows that the maximum of the inten-
sity decreases slowly (by a factor of about 2.2) as the 
magnetic field increases from zero to the values of 

ce pe  . The function ( , )I    is shown in Figure 2 
for the scattering of long waves ( 4 p  ) as a function 
of   and  . It is seen that the scattered radiation is 
concentrated mainly near a contour on  ,  plane de-
fined by (26). We also note that these equations define 
two cones    with apices at the point 

2
const n b

0x y z    (see Figure 1). 
With a decrease of the incident wave wavelength the 

intensity of the scattered radiation increases rapidly, ap-
proximately as 4  (see the denominator of (22)), up to 

~ D  . Here the intensity has a maximum, the position 
of which is determined by Equation (26), in the wave-
length range D p    . It should be noted that the 
features of the angular distribution of the scattered waves 
discussed above for p   are retained in the case of 
small wavelengths. 

In the limit of very short waves ( D  ) the angular 
distribution  ,I    is changed significantly. Under the 
condition ce  , sin / ce   , for example, (22) 
takes the form 

     
 

2
2 2

22
0 2 2

2 2

sin sin
,

4sin 2

1 sin sin .

pe
D

H
I I Z T

   
  

 

2

 
  

  

 

 (27) 

The intensity maximum is shifted toward smaller   
in this case, while the position of that maximum is de-
termined by the equation 
 

 

Figure 2. Angular distribution (normalized to 10-7J0, where 
J0 = I0Z

2(peT)2) of the scattered ordinary wave in a long 
wavelength range ( = 4p). The calculations were done for 
 = 102, /pe = 0.1, and ce/pe = 3. 
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  
1/21/22

max 2 / 1 2sinD   
   

.    (28) 

As follows from (27) and (28), the maximum intensity 
increases rapidly with increasing  . In Figure 3 we 
demonstrate the angular distribution ( , )I    for the 
scattering of the short waves ( 0.1 D p    ). Thus, 
the scattering in this case occurs mainly in the direction 
of propagation of the ordinary wave. 

The total cross section for scattering from a stationary 
particle is obtained from (22) after integration over the 
angles  and , where for ordinary waves from (12)-(14) 
we obtain  1/22 21 /g pv c     and 0 . Since 
the general expression for the cross section is cumber-
some, below we consider only some particular cases. In 
the case of scattering of very short waves (

/gS v c

D  ) the 
cross section is almost constant and is given by 

    
2

2 2
1 1 12T pe

Z
T a G b GH c H     2   (29) 

where   2
08 3T r   is the Thomson cross section, 

, 1 1a  1 39 64b  , 1 45 256c  . 
In the intermediate regime with D p   

 4

1 /T p

 the 
cross section decreases as        , where 

  
2

2 2 2
1 2 24

11

20 pe

Z
T a G b GH c H 


  2     (30) 

with a2 = 1, b2 = 17/44, c2 = 6/77. 
In the case of long wavelengths ( p  ) the cross 

section increases linearly with the wavelength of the in-
cident wave,   2T p      , where 

  
2

2 2 2
2 3 342 pe

Z
T a G b GH c H 


  3     (31) 

with a3 = 1, b3 = 2/5, c3 = 3/35. Such a behavior of the  
cross section is explained by the fact that the incident  
 

 

Figure 3. Angular distribution (normalized to J0) of the 
scattered ordinary wave in a short wavelength range ( = 
10-3 p). The values of the other parameters are the same as 
in Figure 2. 

and scattered waves have different group velocities, and 
for p   the energy flux in the incident wave is 

~ 1S  . Therefore, in the long wavelength range the 
total cross section does not coincide with the Thomson 
cross section for scattering from a point particle with a 
mass meff, as it occurs in the absence of a plasma bound-
ary and an external magnetic field [18]. 

Using (30) and (31), the scattering cross section for 
ordinary waves at D   can be represented in the 
approximate form 

   4

1 2T p p            
 .    (32) 

From (32) it follows that at  1/5

min 1 24p      the 

cross section has a minimum, the value of which is given 

by  1/54
min 1 21.25 4T    . 

