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Abstract 
Understanding the role of neurotransmission in the prefrontal cortex and mesolimbic brain re- 
gions has become the subject of intensive neuroscience research worldwide. In the 1970s, our 
group provided evidences that rats exposed to darkness significantly augmented their alcohol in- 
take. At that time, we proposed that melatonin was the culprit. At around the same time, our la- 
boratory, amongst a few others, proposed that dopamine-adducts with acetaldehyde to induce al- 
cohol intake both in rodents and in humans. While the work in these areas has declined consider- 
ably over the years, more recent scientifically sound studies continue to show the importance of 
these earlier controversial ideas involving alcohol abuse and alcoholism. A review of the literature 
has provided impetus to systematically access the newer genetic and molecular neurobiological 
findings relevant to the physiological and psychological motives for high alcohol consumption in 
animals and humans alike. Thus, we hypothesize that darkness-induced alcohol intake is linked 
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not only to serotonergic-melatonin mechanisms, but also to dopaminergic regulation of brain 
mesolimbic pathways involving neuronal expression switching in response to long photoperiods 
affecting gene expression. 
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1. Introduction 
In the mid 1960s, very little was known about brain function and neurotransmitter activity. At that time, even 
less was known about the interaction of neurochemicals and alcohol effects. In fact, one of the first relevant stu- 
dies was executed by Myers and Veale in 1968, showing that preference for ethanol (alcohol) was significantly 
attenuated or totally eliminated in rats given p-chlorophenylalanine (PCA), a tryptophan hydroxylase inhibitor 
that selectively depletes brain serotonin content (Myers & Veale, 1968). The depleting action of PCA was more 
powerful than alpha-methyl-p-tyrosine, a tyrosine hydroxylase inhibitor that depletes brain catecholamines. This 
is not surprising considering anti-anxiety properties of alcohol in humans and in nonhuman animal models 
(Steiner, 1958). It is well-known that PCA induces “conflict” behavior in rats (Robichaud & Sledge, 1969), and 
this effect can be attenuated by the administration of 5-hydroxy-tryptophane (Geller & Blum, 1970). This sug- 
gests that PCA promotes anxiety and serotonin is an anti-anxiety brain substance. 

It is well-known that levels of brain serotonin, especially in the pineal gland, are lowest during a dark phase, 
because of its conversion to melatonin via adenylate cyclase induced stimulation of N-Acetyltransferase activity 
which increase three-fold at night (Coon et al., 2012; Namboodiri, Sugden, Klein, Tamarkin, & Mefford, 1985; 
Raiewski, Elliott, Evans, Glickman, & Gorman, 2012). Specifically, pineal melatonin levels are low during the 
day, increase five to ten-fold at night, decrease during a light pulse at night, and rapidly increase to night levels 
following the light-dark transition (Namboodiri, Sugden, Klein, Tamarkin, & Mefford, 1985). 

In the early 1970s, Blum’s group provided evidence for darkness-induced enhancement of ethanol drinking in 
rodents. The first report showed that rats placed in a dark closet drank more alcohol than those housed in the 
light (Geller, 1971). Blum theorized that the increased drinking was due to an increase in pineal melatonin, and 
subsequent experiments revealed this to be accurate, since injections of melatonin in rats exposed under “normal” 
photoperiods (nine hours of darkness during a 24-hour day) also displayed augmented ethanol intake (Geller, 
1971; Sinclair, 1972). 

Along these lines, a number of subsequent experiments revealed that enhanced ethanol consumption by not 
only rats, but also by Syrian hamsters indeed involved the pineal gland (Blum, Merritt, Reiter, & Wallace, 1973; 
Reiter, Blum, Wallace, & Merritt, 1973, 1974). Firstly, it was shown that a lesion to the superior cervical gan-
glion innervation to the pineal gland blocked darkness-induced ethanol drinking in Syrian hamsters (Reiter et al., 
1974). Secondly, augmented ethanol drinking occurred in congenitally blind male rats never exposed to ethanol 
prior to experimental induction (Reiter et al., 1973). Finally, Blum et al. (1973) concluded that melatonin-in- 
duced drinking, due to a photoperiod, involved modifications in serotonin synthesis as a function of the photo- 
period (Blum et al., 1973). While this was one theory concerning the neurochemical mechanism(s) of ethanol 
consumption, other earlier experiments suggested the role of condensation products, known as isoquinolines. 

