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Abstract 
 
A task of mapping a hexagonal grid to different types of helical surfaces including nanocones, nanotubes and 
nanoscrolls by unfolding a given surface to a carbon layer plane has been solved. Basing on these models, 
polyhedric models with all atomic bonds being constant and equal to 1.42Ǻ as in a flat carbon layer have 
been built, and an algorithm of coloring all faces of such models has been developed. Received models can 
be utilized for visual demonstration of the helical growth of nanotubes, nanocones, nanofiber and other 
nanoobjects, and also for physical properties calculation. 
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1. Introduction 
 
It seems obvious that 3D-images of nanoobjects play 
significant role in understanding their geometry, struc-
ture and properties. Special literature accumulates reach 
experimental materials obtained with electronic micro-
scopes confirming the spiral or helical growth of nano-
cones [1], graphite whiskers [2], nanofiber [3-8], nano-
tubes [8-10] and so on. Different helical or spiral growth 
of nanoobjects models are suggested and discussed; these 
models, however, are merely sketchy. That’s why a need 
to develop computer models and general algorithms of 
building them has arisen. Such algorithms should exflat 
or at least imitate the growth mechanisms of nanoobjects. 
The necessity for such models often appears during de-
coding of a nanomaterial structure with x-ray, electronic 
microscope and other methods. The current notion of 
nanofibers as objects with cones inserted into each other 
doesn’t exflat experimentally observed cone’s opening 
angles. As shown in [1,11] there are only five types of 
nanocones with opening angles δ = 19.19°, 38.94°, 60°, 
83.62° and 112.88°, and most of angles observed with 
electronic microscope do not match these five standard 
ones; and only in a helicoid the δ angle can vary widely. 

For instance, [1] adduces opening angle data for dif-
ferent carbon fibers between 2.7° and 14.5°, and suggests 
a helical growth model for nanofibers with open and 
closed vertex of a cone. In [2], carbon whiskers were 
produced during the treatment of wood over a SiC cata-
lyst. They had the δ angle within 110° - 151°. In [3], car-

bon fiber was produced from oil pitch with opening an-
gle varying from 60° to 180°. Reference [1] examines a 
helical growth of nanocones and nonofiber, and [10] 
examines that of nanotubes. The catalytic synthesis of 
carbon nanotubes and nanofiber is described in [12], 
where the question of spiral nanofiber synthesis was also 
touched. Similar models were used in [4,5] to describe 
the result of a nanofiber growth over catalysts. 

Graphite has a flake structure, so it delaminates to 
separate layers or packs of several layers when it is being 
exposed to laser evaporation or an arc discharge. Upon 
loosing stability, layers may roll up to a scroll or conical 
and cylindrical helixes. Reference [13] suggests a 
mechanism of dislocational forming of single-shell or 
multi-shell nanotubes from that scroll, and a correspond-
ing disclination mechanism for nanocones. These and 
other multiple experimental data have lead scientists to 
the idea of a helical or spiral growth of nanoobjects. 

In recent days [14-16] helical nanostructures, nano-
helixes and nanotubes attract the attention of many re-
searchers as a possible perspective material to create 
terahertz generators still not mastered for now. 

In aforementioned documents, as was stated above, 
nanoobject models are sketchy, so it is worthwhile to 
obtain computer models of surfaces with a carbon nano- 
grid mapped onto them, explaining, at least in a qualita-
tive sense, numerous experimental data. Atomic coordi-
nates and parameters of a model could be used then to 
calculate physical characteristics of nanomaterials and to 
decode their structure. 
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The purpose of this document is to obtain a general 
method of mapping a hexagonal carbon grid (Figure 1) 
to different types of helical surfaces by unfolding the 
given surface to a carbon layer plane. 

These ideas and differential geometry methods often 
used in material cutting [17] and Modeling of Tent Fab-
ric Structures [18] have not been used to build complex 
nanoobject models, such as helical, as far as we’re con-
cerned. Explicitly or implicitly they were used for simple 
surfaces only, such as cylindrical, conical and scrolls [11] 
that can always be unfolded to a plane. 

 
2. Problem Definition 
 
A graphite layer being rolled up to a tube, a roll or a 
helicoid along the crystallographic direction v = [v1,v2] 
(Figure 1), where v1, v2 are integer coprime numbers, 
requires all atomic bonds to be constant. This means the 
equation system should be solved to build a model in the 
general case: 

2 2 2
0( ) ( ) ( )i j i j i j r           2 , 1, 2, ,i j n , , 

where r0 is the closest spacing between atoms, n – the 
number of atoms in the model. 

This system, however, is undefined, and has multiple 
solutions, so the problem of determining atomic coordi-
nates ξ, η, and ζ in the model is solved in two steps. 