The dependence of the scattering cross section on the 
magnetic field can be traced from (29)-(32). The cross 
section decreases monotonically with increasing mag-
netic field. This behavior is especially pronounced for 

D   and is one order of magnitude over the range of 
variation of the magnetic field from zero to 

1ce pe    . The decrease of the cross section is due 
to the reduction of the transverse cyclotron motion of 
plasma electrons with the magnetic field. In the limit of 
very strong magnetic fields ( 1  ) the plasma behaves 
like a one-dimensional fluid, the motion of which is con-
fined to oscillations along magnetic field lines. 

4. Transformation of Extraordinary Waves 

In this section we consider an extraordinary incident 
wave with a complex amplitude   (1) (2)

0 0 0  
(where 

1 2 i  E E
(1)
0E  and (2)

0E  are the real amplitudes), propa-
gating across the magnetic field. It is well known [17] 
that in general an extraordinary wave is elliptically po-
larized in the xy  plane (Figure 1), i.e., 0  B . With 
no loss of generality, we choose the vectors  and (1

0E )

(2)
0E  such that  and 0x  (1)

0x 0E (1) (1)
0y 0zE E E  (2)

(2
0yE ) 0   (Figure 1). For this choice, the amplitude of 

the magnetic field of the incident wave is determined by 
the relation  0 02c  (1) k E0  and is directed 
along the external magnetic field. 

0 

The relation between the components  and  
is given by the equation [17] 

(1)
0xE (2)

0zE

 
   

(2)
3 00z

0(1)
1 00x

E
P

E

 


 
  ,           (33) 

while the relation between the frequency and the wave 
vector is given by the dispersion equation for the ex-
traordinary waves [17], 

   
   

2
0 02 0

0 2
0 0

2 R L

R L

k
c

   
   




          (34) 
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with      1 3R       and      1 3L       . 
The energy flux of the incident wave and the intensity 

of the scattered extra etermined by 
the expressions 

ordinary waves are d

 2

0 2c  0S S , (14), and (18)-(21), 
respectively, where 

   
 

2
02

0 0 1 0 2
0 0 0

1 3

2 1
g P

c P


  

  

 
 

 

v
S





,    (35) 

     2 2 2, , 1 sin cos sinq Q            , (36) 

 
 

 
 

 

22 2 2 2 2

2 22 2 2 4 2 2 2
,

pe pe ce

H pe ce pe

q Q
    

 
      


 

  
. 

(37) 

We investigate the expressions obtained for  ,I    
for high-frequency (electron) extraordinary waves. The 
ion component of the plasma can be again neglected in 
this case. The two solutions of the dispersion equation 
(34) then have the form [17] 

       
1/2

( ) 1/2 2
0 0 1 0 1 0 2 02k f k f k f k    4    

  (38) 

where   2 2 2
1 0 1 2 0 ,2f k k    c   2 2 2 2 2

2 0 1 2 0 ,Hf k k    c
2

  

and 2 2
H ce pe   

1

 is the upper hybrid frequency. The 

quantities   and 2  are the cutoff frequencies which 

are the solutions of the equations    2 1 0L L       

and , respectively, and under the 

condition 

 1R   

ce ci

R 
2
pe

2 0

    (which is fully justified for both 

laboratory and astrophysical conditions) have the form 
[17] 

2 2 2
2 12 4 ,ce ce pe pe 2 2            . (39) 

In this section we consider only the scattering of the 
high-frequency mode ( )

0
 . We briefly recall (see also 

(38)) that for this mode  ( )
0 0k

 0 0k
 increases monotoni-

cally from 2
( )   at  to 

 at 0 . Since  (or 
) in this frequency range the high-frequency 

wave has, in general, right-hand elliptic polarization in 
the 

0 0k 
 0 0  ( )

0 0 0k k  
(2)
0z 0E 

c k  P

xz

 P

 plane (in the positive  direction). In the case 
of long waves ( 0 ), , the wave is almost 
circularly polarized, whereas in the case of short waves 
( 0k ), 0 , this mode consists of a linearly 
polarized, transverse electromagnetic wave. In the latter 
case the only difference between an extraordinary and an 
ordinary wave is that the polarization vector of an ex-
traordinary wave is perpendicular to the external mag-
netic field. 

y
 2 1 0 P

1

k





 

The wave vector of the scattered wave is determined 

by the expression 0k c . From (38) we conclude that 

0 0c k   in the entire wavelength range of the incident 
wave. Thus, as in the case of an ordinary wave, the 
transformation of extraordinary waves into electromag-
netic radiation in a vacuum is accompanied by a decrease 
of the wavelength. 

