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Abstract 
This paper investigates effects of Hall current on flow of unsteady magnetohydrodynamic (MHD) 
axisymmetric second-grade fluid with suction and blowing over a sheet stretching exponentially 
with radius. The governing non-linear partial differential equations describing the problem are 
converted to a system of non-linear ordinary differential equations by using the similarity trans- 
formations. The complex analytical solution is found by using the homotopy analysis method 
(HAM). The existing literature on the topic shows that it is the first study regarding the effects of 
Hall current on flow over an exponentially stretching sheet in cylindrical coordinates. The con- 
vergence of the obtained complex series solutions is carefully analyzed. The effects of dimension- 
less parameters on the radial and axial components of the velocity are illustrated through plots. 
Also the effects of the pertinent parameters on the shear stress at the wall are presented numeri- 
cally in tabular form. 
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1. Introduction 
The theoretical study of boundary layer flows induced by a stretching sheet [1] is of considerable interest be-
cause their applications in fibers spinning, manufacturing of plastic and rubber sheets, the aerodynamic extru-
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sion of plastic sheets, hot rolling and cooling of an infinite metallic plate in a cooling bath. Partha et al. [2] stu- 
died the effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching sur- 
face. Sajid and Hayat [3] extended this problem by investigating the radiation effects on the flow over an expo- 
nentially stretching sheet, and solved the problem analytically using the homotopy analysis method. The numeri- 
cal solution for the same problem was then given by Bidin and Nazar [4]. Recently Ishak [5] investigated the 
thermal radiation effects on hydro-magnetic flow due to an exponentially stretching sheet. Magyari and Keller 
[6] investigated the steady boundary layers on an exponentially stretching continuous surface with an exponen-
tial temperature distribution. In recent years the theoretical study of Effects of Hall current on MHD flows has 
been a subject of great interest due to its widely spread applications in power generators and pumps, Hall acce-
lerators, refrigeration coils, electric transformers, in flight MHD, solar physics involved in the sunspot develop-
ment, the solar cycle, the structure of magnetic stars, electronic system cooling, cool combustors, fiber and gra- 
nular insulation, oil extraction, thermal energy storage and flow through filtering devices and porous material re- 
generative heat exchangers. Usually Hall term representing the Hall current was ignored in applying Ohm’s law, 
because it has no remarkable effect for small and moderate values of the magnetic field. The effects of Hall cur- 
rent are very important if the strong magnetic field is applied [7], because for strong magnetic field electromag-
netic force is noticeable. The recent investigation for the applications of MHD is towards a strong magnetic field, 
due to which study of Hall current is important. In presence of a strong magnetic field in an ionized gas of low 
density, the conductivity normal to the magnetic field is decreased by free spiraling of electrons and ions about 
the magnetic lines of force before suffering collisions. A current induced in a direction normal to the electric and 
magnetic fields is called Hall current [8]. Some interesting old and new studies regarding the effects of Hall cur- 
rent on MHD flow are done by [9]-[17]. 

The present investigation is to analyze the effects of Hall current on flow induced by an exponentially stretch- 
ing sheet of unsteady MHD axisymmetric second-grade fluid with suction and blowing. Here, we assume that 
sheet is stretching exponentially with the radius. The existing literature on the topic shows that effects of Hall 
current on an axisymmetric flow over an exponentially stretching sheet in cylindrical coordinates have not been 
investigated so far. The arising non-linear problem is solved by the homotopy analysis method (HAM), which is 
a novel technique and has been used by many researchers [18]-[26]. 