At first, a hexagonal grid is mapped onto the given 
surface by unfolding it to a plane. Atomic bonds get de-
formed and turn to spiral curve segments on that surface. 

It is known that if the Gauss curvature of a surface is 
equal to zero, this surface can be unfolded to a plane 
while keeping lengths and angles between a pair of 
curves lying on it intact. However such surfaces as heli-
cal with the non-zero Gauss curvature can’t be unfolded 
directly, but they can be split into flat segments so that 
each one can be unfolded to a plane. This is called a 
 

 
Figure 1. The flat layer atomic coordinate calculation 
scheme. 

conditional or an approximate involute. The smaller 
these segments are, the more accurately a surface is ap-
proximated. 

Unfolding the surface to a carbon layer plane (Figure 
1) this way, we get some area, or simply put - a pattern. 
Atoms captured by this area are reflected on the given 
surface after “gluing” the pattern back. 

Such surface is covered by a grid built of equilateral 
curvilinear hexagons with the side (arc) length equal to 
the minimal atomic spacing r0 = 1.42 . Å

The actual atomic spacing measured along the line 
connecting two adjacent atoms is lesser than r0 and de-
pends on the measurement direction. 

If the radius of a surface curvature strives for infinity, 
all atomic spacings measured along the line strive to the 
extreme value r0, like on a plane (Figure 1). For nano-
tubes with the diameter D > 6  the error of spacing 
measurement along the line and along the arc lying on a 
surface is less than 1%. 

Å

This model is called a curved atomic-bond approxima-
tion model, and is a quite good first approximation to the 
ideal model. With it, elastic, mechanical, electronic and 
other characteristics of nanotubes are computed, and also 
hydrogen adsorption and desorption issues are studied. 

On the second step, atomic coordinates of the model 
are adjusted so that all atomic bonds would equal to r0 = 
1.42  as in a flat graphite layer, and polyhedric models 
are created basing on the solution of a system of three 
quadratic equations. Such models were examined in 
[19,20]. Finally, a not so easy problem of coloring all 
faces of a polyhedric model is solved. 

Å

Now, let’s take a closer look at these questions. 
 
3. Conical Helicoid 
 
Helicoid is a surface produced by rotating a line or a line 
segment around the chosen axis with the constant angle 
between the axis and the line equal to δ/2, and by simul-
taneous moving that line or a line segment along the axis 
by bφ value. There are two types of helicoids: a right 
helicoid (δ = 180º) and an oblique helicoid (δ ≠ 180º). 

To cover a wider class of surfaces, let’s consider a 
more complicated version of a helicoid, when a line 
segment spires along an Archimedean spiral (ρ = aφ) and 
simultaneously moves along the ζ axis by bφ value. Let’s 
call this surface a conical helicoid. In particular, having b 
= 0 we get a conical scroll named by analogy with a cy-
lindrical scroll examined in [11]. 

Figure 2 shows a projection of a conical scroll to the 
ηζ plane enclosed within two spirals AB and CD, where 
L is a scroll’s generatrix, δ-opening angle of a cone. The 
BD segment being rotated around the ζ axis at angle of 
δ/2 counterclockwise produces conical scroll. If b ≠ 0, a 
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scroll unrolls along the ζ axis producing a conical heli-
coid described in co-ordinate system having point O as 
the origin with the following equation: 

cos , sin , cos( 2),b t               (1)  

where 0 sin( 2)t       0 0    t L  ,  - t-
ing radius. 

 star

In (1) the σ parameter must not be arbitrary, because 
the interlayer distance should be constant in a helicoid, 
or equal to zero in a cone. So let’s present σ as a sum of 
two items: σ = a + c. The a parameter is responsible for 
the Archimedean spiral which the BD segment rotates 
along, while the c parameter keeps the interlayer distance 
H in a helicoid constant. For t = 0 and t = L the surface 
enclosed between two spirals (1) is a ruled surface with 
Gauss curvature equal or not equal to zero, depending on 
the values of , , ,a c b  parameters. Coordinates of point 
(atoms) on the surface of a helicoid must be expressed 
via coordinates of the flat layer. 

To map a carbon grid to the given surface we should 
know how it is unfolded on the plane and find the de-
pendence ( )   between the angle ψ on the involute 
and the angle φ on the surface (1). Let’s study these 
questions separately. 
 
4. Unfolding Helical Surfaces to a Plane 
 
To calculate coordinates of atoms in each model, two 
coordinate systems are introduced – a moving one with 
the origin at the О’ point on the Figure 2 and a fixed one 
with the origin at the О point. Further, we will denote 
variables , ,    and , ,x y z  in the non-stationary 
coordinate system with a p index, and in the fixed system 
– without an index. 