Let us consider the angular distribution of the scat-
tered waves in the limits of small and large  . In the 
limit of very short waves ( D  ) the angular distribu-
tion has a maximum at the values of the small angle   
determined by (28), in which sin  is replaced by 
cos . All the properties obtained for ordinary waves in 
the range of   under consideration are retained in this 
case. In this limit the cross section is almost constant and 
is determined by (29) in which the numerical coefficients 
are 1 1a  , 1b 61 64 , 1 381 1280c  . 

In the intermediate wavelength range with 

D Hc     , where   is a number on the order 
of unity, the intensity of the scattered radiation decreases 
rapidly with increasing  as 4 . The angular distribu-
tion of the scattered waves is also changed. The intensity 
maximum is shifted toward larger angles , and for 

ce  , sin ce   , and 2cos 2 3   the position 
of that maximum is determined by the expression 

2 2sin cos 2 3   . However,  ,I    increases mo-
notonically with further increasing   ( 2cos 2 3  ) 
and reaches the maximum value at 2     (or 

3 2  ) (Figure 4). In the same wavelength range the 
scattering cross section has the form 
   4

1T p      , where 1 is determined from (30) 
with coefficients 2 1a  , 2 39 44b  , and 2 18 77c  . 

In accordance with (22), (23), (36), and (37) in the 
limit of the wavelengths larger than c/ce, the intensity of 
the scattered radiation is 

       

 

8
2 02 2

0 4

22 2

, 1 s
2

sin sin ,

pe

f
I I Z T

G H

 2in sin    


 

 

 

 (40) 

  2
0 2 2 1 4pef         .       (41) 

It is seen from Equation (40) that the intensity of the 
scattered radiation increases monotonically with 
  sin sin  n b  and scattering occurs mainly in the 
direction of the external magnetic field. 

In the limit of cec  , from (35) we obtain 
   0 pS F1   , where 

 
 

  
  

2
0

1 22 2
00

1 4 5 21

1 4 34

f
F

ff

  


   

 


 
. (42) 

Then the cross section reads   2T p      , 
where 2  is determined from (31) with coefficients 

   8
3 0 1a f F  , 3 34 5b a , and 3 39 35c a .  
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Figure 4. Angular distribution (normalized to J0) of a scat-
tered extraordinary wave with a frequency ( )

0
  in the 

intermediate wavelength range ( = 5D). The values of the 
other parameters are the same as in Figure 2. 
 
From these expressions and (40)-(42) it follows that at 

cec   and 1 

8

 the angular distribution and the 
scattering cross section of the extraordinary waves are 
proportional to   and 11

3a  , respectively, and 
increase considerably with the magnetic field. At 

cec   an extraordinary wave has right-hand circu-
lar polarization in the xz plane and at 1   its fre-
quency is 2 ce  . Thus in this case a specific cyclo-
tron resonance may occur which, however, differs from 
the usual one so that the incident wave is polarized in the 
plane of incidence and propagates across the external 
magnetic field [17]. 

 
5. Transformation of Waves of Intermediate  

Frequency 
 
In this section we consider the transformation of the ex-
traordinary waves with a frequency spectrum  ( )

0 0k 

0

 
determined by (38). The frequency  increases 
monotonically (see (38)) from 

( )
0 k 

0 1
( )   at 0  to 0k 

( )
0 H  

P 

 at 0 . Since the frequency of this mode 
is high compared to the characteristic ionic frequencies 
(see, e.g., [17]), we neglect here the contribution of plas-
ma ions both in the scattering current and in the wave 
dispersion. From (33) it follows that in this frequency 
range  (or ), i.e., this mode, in gen-
eral, has left-hand elliptical polarization in the xz plane 
(Figure 1) and cannot resonate with plasma electrons. In 
the case of long waves ( 0 ), , and the 
wave is almost circularly polarized, whereas in the case of 
short waves ( 0 ), , this mode consists 
of a longitudinal wave (upper-hybrid oscillations). In the 
latter case the upper-hybrid waves are transformed into 
electromagnetic radiation in a vacuum. 

k 

0

 

 0

k

(2)
0z 0E 

k 

 HP 

0

 

 1 1P   

From (38) for ( )
0
  one concludes that 0 0c k   at 

p   and 0 0c k   at p  . Thus, at p   
and p   the scattering of the mode ( )

0
  is accom-

panied by an increase or a decrease of the wavelength, 
respectively. 