The most notable was the work of Davis and Walsh, who proposed that tetrahydropapaverline, a benzyltetra- 
hydroisoquinoline alkaloid derivative of the biogenic amine, dopamine, and acetaldehyde, a product of alcohol, 
condenses and can induce ethanol intake in rodents (Davis & Walsh, 1970). Moreover, they suggested that al- 
cohol and opiate addiction might have common neurochemical mechanisms. At the same time, others reported 
on biogenic amines (e.g., norepinephrine) (Cohen & Collins, 1970) and indolamines (serotonin) (Myers, 1989) 
aldehyde condensation products and their role in alcoholism. While these ideas met with great controversy, 
Blum’s group provided clear evidence that ethanol intake increased the metabolite of salsolinol in rat brain 
(Hamilton, Blum, & Hirst, 1978); salsolinol induced augmented alcohol intake; salsolinol acted like an opiate 
(Blum, DeLallo, Briggs, & Hamilton, 1982); and salsolinol induced alcohol withdrawal tremors (Blum, 1988; 
Blum, Hamilton, Meyer, Hirst, & Marshall, 1977). 
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In summary, abnormal intake of alcohol is related to opioid receptors in the brain, and this is based on early 
thinking. By comparison, the attenuation of alcohol drinking was associated with opioid receptor antagonists 
(Marshall, Hirst, & Blum, 1977), binding of a tetrahydroisoquinolin (THIQ) to opiate receptors in the brain 
(Blum, Eubanks, Wallace, Schwertner, & Morgan, 1976; Myers, 1989), and marked differences in enkephalin 
values in animals genetically predisposed to the ingestion of alcohol (Blum, Elston, DeLallo, Briggs, & Wallace, 
1983). Finally, Myers (Myers, 1989) proposed that the dopaminergic reward pathways that traverse the meso- 
limbic-forebrain systems of the brain constitute an “integrative anatomical substrate for the adduct-opioid cas- 
cade of neuronal events which promote and sustain the aberrant drinking of alcohol”. 

2. Relationship to Alcohol Use and Abuse 
To our knowledge, other than work related to alcohol intoxication and withdrawal per se, little was known with 
regard to the role of dopaminergic function and vulnerability of aberrant ethanol consumption in humans (Blum, 
Eubanks, Wallace, & Schwertner, 1976). In fact, while dopaminergic mechanisms have been espoused for the 
role of dopamine and cocaine addiction (Dackis & Gold, 1985), a quick search in PUBMED revealed that the 
first real evidence for involvement of dopamine and alcoholism, especially genetic vulnerability, was provided 
by Blum et al. (Blum et al., 1990). Interestingly, the concepts related to dopamine adducts with alcohol lost fa- 
vor in the scientific community in the mid 1980s until the early 2000s. However, there has been a new surge of 
studies that shows important pharmacological effects of at least salsolinol. To reiterate, ethanol excites dopa- 
mine neurons in the posterior ventral tegmental area (pVTA). This effect is responsible for ethanol’s motiva- 
tional properties and may contribute to alcoholism. 

Very recent studies by Melis et al. (Melis, Carboni, Caboni, & Acquas, 2013) demonstrated that salsolinol, 
when administered in pVTA, excites pVTA dopamine cells, elicits dopamine transmission in nucleus accumbens, 
and sustains its self-administration in pVTA. This finding is similar to morphine, indicating opioid like effects 
of salsolinol as noted earlier (Hamilton, Hirst, & Blum, 1979). 

Review of the old and newer data clearly reveals that within the well-established brain reward circuitry, alco- 
hol metabolites (e.g., dopamine and acetaldehyde) are involved in alcohol induced effects as indicted herein: 1) 
biologically active metabolites of alcohol can directly or indirectly increase the activity of VTA dopamine neu- 
rons, 2) alcohol and alcohol metabolites are reinforcing within the mesolimbic dopamine system, 3) inhibiting 
the alcohol metabolic pathway inhibits the biological consequences of alcohol exposure, 4) alcohol consumption 
can be reduced by inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system, 5) 
alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine system, and 6) alcohol inte- 
racts with alcohol metabolites to enhance the actions of both compounds (Deehan, Hauser, Wilden, Truitt, & 
Rodd, 2013). Accordingly, there is a positive relationship between alcohol and alcohol metabolites in regulating 
the alcohol intake, and these biological consequences lead to an escalation to alcoholism (Deehan, Brodie, & 
Rodd, 2013). Furthermore, fortification of these results has adequately shown that salsolinol can induce dopa- 
mine release in the mesolimbic brain region, supporting earlier indications (Hipolito, Sanchez-Catalan, Granero, 
& Polache, 2009; Melchior, Simpson, & Myers, 1978). Finally, T-K Li’s group (Rodd et al., 2008) showed that 
infusions of salsolinol produced reinforcing effects in the pVTA of Wistar rats, and these actions were mediated 
by activation of DA neurons (D2/D3 receptors) and local 5-HT3 receptors. There is also evidence that salsoli- 
nol’s reinforcing effects under stress involve endorphinergic mechanisms (Matsuzawa, Suzuki, & Misawa, 
2000). 