The Equation (1) is expressed in the non-stationary 
coordinate system as: 

sin( 2)cosp R   , sin( 2)sinp R   , 

cos( 2)p R                 (2) 

One can see, that the expression (2) is an equation of a 
conical surface with one fixed point О’, where an Archi-
medean spiral is a directrix, and the vector R is a genera-
trix. Such surface can be unfolded to a plane with both 
angles and lengths remaining the same. The involute of a 
surface to the plane xz is a set of spirals covering area 

: 0    t L 
cos , sin ,p px R z R            (3) 

where  0 sin( 2) sin( 2)R t       in (2) and 
(3). 

To express the equation of a surface and the equation 
of a spiral on a plane in the stationary coordinate sys-
t em one should subtract  the value of  OO   
  0 cot 2a  

 
Figure 2. The projection of a conical scroll to a plane. 

 
from pz  in (3). So we get: 

,p   ,p     0 cot 2p a            (4) 

px x    0 cot 2pz z a              (5) 

Now the main problem is to find the dependence 
    we need to map a carbon grid to a surface. 
Since the arc length of an arbitrary curve on a surface 

remains invariant while unfolding it to a plane, we can 
use (2) to get the following equation: 

 2 2 2 2 2 2 2(d d ) d sin 2 dR R R R 2          
   , 

where the left and the right part of the expression are 
respectively square of arc length of a curve on the plane 
and on the surface, and  denotes derivative on the 
angle φ. 

R

After several simple transformations we receive the 
equation    d d sin 2 1    ; solving it, we find  

  1 sin 2                  (6) 

It seems that such approach can be also used to deter-
mine the dependence     for undevelopable surfaces, 
however in this case we will get a more complex equa-
tion. 

The simple way to find the dependence     for 
undevelopable surfaces is as follows. Since an Archi-
medean spiral 0 sin 2a t        is a directrix of 
a conical helicoid (1), we can approximate d ds R  , 
where ds – is a length of an arc element of a helix, and 

 sin 2R    is an absolute value of a radius-vector 
drawn from О’ (Figure 2) to that arc element of a helix. 
Considering the calculation is performed in the stationary 
coordinate system, we have: 

 
2 2

1

sin 2 d




 
  




 


=    1f q  f ,  (7) 

  (Figure 2) from p  in (2) and  where 
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        2sin 2 1 1f q Arsh q     



, 

  1 1f f q  , q a            (8) 

If we assume a=0 in the integrand in (7), we auto-
matically receive an accurate relation between angles ψ 
and φ for conical surfaces (6). 

So we have used (7) to acquire a method of building a 
conditional (approximate) involute of helical surfaces to 
a plane, that is, we’ve set a one-one mapping between 
points (atoms) of the surface and the plane. 

The calculations show that the     dependence (7) 
is linear and for conical surfaces is approximated by (6) 
quite good. Besides, it doesn’t depend on the t parameter 
so it is acceptable to use it for undevelopable surfaces 
such as helical surfaces as well. In this document, the 
equation (6) was used to calculate the dependence 
    for all types of the below surfaces, except the 

general case (1), which has allowed to significantly re-
duce calculation time. 

Figure 3 shows an example involute of a conical 
scroll to the plane xz in the non-stationary (at the right) 
and stationary (at the left) coordinate systems. The invo-
lute displays an area enclosed between two spirals (3) or 
(5), when t = 0 and t = L. It is the area, where atoms of a 
flat carbon layer must be. One can see that in the 

non-stationary coordinate system all radius-vectors come 
from the origin (point О’ at the Figure 3). The conical 
scroll itself with a carbon grid already mapped to it is 
depicted at the Figure 5. 
 
5. The Method of Mapping a Carbon Grid to 

a Surface 
 
Finally, let’s study a problem of generating atomic coor-
dinates of a conical helicoid using the known depend-
ency (6), (7) and (8) between φ and ψ angles. 

Coordinates at the flat layer xi and zi (i = 1,2, ,n), 
where n is the number of atoms enclosed within the area 
between two helixes on the xz plane, are known and can 
be found by corresponding formulas [11]. 



     1 1 2 1 2 2 2 0sin sin ,z a l b a l b z          (9) 

     1 1 2 1 2 2 2 0cos cosx a l b a l b x         , 

where 1 2, ,a a   - parameters of an elementary cell at the 
flat layer, 1 2, 0, 1, 2, , 1,2l l    , 0 0,x z - coordi-
nates of a nearest hexagon center. The β and α-β angles 
can be expressed through the identity period  1 2,A    
by formulas [11]. Coordinates of two basis atoms ex-
pressed in fractions of a carbon layer elementary cell 
period are  0,0,1 3, 2 3b  , if . 12  0

 

 
Figure 3. The involute of a conical scroll to a plane in the non-stationary (at the right) and stationary (at the left) coordinate 
systems. 
 