2. Mathematical Formulation of the Problem and Analytic Solution 
We consider the unsteady flow of an electrically conducting incompressible second-grade fluid over a porous 
exponentially stretching sheet placed in the plane 0z =  in the presence of transverse magnetic field. The cy-
lindrical coordinates ( ), ,r zθ  are used and it is assumed that the flow takes place in the upper half plane 0z > . 
We assume rotational symmetry of the flow so all physical quantities are independent of θ i.e. 0θ∂ ∂ ≡ , the 
azimuthal component of velocity v  vanishes identically. It is assumed that the sheet is being stretched with an 
exponential velocity e

r
L

wu a= , where a  is the reference velocity and L  is the reference radius. The Cauchy 
stress tensor T  for a second-grade fluid is given as [27] 

2
1 1 2 2 1 ,p µ α α= − + + +T I A A A                                (1) 

where p  is the scalar pressure, I  is the identity tensor, µ  is the coefficient of viscosity, ( )1,2i iα =  are 
the material parameters of second-grade fluid, and ( )1,2i i =A  are the first two Rivlin-Ericksen tensors defined 
by [28] 

( ) ( )T
1 grad grad ,= +A V V                                   (2) 

( ) ( )T1
2 1 1

d
grad grad .

dt
= + +

AA A V V A                          (3) 

It is assumed that the flow meets the Clausius-Duhem inequality and that the specific Helmholtz free energy 
of the fluid is minimum at equilibrium [29] when 

1 1 20, 0, 0.µ α α α≥ ≥ + ≥                                    (4) 

For detailed analysis about the signs of these normal stress moduli one may see [30]. The equations governing 
the magnetohydrodynamic flow with Hall effects are: 
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Velocity field: 

( ) ( ), , , 0, , , ,u r z t w r z t=   V                              (5) 

Continuity equation: 
div 0,=V                                             (6) 

Equation of motion: 

( ) ( )d div ,
dt

ρ = + ×
V T J B                                 (7) 

Equations for the stream function: 

1 1, ,u w
r z r r

ψ ψ∂ ∂
= = −

∂ ∂
                                   (8) 

Maxwell equations: 

div 0,Curl ,Curl ,m t
µ ∂

= = = −
∂
BB B J E                        (9) 

Generalized Ohm’s law: 

( )
0

,e ew τ
σ+ × = + ×J J B E V B

B
                            (10) 

where u  is the radial velocity and w  is the axial velocity, t  is time, ( )0= +B B b  is the total magnetic fi- 
eld, 0B  is the applied magnetic field, b  is the induced magnetic field, J  is the current density, σ  is the 
electrical conductivity of the fluid, E  is the electric field, mµ  is the magnetic permeability, ρ  is the fluid 
density, ψ  is the stream function, ew  and eτ  are the cyclotron frequency and collision time of the electrons 
respectively. We assume that, the quantities ,ρ  mµ  and σ  are constants throughout the flow field, the 
magnetic field B  is normal to the velocity vector V  and the induced magnetic field is neglected compared 
with the imposed magnetic field, so that the magnetic Reynolds number is small [31]. We also suppose that 

( )1e ew Oτ ≈  and 1i iwτ   (where iw  and iτ  are the cyclotron frequency and collision time for ions respec-
tively). The radial velocity is zero far from the sheet and the pressure is uniform, so we neglect the pressure gra-
dient term [32]. Under aforementioned assumptions and using the boundary layer approximations [33], the un-
steady problem with Hall currents become 

( ) ( )1 0,ru w
r r z
∂ ∂

+ =
∂ ∂

                                                  (11) 

( )
( )
22
0

2 2

2 2 3 2 3
1

2 3 2 2

1 i
1

1 ,

Bu u u uu w u
t r z z

u u w u u u uw u
r z z rz z z r z

σ
γ

ρ

α
ρ

+ ∈∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂ +∈

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − − + + +   ∂ ∂ ∂∂ ∂ ∂ ∂ ∂  

          (12) 

The boundary conditions applicable to the flow are 

( ) ( )
( )
( ) ( ) ( )

00,  , , e , , ,   at  0,

0,  , , 0    as    ,

at  0, , , 0, , , 0,  at all points , ,

r
L

wt u r z t u a w r z t V z

t u r z t z

t u r z t w r z t r z

> = = = ± =

> → →∞

= = =

                    (13) 

where γ  is the kinematic viscosity, ( )e ew τ∈ =  is the Hall parameter and 0V  is the suction or blowing velo- 
city in the -directionz , the positive sign denotes suction while negative sign denotes blowing. In order to non- 
dimensionalize the problem let us introduce the similarity transformations 
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( )