General expressions for the angular distribution of the 
scattered extraordinary waves have been obtained in Sec-
tions 3 and 4 (Equations (22), (36), and (37)). In the 
range of very short wavelengths ( D  ), from these 
expressions we obtain the angular distribution of the 
transformation of upper-hybrid oscillations, 

     
 

22 2
0

2 2 2 2

, 1

sin sin 1 .

peI I Z T G 2  

   

  

    

      (43) 

The transformation cross section in this wavelength 
range it is obtained from (35) and (43). After integration 
of Equation (43) with respect to the angles, one obtains 

 3

0T p     , where 

 
2

2 2 2
0 2

1
1 1

3 2pe

Z
T G  


 

  
 
  .    (44) 

From this expression for the cross section it is seen that, 
in contrast to the scattering (transformation) of 
high-frequency waves, in which the cross section for 

D 

3

 is constant, in the case of intermediate up-
per-hybrid waves the cross section increases essentially 
(as  ) with decreasing the wavelength of the incident 
wave. This feature is due to the strong reduction of the 
energy flux ( 3

0 ~S  ) in the incident wave. 
Consider now the opposite limiting case of the long 

wavelengths, p  . We first note that for sufficiently 
strong magnetic fields, 2ce pe   the frequency of 
these waves at 2 2 1/(2 )c ce pec      2  coincides 
with the electron cyclotron frequency, ( )

0 ce   . On 
the other hand,  P  1   at ce   and the incident 
wave is circularly polarized in the xz plane (see Figure 
1). Near the cyclotron frequency, 0 ce  , the energy 
flux of the intermediate wave has the form 

 

4 2 2

0 22 2 2
0

2 2
~

ce pe ce pe

H ce

S
   

  




          (45) 

and increases strongly due to the cyclotron resonance. 
This resonance is stabilized taking into account the elec-
tron-ion collisions. Here the energy flux can be very 
large but finite quantity. Thus, at c   the transfor-
mation cross section is vanishingly small, 0  . 

In the limit of the long wavelengths, for the angular 
distribution from the general expressions (22) and (36) 
we obtain 

 
 

   

 

22
20 2 2

4 8
0

2 2

, si
2

1 sin sin .

peI Z T
I G H

f


n sin  

 

 

 

 


  (46) 
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In this limit    0 pS F2   , where 
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2
0

2 0 22 2
0

2 1
1
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 (47) 

The cross section in the limit p   is determined 
from the expression   2T p      , where 2  is 
given by (31) with    8

3 0 21a f F  , 3 34 5b a , 
and 3 39 35c a . A comparison of these expressions for 
the angular distribution and the cross section with the 
similar expressions obtained in the case of the transfor-
mation of a high-frequency extraordinary wave shows 
that in the former case a strong external magnetic field 
can strongly suppress the transformation of an intermedi-
ate wave, the intensity of which decreases as 8   with 
increasing of the external magnetic field (see (46)). 

From (1) and (4) it is seen that the intensity of the 
transformation of an intermediate wave increases mono-
tonically with   and takes a maximum value at 

2   and 2   (or 3 2  ). Therefore, the 
radiation mainly escapes from the plasma parallel to its 
boundary in the direction of the external magnetic field 
(Figure 1). 

The intensity ( , )I    of the transformation of the in-
termediate wave as a function of the wavelength and the 
angle   is shown in Figure 5. From this figure it is seen 
that the intensity has a maximum in the short-wavelength 
range, whereas the intensity of the scattering (transforma-
tion) of the high-frequency waves decreases monotoni-
cally with wavelength of the incident wave. 

At the end of this section we note that the restriction 

g Tev v  on the group velocity (see Section 2) leads to a  

limitation      
1/22 2

0/ 4Te pc v f  


    of the  

wavelength of the incident wave. 
 

 
Figure 5. Dependence of the intensity I (,) (normalized to 
J0) for a transformed intermediate wave on the wavelength 
and the angle  for  = /2. The values of the other pa-
rameters are the same as in Figure 2. 