 
Figure 4. The involute of a conical scroll to a carbon layer plane in two coordinate systems - non-stationary (at the left) and 
stationary (at the right). 
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Figure 5. A conical helicoid with non-overlapped layers: φ1 = 0, φ2 = 6π, δ = 60°, ρ0 = 2.3, H = 3.356 , L = 5.64, b = 1.2, v = [3,1], 
and a conical scroll with a carbon grid mapped to it: φ1 = 0, φ2 = 4π, δ = 60°, ρ0 = 3, H = 3.356 , L = 10.47, b = 0, v = [3,1]. 

Å
Å

 
Determining coordinates  1 2, ,x l l   and  1 2, ,z l l   

of atoms in a flat carbon layer from (9) with pre-defined 
integer numbers 1 2  and ,l l  , we can write the follow-
ing equation in the non-stationary coordinate system for 
an absolute value of a radius-vector R drawn from the 
point O′ to an atom on the plane, and the angle ψ: 

2 2sin , ,p p p 0 0R R R L  z R R x z      (10) 

where    0 0 sin 2R     . 
The main difficulty here is to find angles φi for atoms 

lying on the helical surface using known angles ψi on the 
involute by solving equations for all atoms 

   f    , где     1f            (11)  

where  f   is found with (8), if .  0a 
If , then according to (6), 0a    sin 2f     

and  1 1f  sin 2  . 
Since the function arcsin pz R    expressed from 

(10) is ambiguous having its principal values lying 
within 2 π 2   , it is impossible to find one-one 
mapping between angles φ and ψ directly. Besides, the 
angle ψ at the involute, obviously, should change within 
0    . 

To solve this issue, let us split the interval between 
angles 1 1    and  2 2    onto segments of 
2  the following way: 

   2 1p j j f    , ,    211p k f  1,2, ,j k 
(12) 

where   2 1 2πk ceil     , obviously, 1 f   and 

2 21f  , and the  function rounds the number to 
the nearest integer. 

ceil

Now, for i-th atom let us find the angle 
arcsin i iz R    and determine which quarter of a flat 

circle the calculated angle   hits by analyzing signs of 
x and z coordinates. For the first quarter of a circle 

,  0, 0x z   ; 
 0, 0x z 

for the second  and 
the third 

 0, 0x z 
 π    and, finally, for the 

fourth quarter ,  00,x z 2π  . 
Next, we calculate the angle  p j   , 

, where p is found with (12), and by using 

the function 

1,2, ,j   k

fzero  we find the corresponding angle   
in according to (11) if  for t = 0. 0a 

       0 1, , , , , , /F fzero fi b t       2 2  @  , ,psi  

           (13) 
where the fipsi  operator calculates the function  F   
   1 2, ,j l l , f    , and the search of a root of this  

function starts from the point  1 2 2  . The integer  

numbers 1 2, ,l l   identify atoms, while  identifies an 
interval number as in (12). If , φ is explicitly de-
termined from (6): 

j
0a 

 sin                (14) 2

Next, let us calculate the radius  
   0 0 , , and for all 

atoms analyze if the angle 
sin 2R     0 0R R t 

  and the radius  belong 
to intervals: 

R

   1p j p j    and , 0 0R R R L  

2 2zR x   

If both conditions are met simultaneously, atomic co-
ordinates at the flat layer x and z are stored in arrays 
   ,x i x z i z  , while helical atomic coordinates in 

the stationary coordinate system are calculated using (4). 
Atomic coordinates in two coordinate systems on a plane 
are computed using Formulas (3) and (5). 

Finally, the number of atoms in a model n is calculated. 
The variable n initially equal to zero gets increased by 
one every time. Arrays of angles 1f    and   
needed to draw a flat helical involute and enclosed atoms, 
and also to map a carbon grid to a surface, are created for 
each atom using (4). 

6. Different Surface Types 

As was previously stated, depending on the values of 
 and b  parameters in (1), one can get different 

types of helical and conical surfaces. Let’s examine these 
cases. 

,a c

1) General case. In this case the interlayer distance H 
of a helicoid must be constant and roughly equal to that 

Copyright © 2011 SciRes.                                                                              JMP 
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of turbostratic carbon. To make H constant, the values 
 and c  in (1), as it follows from Figure 2, must be 

equal to: 
a

  2π cos 2a H  ,  tan 2c b   и a c   . 