( )

e , ,

  e , ,

 , 1 e , ,

r
L

r
L

u a f

L rw a L f
Lr

a atz
L L

τ

η ξ

γ ξ η ξ

η ξ τ
γ ξ

−

′=

+ = − 
 

= = − =

                              (14) 

where ( ),f η ξ  is the dimensionless stream function. Equation (11) is identically satisfied and Equations (12) 
and (13) become [16] 

( ) ( )
( )

( )

2
2

2

1 i1 11 1 e e
2 1

1e 1  2 1 0,iv

N
f f ff f f

ff f f f f

ζ ζ

ζ

η ξ ξ ξ ξ
ζ

α ξ ξ
ζ ξ

+ ∈ ′′′ ′′ ′′ ′ ′+ − + + − − 
+∈ 

  ′  ∂′′ ′ ′′′+ − + + − − =   ∂  

               (15) 

( ) ( ) ( )0, , 0, 1, , 0,f s f fξ ξ ξ′ ′= = ∞ =                                    (16) 

where prime denotes differentiation with respect to η , ( )2
0N LB aσ ρ=  is the dimensionless modified Hart-

mann number [31], ( )r Lζ =  is a dimensionless coordinate, ( )1a Lα α µ=  is the dimensionless second  

grade fluid parameter and 
( ) 0

1  eLs V r
aL r

ζ

γξ
− 

= ± + 
 is the dimensionless suction or blowing parameter,  

0s >  corresponds to suction and 0s <  corresponds to blowing. The local skin friction coefficient or fractional 
drag coefficient on the surface of the exponentially stretching sheet is 

0
2

2
,rz z

f
w

C
u

τ
ρ

==                                           (17) 

Now using Equations (1), (2), (3) and (14), Equation (17) can be written in dimensionless variables as 

( ) ( ){ }2Re 0, 0, ,
e

r fC f M f
ζ

ξ ξ ξ
ξ

′′× = +                       (18) 

where ( )Rer wu L γ=  is the local Reynolds number and ( )( )2 2 2M L r Lr aLrγ= − −  is a dimensionless con- 
stant. Note that Equation (18) is obtained by taking 0α = , for 0α ≠  it is too difficult to find it. 

To start with the homotopy analysis method, due to the boundary conditions (16) it is reasonable to choose the 
initial guess approximation and the auxiliary linear operator 

( ) ( )0 , 1 e ,f sηη ξ −= − +                                      (19) 

( ) ( ) ( )3

3

, ,
,

f f
f

η ξ η ξ
ηη

∂ ∂
= −

∂∂
L                                (20) 

where L  satisfy 

1 2 3e e 0,η ηα α α− + + = L                                    (21) 

where 1α , 2α  and 3α  are arbitrary constants. Following the HAM and trying higher iterations with the uni- 
que and proper assignment of the results converge to the exact solution: 

( ) ( ) ( ) ( ) ( )0 1 2, , , , , ,mf f f f fη ξ η ξ η ξ η ξ η ξ≈ + + + +                  (22) 

Using the symbolic computation software such as MATLAB, MAPLE, MATHEMATICA to successively 
obtain 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2