6. Scattering of Low-Frequency Waves 
 

In this section we consider the scattering (transformation) 
of low-frequency magnetosonic and lower-hybrid plasma 
waves, the frequencies of which are much lower than the 
characteristic electron frequencies ( ce  and pe ) and 
are comparable in order of magnitude with the 
ion-cyclotron and Langmuir frequencies ci  and pi , 
respectively. In this low-frequency limit one must take 
into account the dynamics of the plasma ions and their 
partial contributions to the dispersion equation and the 
scattering current. 

From the general relation (34) we obtain an expression 
for the frequency of the low-frequency waves (see also 
[17]), 

 
2 2

2 2 0
0 0 2 2 2

0

A
LH

A LH

k u
k

k u
 





,          (48) 

where 2 2 2
LH ce ci pe H      is the lower hybrid fre-

quency, 2 21A A Au V V c  , and  is the Alfvén 

velocity. 
AV

From (48) it follows that  (or ), 
i.e., this mode in general has right-hand elliptical polari-
zation in the xz plane (Figure 1) and can resonate with 
plasma ions. In the case of the long magnetosonic waves 
( 0 ) we obtain 

 0 0P   (2)
0z 0E 

0k   0P 0  and the wave has trans-
verse polarization, while in the case of short low-
er-hybrid waves ( 0 ),  and this mode 
consists of a longitudinal wave. In the latter case we have 
the transformation of the lower-hybrid waves into elec-
tromagnetic radiation in a vacuum. 

k  P  LH 

From the expression for 0  it follows that 0 0c k   
for any  . The transformation of the low-frequency 
mode is therefore accompanied by an increase in wave-
length. Let us make some estimates. In astrophysical con-
ditions for a density  g/cm3 and a magnetic field 

 kG we obtain that the transformation of the 
magnetosonic wave in a vacuum generates radiation with 
a wavelength exceeding that of the incident wave by two 
orders of magnitude, 

610 
910B 

0 0 106k c c uA  . 
Consider now Equations (18)-(21) for the intensity of 

the transformation of the low-frequency waves. Taking 
into account the dynamics of the plasma ions (19)-(21) 
become 

    
    

   

( )2

( ) ( )

2 ( )2

, , , , ,

2 , , ,

, , , ,

e
ee

e i
ei

i
ii


,

       

       

     

   

   

  

     (49) 

   ( ) 2 2 2 2, 1 2 cos sin sa
a aG H in ,             

(50) 
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     2 2 2, , 1 sin cos sin ,ab ab abq Q           
 (51) 

 
           

 21
a a b b

ab

g l P g l P
q

P

     




      


,  

(52) 

 
           
           

a a b b
ab

a a b b

l g P l g P
Q

g l P g l P

     


     

     
     




. 

(53) 

In (50)-(53) the indices a and b take the values e or i to 
denote the contributions of plasma electrons and ions, 

1i i iZ m m    , where iZ , i , and  are the 
charge number and mass of an ion and the electron mass, 
respectively, and the quantities aG , a

m m

H ,  ag  , 
 al  , and  P   are determined by (13) and (33), 

respectively. 
In the limit of short wavelengths ( D  ), from 

(49)-(53) we obtain the angular distribution of the trans-
formation of lower-hybrid oscillations, 

   

 

22
0 2

2 2 2 2 2
1 2

,
1

1 sin cos sin ,
1

peI I Z T
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



   



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


   (54) 

where 

 
 

3/2 2
1

1/2 2
2

1 ,

1 .

e

e i

G G G

G G G

 

 

  

  
          (55) 

For small external magnetic fields ( 1  ) the con-
tribution of the ions in (54) and (55) is negligible. For 

1  , however, the transformation occurs mainly due 
to the ionic current. 

From (54) we derive the cross section for the trans-
formation of lower-hybrid waves by integrating the latter 
over angles. The result is given by the expression 

 3

0T p      , where 

 
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2 2
0 1 226 11

pe

Z
T G

   



   

2
2G

 .  (56) 

From (35) and (48) it follows that for the wavelengths 

c A ciu     the frequency is close to the ion-cy- 
clotron frequency 0 ci  . At these frequencies we 
obtain . Therefore, near ci  1ciP     the wave has 
right-hand circular polarization and, as noted above, it 
can resonate with plasma ions. Ion-cyclotron resonance 
occurs in this case and the energy flux of the incident 
wave increases sharply as 

 

2 2

0 22 2
0

2
~ ci piA

ci

u
S

c

 
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.           (57) 

The cross section of the process thus approaches to 
zero at c  . 