(15) 

If   0 2 cosb L    2 , then layers are partially 
overlapped; if  2 cos( 2)b L    - there’s no over-
lapping. If , we receive a conical scroll. 0b 

At Figure 2, the BD segment being rotated is always 
located at the surface of a conical scroll (b = 0). The ends 
of this segment (points B and D) on that surface describe 
two helixes (4), if t = 0 and t = L. Unfolding a conical 
scroll turns two helixes (4) into spirals (5) on a plane. It 
is the area cut from a plane by spirals that is the area, 
where carbon layer atoms must be. 

An example involute presented at the Figure 4 shows 
a conical scroll unfolded to a carbon layer plane. The 
Figure 5 (at the left) shows a conical helicoid and a coni-
cal scroll (b = 0) with a carbon grid mapped to them. 
Calculated parameters are shown on the same pictures. 
The obtained surfaces can be a visual demonstration of a 
nanofiber growth, to some extent. 

2) Conical surface (a spiral growth of nanocones). 
This case doesn’t contain a spiral movement, and the BD 
segment at the Figure 2 rotates at the constant angle to 
the ζ axis while staying on the surface of a cone all the 
time. To make this possible, we should put a = 0 in (15). 
An arbitrary point at the BD segment will describe a 
conical helix with the radius  0 tan 2b      

sin 2t    on the surface of a cone. 
To make segments not overlap during rotation, the 

following condition must be met:  2π cos 2b L  . If 
2π cos 2b L   , then two helixes (Figure 2), de-

scribed by ends of the segment on a cone’s surface, join 
together forming a stripe with the width L. Such helical 
surface being mapped with a carbon grid may visually 
imitate a spiral growth of nanocones. As shown in [1,11], 
the angle δ at a conical surface can’t be arbitrary as it is 

connected with the angle γ at an involute with the fol-
lowing correlation: 

 2π sin 2   , where  =60 , 120 , 180 , 240 ,300 .    

               (16) 
If the condition is met, carbon layers join seamlessly 

where the helixes meet. 
Figure 6 shows a surface imitating a spiral growth of 

a nanocone with   2π cos 2b L   , and a conical 
helix    2π cos 2b L  , having  in (1). 0H 

3) Nanocones. If one puts σ = 0 and b = 0 in (1) and 
limits the angle φ within 0 2π  , the following 
equation of cone can be written: 

cos , sin ,        cos 2 ,t   where 
 0 sin 2t    , 0 t L  . 

The correlation between φ and ψ in this case is calcu-
lated using (6). 

Seamless join of a carbon layer on the nanocone’s 
surface is only possible if the angle δ meets (16). Nano-
cones are thoroughly examined in [11] by the author by 
means of unfolding them to a plane and formulating 
conditions for a seamless join of a carbon layer. 

4) Oblique helicoid. Assuming σ = 0 in (1), one can 
get an equation: 

cos , sin ,        cos 2 ,b t      (17) 

where  0 sin 2t    , . 0 t L 
From (15), assuming σ = a + c =0, one can receive c = –a. 
Figure 7 illustrates this case. The BD segment being 

rotated by the angle 2π takes the  position, and all 
its points move along the axis ζ by the value 2πb. Points 
B and D describe two helical curves that entirely lie on 
the surface of cylinders with radiuses 0

B D 

   and 
 0 sin 2L    . The surface enclosed between 

these two helical curves is an oblique helicoid. To make 
interlayer distance H constant, the b parameter must be 
equal  2π sin 2b H  . Calculation of the angle φ is 
performed using formulas (14). 

Since the radius ρ doesn't depend on the angle φ, an in- 
volute of a helix to a plane in the non-stationary coordinate  

 

 
Figure 6. A spiral growth of nanocones (at the left) b = (L/2π)cos(δ/2) = 0.70485, and a conical helix (at the right) b = 1.2 > 
0.70485, φ1 = 0, φ2 = 7π, δ = 60°, ρ0 = 2.5, H = 0, L = 5.114, v = [5,1]. 
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Figure 7. The oblique helicoid calculation scheme. 

 
system is a circle with radius  sin 2R   , that is: 

cos , sin ,p px R z R             (18) 

and the area, where atoms of a flat carbon layer must be, 
is enclosed between two concentric circles with radiuses 

 1 0 sin 2R    и . 2 1

Since the angle ψ can take a value within 
R L R 

0     
on a plane, then if 2  , then each consequent circle 
repeats the previous one, that is, they overlap. 

To acquire the equation of a helix in the stationary co-
ordinate system with the origin in O, unlike in (5), one 
must subtract the value of  0 cot 2OO b     
from the variable pz  in (18), finally receiving: 

px x

 
 

 0 a  cot 2pz z  

    tan 2 2π cos 2a b  H  . 