1

2

i ie 5ie ie 7ie ie, 1 e
8 i 8 i 6 i 3 i 6 i 2 i

ie ie ie ie ie ie ie ie
2 i 3 i 6 i 6 i 2 i 2 i 8 i 2 i

ie ie
2 i

h h h h h hsf s

hs h h h hs hs h h

hs h

η ζ ζ ζ η ζ
η

ζ η ζ ζ η ζ η ζ ζ η η ζ η

ζ η ζ η

α α α αη ξ

α α α α α α η αη
ζ ζ ζ ζ ζ

αη α

− − −
−

− − − − − −

− −

= − + − + − − + −
+∈ +∈ +∈ +∈ +∈ +∈

+ − + + − + + +
+∈ +∈ +∈ +∈ +∈ +∈ +∈ +∈

+ +
+∈ ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2

2

ie ie 3i i ie ie
2 i 2 i 8 i 8 i 2 i 2 i 2 i

3ie i e ie ie ie ie ie ie ie
8 i 2 i 2 i 2 i 3 i 6 i 6 i 2 i 2 i

ie 3
2 i

hs h h Nh h h

h N h hs hs h h h hs hs

h

ζ η η ζ ζ η

η η ζ ζ η ζ ζ η ζ η ζ ζ η

ζ η

η αη η ξ ξ ξ ξ
ζ ζ

ξ ξ ξ ξ ξ ξ ξ ξ ξ
ζ ζ ζ ζ ζ

ηξ

− − −

− − − − − −

−

+ − − + + −
+∈ +∈ +∈ +∈ +∈ +∈ +∈

+ − + − + − − + −
+∈ +∈ +∈ +∈ +∈ +∈ +∈ +∈ +∈

− +
+∈ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2

ie i e ie ie ie ie e
8 i 2 i 2 i 2 i 2 i 8 i 8 i 8 i

5e e 7e e e e e e e
6 i 3 i 6 i 2 i 2 i 3 i 6 i 6 i

h N h hs h hs h h h

h h h hs hs h h h h

η η ζ η ζ η ζ η η η

ζ ζ η ζ η ζ ζ η ζ ζ η ζ η ζ

ηξ ηξ ηξ ηξ ηξ η ξ
ζ ζ

α α α α α α α α
ζ ζ ζ

− − − − − − −

− − − − −

∈ ∈
− − − − + − +

+∈ +∈ +∈ +∈ +∈ +∈ +∈ +∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
− − + − + − + + −

+∈ +∈ +∈ +∈ +∈ +∈ +∈ +∈ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

2 i

e e e e e e e 3
2 i 8 i 2 i 2 i 2 i 2 i 8 i 8 i

e e 3e e e e e e
2 i 2 i 8 i 2 i 2 i 3 i 6 i

s

hs h h hs h hs h h

h h h hs hs h h h

ζ η η ζ η ζ η ζ η ζ η η

ζ ζ η η ζ ζ η ζ ζ η ζ η

α
ζ

α η αη αη αη αη η ξ
ζ ζ ζ

ξ ξ ξ ξ ξ ξ ξ ξ
ζ ζ

− − − − − − −

− − − − −

∈
+∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
+ + + + + + − −

+∈ +∈ +∈ +∈ +∈ +∈ +∈ +∈

∈ ∈ ∈ ∈ ∈ ∈ ∈
+ − + + − + − −

+∈ +∈ +∈ +∈ +∈ +∈ +∈ ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

e
6 i 2 i

e e 3e e e e e
2 i 2 i 8 i 2 i 2 i 2 i 8 i

hs

hs h h hs h hs h

ζ

ζ η ζ η η ζ η ζ η ζ η η

ξ
ζ ζ

ξ ηξ ηξ ηξ ηξ ηξ η ξ
ζ ζ ζ

− − − − − − −

∈ ∈
+

+∈ +∈

∈ ∈ ∈ ∈ ∈ ∈ ∈
− − + − − − +

+∈ +∈ +∈ +∈ +∈ +∈ +∈

(23) 

similarly ( )2 ,f η ξ , ( )3 ,f η ξ , ( )4 ,f η ξ  and so on are calculated. The obtained values of ( )0 ,f η ξ , ( )1 ,f η ξ , 
( )2 ,f η ξ , - - - -leads us to take 

( )
( )2 11

,
,

0 0 0
, e .

m nm m
i j i j n

m m n
n i j

f ηη ξ η ξ
+ −+

−

= = =

= Ω∑ ∑ ∑                                (24) 

After very lengthy calculations we arrive at the total complex analytic solution in compact form as 

( ) ( )

( )

0

2 11
0,0 ,

,0 ,
0 1 1 0 0

, ,

lim lim e

m
m

m nL L L m
n i j i j

m m nL Lm n m n i j

f f

η

η ξ η ξ

η ξ

∞

=

+ −+
−

→∞ →∞= = = − = =

=

   
= Ω + Ω          

∑

∑ ∑ ∑ ∑ ∑
          (25) 

where from initial guess in Equation (19) we obtain 
0,0 1,0 2,0 0,0
0,0 0,0 0,0 0,11 , 0, 0, 1,sΩ = + Ω = Ω = Ω = −                            (26) 

all other unknown constants can be determined by utilizing first four given in Equation (26) by using the recur-
rence relations, which we calculated but it is not possible to write here due to their length. 