In the limit of long magnetosonic waves ( ,p   

c ), from (18) and (49)-(53) we obtain 
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     

 (58) 

where 0 ,e iH H H    0 ,e iG G G    A Au c  . 
It should be noted that in the second term in (58) the 
contribution of ions can be neglected for any values of 
the magnetic field ( e iH H  ), whereas in the first 
term the contribution of ions can be neglected only for 
weak external magnetic fields. 

From (58) we find the cross section for the transfor-
mation of magnetosonic waves. After evaluation of the 
integrals over angles, we find  6

1T p      , where 
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3/2
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1 04

3 2
1

4 52
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
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 (59) 

From (54) and (58) it is seen that the intensity of the 
transformation of the magnetosonic waves increases mo-
notonically with angles   and  , approaching the 
maximum value at 2   and 2   (or 

3 2  ). Consequently, as in the case of an intermedi-
ate wave, radiation escapes from the plasma mainly par-
allel to its boundary in the direction of the external mag-
netic field. 

In Figure 6 we demonstrate the dependence of the in-
tensity of transformation of a low-frequency wave as a 
function of wavelength and the angle  . From (54), (58), 
and Figure 6 it is seen that the efficiency of transforma-
tion of lower-hybrid waves far exceeds the efficiency of 
transformation of magnetosonic waves. However, the 
intensity of the emission produced by the transformation 
of magnetosonic waves can be essential if we take into 
account that it is proportional to the (large) quantities 

2Z  and . We note that the estimate of the cutoff 
parameter T depends on the specific model of magnet-
ized plasma. 

2T

 
7. Discussion and Conclusions 
 
In this paper, we have presented a detailed investigation 
of the scattering and transformation of the plasma waves 
on heavy charged particle in magnetized plasma. The 
basic idea of this paper is that the scattering (transforma-
tion) occurs due to the nonlinear interaction of the inci-
dent wave with the polarization cloud surrounding the 
particle. In the course of this study we have derived some 
analytical results for the angular distribution and the 
cross section of the scattered (transformed) radiation and  
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Figure 6. Dependence of I(,) (normalized to 10-10 J0) for a 
transformed low-frequency wave on the wavelength and the 
angle  for  = /2 and  = 10-5. The values of the other 
parameters are the same as in Figure 2. 
 
we have shown that the problem is reduced to the deter-
mination of the nonlinear (three index) dielectric tensor 
of magnetized plasma. 

After introduction to the general theory in Section 2, 
we have studied some particular cases of the scattering 
and transformation processes assuming that the incident 
wave propagates in the direction transverse to the exter-
nal magnetic field. The angular distribution and the cross 
section for the scattering and transformation of high-fre-
quency ordinary and extraordinary waves and low-fre-
quency upper-hybrid, low-hybrid, and magnetosonic 
waves have been investigated within a cold plasma 
model which is valid when the group velocities of the 
incident and scattered waves exceed the thermal veloci-
ties of the plasma particles. A number of limiting and 
asymptotic regimes of short and long wavelengths have 
been studied. The theoretical expressions for the angular 
distribution of the scattered waves derived in this paper 
lead to a detailed presentation of a collection of data 
through figures. 

We expect our theoretical model to be useful in ex-
perimental investigations of the wave scattering by 
plasma as well as in some astrophysical applications. 
Going beyond the presented model calculations which 
are based on the cold plasma approximation we can en-
visage a number of avenues. One of the improvements of 
our model will be to include the thermal effects which 
are particularly important in the case of dusty plasmas 
[15]. Furthermore, the theoretical model developed here 
although is strong but is not adopted for immediate as-
trophysical applications. For this purpose it is required 1) 
fully relativistic fluid calculations with appropriate equa-
tion of states and transport coefficients of a strongly 
magnetized and dense (degenerated) plasma (see, e.g., 
[19]). 2) Short range quantum effects which appears due 
to the tunneling of electrons and positrons through the 

Bohm quantum potential barrier [20]. A study of these 
and other aspects will be reported elsewhere. 
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