The atomic coordinate   in the stationary coordinate 
system, unlike in (4), is calculated as follows: 

   0 cot 2p a       , where 2 2
p pR x z  . 

Figure 8 (at the left) shows the surface (17) with a 
carbon grid mapped to it. 

5) One more case of an oblique helicoid. In this case, 
while the BD is being rotated, the point B at Figure 7 
always stands on the plane   and circumscribes a 
circle with radius ρ, while the point D moves along the ζ 
axis by the value of bφ, describing a helical curve. After 
turning by 2π, the segment BD takes the CD’ position. 

An arbitrary point E lying on the segment BD and dis-
tant from the point B by t in the coordinate system 
O  describes a helical curve similar to the previous 
case. 

The difference is that t has a variable bottom limit, 
namely  cos 2b  

From the Equation (17), assuming  cos 2t b   , 
one can get the equation of a spiral lying on the plane 
  (described by the point C), namely: 

cos , sin ,        0  , where,  

0 tan 2b                 (19) 

and if t L , we receive a spatial helix described by the 
point D, that is: 

cos , sin ,        cos 2 ,b L      (20) 

where  0 sin 2L    . 
The segment CD describes a helical surface, and its 

ends move along two helixes (19) and (20). 
Since ρ in (19) takes its values within min 0    , 

where ρ0 and ρmin – maximal (or starting) and minimal 
values of the radius ρ, the angle φ should be within 

    0 min0 cotb      2  or, assuming 

 2π sin 2b H  , 

    0 min0 2π cos 2H      . 

Figure 8 (at the right) illustrates this case. 
6) Right helicoid (a spiral growth of carbon layers). 

Assuming δ = 180º and c = 0 in (1), one can get the fol-
lowing equation: 

cos , sin , ,b                  (21) 

where 0 a t     , 2πb H , . 0 t L 
If b = 0, then the Equation (21) is a set of spirals. If a 

= 0 as well, we receive a set of flat circles repeating them 
selves many times, depending on the angle φ. If 
0 πa L 2  , the areas between two spirals partially 
overlap when t = 0 и t = L. If /2πa L  - no overlap-
ping occurs. If 2πa L , the spirals touch each other 
and imitate the spiral growth of a flat layer. Finally, if 
b≠0, all spirals unrolls along the ζ axis producing a spa-
tial model that imitates the growth of carbon layers. As a 
result of the dislocation entering the surface, we receive 
either a stack (a column) of carbon layers in the form of 
a cylinder, or a cone, or a ring, or a circle on a plane, 
depending on the values of 0 1, ,L a b . The angle φ is 
calculated from the known angle ψ at the involute using 
(13) if 0a  , or (14) if a = 0. 
 

7. Cylindrical Helicoid 
 
Assuming δ = 0 in (1) we can write the following equa-
tions: 

cos , sin , b t           ,where 

0 a    , .           (22) 0 t L 

In this case a line segment with the length L parallel to 
the ζ axis rotates along Archimedean spiral and simulta- 

t L . The angle φ is calcu-
lated through the angle ψ using the same Formula (14). 
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Figure 8. Two types of oblique helicoids imitating a spiral growth of nanofiber. The left picture has the following parameters: 
φ1 = 0, φ2 = 7π, δ = 60°, ρ0 = 3, H = 3.356 , L = 7.44, v = [5,1]. The right picture has the following parameters: φ1 = 0, φ2 = 4.2π, 
δ = 40°, ρ0 = 10, ρmin = 3, H = 3.356 , L = 6.15, v = [2,1]. 

Å
Å

 
neously moves along the ζ axis by bφ. Segment’s ends 
describe two helixes with t = 0 и t = L. To unfold the 
surface between these two helixes, it is sufficient to 
know the length of Archimedean spiral’s arc s and the 
variable ζ. Substituting x = s и z = ζ, the surface will be 
unfolded at the xz plane. 

Considering that 2 2ds d     , we get the fol-
lowing expression for the length of spiral’s arc: 

 s      0f f  , where 

      2 2 2 2f a a Arsh a a         (23) 

To keep the interlayer distance H constant the follow-
ing condition should be met: a=H/2π. 

If a = 0 in (22), we receive two helixes entirely lying 
on the surface of a cylinder. To make areas enclosed 
between them no overlapping, the inequality must be 
fulfilled: 2b L  . If 2πb L , two helixes touch 
each other and create a stripe with the width L on 
cylider’s surface. Now, if  0 12π ,kA 2   , 

, where 1, 2,k    1 2,A    is the identity period [11] 
in the crystallographic direction  1 2, v

s

, then car-
bon layers join seamlessly where the helixes meet. Such 
surface with a carbon grid mapped onto it visually dem-
onstrates a spiral growth of nanotubes. Since 0   
in that case, the involute to the plane xz is a set of line 
segments having their slope ratio about the x axis equal 
to 0b  , namely 

 0z b x  t , , ,  max0 x s   0 t L 

   0 0z b xb x    L . 