The importance of these findings involving alcohol metabolites underscores the potential role of reward cir- 
cuitry signaling involving serotonergic, endorphinergic, gabaergic, and dopaminergic functionality in alcohol 
intake as well as reward deficiency syndrome (Blum, Gardner, Oscar-Berman, & Gold, 2012). We crafted this 
commentary relying on earlier studies suggesting that potential vulnerability to alcoholism may reside in not 
only the reinforcing properties of alcohol metabolites as indicated with salsolinol, but environmental alterations 
of light/dark cycles or photoperiods. Our understanding in the 1970s-1980s concerning alcohol vulnerability was 
very limited due to a paucity of gene related studies. In addition, during this earlier time period, little was known 
about the role of neurotransmitters in photoperiods. Thus, the impetus for this hypothesis is based in part on 
newer findings that will contribute to our knowledge on darkness-induced alcohol intake. Importantly, Yaegashi 
et al. investigated the relationship between salsolinol induced prolactin (PRL) release and photoperiod in goats. 
They found that the releasing effect of PRL by salsolinol was enhanced during long (dark) photoperiods. It sug- 
gests that this effect could be mediated by enhanced dopamine release (Yaegashi et al., 2012). 
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Since the 1970s, there has been a number of important articles on the brain reward cascade (Blum et al., 2000) 
that shed light on the interaction of serotonin, melatonin, enkephalins, acetylcholine, and dopamine on dark- 
ness-induced alcohol intake. Recently, Crespi (Crespi, 2012) further supported the role of melatonin in ethanol 
consumption in P (alcohol-preferring) rats by blocking spontaneous consumption of ethanol with a melatonin 
antagonist GR128107. It also has been shown that 10% chronic ethanol significantly reduces pineal peak mela- 
tonin synthesis by 70% partly, due to a phase delay in arylalkylamine N-acetyltransferase gene expression 
(Peres et al., 2011). 

Ethanol preferring C57Bl/6J mice “drink in the dark” (DID) until intoxicated (model for binge drinking), and 
this effect involves nicotinic acetylcholine type brain receptors (nACHRs). It was found that nACHRs are in- 
deed involved in ethanol intake in the DID paradigm. Specifically, the nicotinic acetylcholine receptor antagon- 
ist mecamylamine not only reduced ethanol consumption of these mice in the dark, it also blocked ethanol acti- 
vation of dopaminergic neurons (Hendrickson, Zhao-Shea, & Tapper, 2009). This work is in agreement with 
earlier experiments by Ericson et al. showing that ethanol enhances accumbal dopamine levels via indirect acti- 
vation of VTA nACHRs (Ericson, Molander, Lof, Engel, & Soderpalm, 2003). It is noteworthy that melatonin 
also regulates an endogenous opioid system (EOS)-circadian rhythm. The work by Miguel Asai et al. (2007) 
suggests that during the dark phase, melatonin enhances the EOS by increased tissue content of enkephalins in 
both hypothalamus and hippocampus of the rat brain, and in constant light the absence of melatonin leads to a 
decrease of tissue enkephalins (Miguel Asai et al., 2007). This may have some relevance in terms of under- 
standing the role of enkephalins inhibitory effect on GABA neurons leading to altered dopamine release during 
photoperiods. 

A very recent study by Dulcis et al. (2013) suggested that photoperiod-induced neurotransmitter switching 
could regulate brain function and subsequent adult behavior in rats (Dulcis, Jamshidi, Leutgeb, & Spitzer, 2013). 
They found that populations of interneurons in the adult rat hypothalamus switched between dopamine and so- 
matostatin expression in response to exposure to short- and long-day photoperiods. Interestingly, changes in 
postsynaptic dopamine receptor expression matched changes in presynaptic dopamine, whereas somatostatin 
receptor expression remained constant. Moreover, pharmacological blockade or ablation of these dopaminergic 
neurons led to anxious and depressed behavior, “phenocopying” performance after exposure to the long-day 
photoperiod. Thus, during darkness, dopaminergic expression is reduced and this could be responsible in part for 
our previous findings involving darkness-induced ethanol intake (Blum et al., 1973; Reiter et al., 1973, 1974). 
This notion is fortified by their additional finding that exposure of the short-day photoperiod induced the syn- 
thesis of new dopaminergic neurons that “rescued” the resultant behaviors observed during the dark phase (Dul- 
cis et al., 2013). 

3. Conclusion 
In summary, we are encouraged that following many years of research (Bruijnzeel & Gold, 2005; Dackis et al., 
1984; Ebadi, Weiss, & Costa, 1970), the neurochemical mechanisms involved in the now established dark- 
ness-induced drinking paradigm has been further advanced (Sleipness, Jansen, Schenk, & Sorg, 2008). Based on 
the findings espoused in this hypothesis, the newer concepts of the role of both dopamine adducts (Hamilton, 
Blum, & Hirst, 1980; Sallstrom Baum, Hill, Kiianmaa, & Rommelspacher, 1999) and darkness-induced dopa- 
mine switching provides a fruitful avenue of investigation (El Halawani, Kang, Leclerc, Kosonsiriluk, & Chai- 
seha, 2009). While many future studies certainly will clarify the role of gene polymorphisms (Blum et al., 1990; 
Wang, Simen, Arias, Lu, & Zhang, 2013) including epigenetics and related behavioral endophenotypes, the 
concept that all roads lead to dopamine certainly continues to be an important therapeutic target ultimately lead- 
ing to prevention of relapse and potential abolition of alcoholism (Balldin, Berggren, Berglund, & Fahlke, 2013; 
Blum, Futterman, & Pascarosa, 1977; Dahlgren et al., 2011; Self & Nestler, 1998). 
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