To map a carbon grid to a surface, one can use the fact 
that rolling up a flat layer to a helix turns the coordinate 
(9)  1 2, ,x l l  , , 1 2, 1, 2,3,l l    1,2, , bm    to an 

arc of a helix. So we have: 

  1 2, ,x l l s   ,            (24) 

where  s   is expressed from (23), or   0s     if 
a=0. 

If we calculate an angle φ for all atoms using (24), that 
is, for all legitimate values of l1, l2 and ν, then atomic 
coordinates on helicoid’s surface can be found from 

 1 2cos , sin , , ,z l l               (25) 

The angle φ here is a function of 1 2, иl l   identify-
ing atoms, that is  1 2, ,l l   . In particular, with b=0 
we obtain a common cylindrical scroll already examined 
in [11]. 

Figures 9-10 illustrate these cases. We can take as a 
hypothesis that when the dislocation enters a surface 
along the z axis, figures pictured at Figures 9-10 (at the 
left) turn to a scroll or a nanotube (at the right). Further  
radial movement of the dislocation in the scroll leads to a 
multi-shell nanotube generation, if the angle φ is divisi-
ble by 2π. Otherwise, there is a part of unfinished layer 
left on nanotube’s surface, and the growth process con-
tinues according to [13]. 

Having determined φ from (24) or from  1 2, ,x l l    

0  , if a = 0, and assuming z=ζ, one can get the follow-
ing inequities for variables x and z that must be fulfilled 
simultaneously: 

1 2 , 0.00x x x 1      

b z b L

, and 

        , where  1 2 mas   x

2

0,x x . 

If a = 0 и b = 0, and 0 π  , the resulting surface is 
a cylindrical surface (nanotube). The condition for a  

Copyright © 2011 SciRes.                                                                              JMP 



V. F. PLESHAKOV 105 
 

 
Figure 9. A cylindrical helicoid with non-overlapped layers: φ1 = 0, φ2 = 6π, ρ0 = 3, H = 3.356 , L = 6.44, b = 1.5, v = [3,1] (at 
the left), and a scroll b = 0 (at the right). 

Å

 

 
Figure 10. A spiral growth of a nanotube: φ1 = 0, φ2 = 6π, ρ0 = 8.2869, H = 0, L = 6.44, b = 0, v = [3,1] (at the right), and a heli-
cal cylindrical spiral b = 1.5 (at the left). 
 
seamless join of a carbon layers on such surface look as 
follows: 0 x kA   [11]. In this case, if the tentative 
value of cylinder’s radius 0  is known, its actual value 

0 is found with  0  2πkA , where  02πk ceil A . 
The range of l1, l2 и ν integers in (24, 25) is calculated as 
follows: 

    1/222
max max sin 5iL ceil s b L a      i 

,

, . 1,2i  1 1 1 2 2 2, ,1 bL l L L l L v m       
 
8. Polyhedric Models 

Since each i-th atom on a surface of any model is sur-
rounded by other three nearest atoms, except ones lying 
on the border, and is located in the center of curvilinear 
triangle, it is always possible to find a point equidistant 

from triangle’s vertexes by r0. 
Let’s set up three arrays, each one calculated with a 

separate program: 
k(i) – coordination number (the number of nearest 

atomes) for i-th atom; for a hexagonal grid it always 
equals to three, except atoms lying on the border, where 
k(i) = 1 or 2. 

N(i,j) (j = 1,2,3) – the numbers of atoms nearest to i-th 
atom in ξ(i), η(i) and ζ(i) arrays. 

L(i,j) (j = 1,2,3) – three integer numbers l1, l2 and ν 
identifying each i-th atom in (9); ν = 1 or 2 for the first 
and the second oblique sub-grids of a carbon layer re-
spectively (Figure 1). 

If ξ(i), η(i) and ζ(i) are atomic coordinates in a curved 
atomic-bond approximation model, the problem of i-th 
atom’s coordinate correction is reduced to solving a sys-
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tem of three equation with three unknowns 1 1 1, ,    for 
one of sub-grids, for instance, when L(i,3) = 1. 

           2 2

1 1 1, ,
2

,N i j N i j N i j           

2
0r  . 1, 2,3j 

This system is resolved only for atoms having k(i) = 3, 
because atoms on the border, where k(i) = 1 or 2, it is 
undefined. Analyzing a coordination number k(i), we can 
cast out border atoms and finally receive a polyhedric 
model with pyramids and empty triangles interchanging 
on its surface. All nearest distances of such model are 
now equal to r0, and atoms are not located on one con-
tinuous surface. The system is solved in “matlab” with 
fsolve operator, with the starting point set to ξ(i), η(i) и 
ζ(i).  

Finally, the last problem to solve is coloring all faces 
of polyhedric models. For i-th pyramid in a sub-grid with 
ν = 1 faces with coordination numbers k(i) = 3 or 2 (since 
for k(i) = 1 it doesn’t make sense) are colored the fol-
lowing way. From an array of coordinates 1 1 1, ,    of a 
polyhedric model a column vector  1 1, , 1    K  is 
formed (where ׳ is a transposition operation); and from 
vertex numbers of triangular faces a vector V character-
izing, if a vertex belongs to the given face, is formed. 

     
     

, ,1 , , 2 , ; , , 2

,3 , ; , ,3 , ,1 ,

i N i N i i i N i

N i i i N i N i i

 


V ,
. 

If k(i) = 2, the vector V possesses the value of 

.    , ,1 , , 2 ,i N i N i i   V

So numbers of every pyramid’s vertex are associated 
with its coordinates. 

Now we can draw and color faces in “matlab” to, say, 
red color with the following operator patch(‘Vertices’, 
K,’Faces’,V,’FaceColor’,’r’). 

Coloring of empty triangles of a model is performed as 
follows. At first, the quantity of nearest atoms distant 
from the triangle’s center to r0 or lesser value k(i) is 
found as well as their numbers N(i,j) and the array of 
indices L(i,j). Now, the vector V for k(i) = 3 or 2 pos-
sesses the values: 

     ,1 , , 2 , ,3N i N i N i   V ,    ,1 , , 2N i N i   V , 

respectively. 
Since triangle’s vertexes belong to another sub-grid, 

the coloring is performed for L(i,3) = 2. 
Figures 11-13 illustrate polyhedric models of a nano-

tube, a scroll and a nanocone. 
 

9. Conclusions 
 
Using an unfolding of a given surface to a plane algo-
rithm has been developed. The algorithm allows map-  

 

Figure 11. The polyhedric model of a nanotube with the 
diameter D = 8.47 , the chirality angle β = 46.1° and the 
roll up direction v = [4,3]. 

Å

 

 
Figure 12. The polyhedric model of a scroll v = [3,1]. 

 

 

Figure 13. The polyhedric model of a nanocone δ = 38.94°. 
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

ping a carbon grid to different types of helical surfaces, 
including nanotubes, nanocones and a scroll. With the 
models acquired, polyhedric models having their atomic 
spacing constant and equal to 1.42Ǻ are built, and a al-
gorithm of coloring all faces of such models is developed. 
The models can be used to visually imitate spiral or 
helical growth of nanotubes, nanocones and nanofiber, 
and also to calculate their physical characteristics and 
compare them with experimental data. 

Despite this work is dealing with mathematical mod-
eling of carbon nanostructures, it is worth saying a cou-
ple of words about the mechanism of their generation. 
For nanotubes and nanocones such mechanism can be 
briefly described as follows. 

Since graphite has a flake structure, so it splits to 
separate layers or packs of several layers when it is being 
exposed to laser evaporation or to an arc discharge. Upon 
loosing stability, layers may roll up to one of helix types: 
conical and cylindrical. Then, an instantaneous join of 
helixes along helical curves occurs. The further growth 
of an object goes by means of joining atoms to the end of 
a helix, just like as it does in the growth of crystals on a 
helical dislocation. 

The joining of helixes, as shown in this document, 
must meet several join conditions. For nanotubes it is: 

 1 2π ,D kA    [11], where  1 2,A    is the identity 
period in the roll up vector direction  1 2, v , D is 
the diameter of a tube. For nanocones their opening an-
gle must be equal to δ = 19.19, 38.94, 60, 83.62 and 
112.88°. These conditions for the seamless join are met 
automatically, because atoms do not have other way of 
joining. As a result, we obtain nanomaterials consisting 
of nanotubes of different diameters and roll up direc-
tions. 

Another way of nanotubes generation is discussed in 
[13]. The idea is that carbon layers may roll up to a scroll 
that may turn to a multi-shell nanotube after the disloca-
tion has entered a surface in a radial direction. The same 
considerations can be applied for nanocones, except that 
they roll up to a conical scroll. These considerations 
seems reasonable, and not only do not contradict with 
existing growth models, for example [1,10,13,21], but 
also add to them, because the nature of nanoobject gene-
sis is multiform. Cylindrical and conical helixes can be 
considered as intermediate (meta-stable) states a system 
uses to reach its minimum. 
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