3. Graphs, Tables and Discussion 
Here we discuss the convergence of the analytic solution and effect of emerging parameters on the radial and 
axial velocities of the fluid. The auxiliary parameter  , gives the convergence region and rate of approximation 
for the homotopy analysis method. The curve−  is plotted for real part of axial velocity ( ),f η ξ  and from 
Figure 1 we observe that 0.5 0− < < . Our calculations depict that the series of the dimensionless stream 
function in Equation (26) converges in the whole region of η  and ξ  for 0.1= − . Figure 2 indicates the 
variation of the real part of the axial velocity ( ),f η ξ  with η for suction. This figure shows that in case of suc-
tion for fixed values of  , N, ∈ , α , ζ  and s with increase in dimensionless time ξ real part of the axial ve-
locity decreases. In Figure 2 boundary layer structure is observed and the boundary layer thickness increases 
with increasing time ξ , which results in thickening of the boundary layer, which is used in recognition of the  
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Figure 1. curve−  for ( )( )Re ,f η ξ .              
 

 

Figure 2. Influence of ξ  on ( )( )Re ,f η ξ .          

 
fluid. Figure 3 elucidates that in case of blowing with the increase in Hall current ∈  imaginary part of the axi-
al velocity ( ),f η ξ  decreases in magnitude and boundary layer thickness increases with increasing Hall cur-
rent ∈ . Figure 4 illustrates that with the increase in second-grade parameter α  real part of the axial velocity 
( ),f η ξ  increases for blowing. Figure 5 describes that for suction with the increase in exponential stretching 

parameter ζ  imaginary part of the axial velocity ( ),f η ξ  decreases in magnitude and boundary layer thick-
ness increases with increasing ζ  and shear thickening effects are seen. Figure 6 represents that in case of suc-
tion with increase in dimensionless time ξ  real part of the radial velocity ( ),f η ξ′  decreases. Clearly the vis- 
cosity induces in the fluid with the passage of time and after some time the steady state is achieved which proves 
the uniform validity of the solution for all time in the whole spatial region 0 η≤ < ∞ . Figure 7 shows that with 
the increase in second-grade parameter α  real part of the radial velocity ( ),f η ξ′  increases for blowing. 
Figure 8 describes that for blowing with the increase in exponential stretching parameter ζ  real part of the 
radial velocity ( ),f η ξ′  increases. 

Tables 1 and 2 are prepared for the variation of the absolute values of the shear stress at the wall ( )0,f ξ′′ . It 
is observed from Table 1 that for suction and blowing for fixed values of N,  , ζ , ξ  and ∈  with increase 
in second-grade fluid parameter α  absolute values of the shear stress at the wall ( )0,f ξ′′  decreases. It is also 
observed from Table 1 that with increase in Hall current ∈  absolute values of the ( )0,f ξ′′  decreases for suc-
tion and blowing. When magnetic field is applied normal to the fluid velocity then it gives rise to a drag-like or 
resistive force which slow down or suppress the motion of the fluid on the stretching surface. This leads to a re- 
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Figure 3. Influence of ∈  on ( )( )Im ,f η ξ .                

 

 

Figure 4. Influence of α  on ( )( )Re ,f η ξ .              

 

 

Figure 5. Influence of ζ  on ( )( )Im ,f η ξ .                 
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Figure 6. Influence of ξ  on ( )( )Re ,f η ξ′ .         

 

 

Figure 7. Influence of α  on ( )( )Re ,f η ξ′ .       

 

 

Figure 8. Influence of ζ  on ( )( )Re ,f η ξ′ .         

 
duction in the velocity of the fluid and flow rates. With the increase in the strength of the magnetic field the mo-
tion of the particulate suspension on the surface reduces due to which shear stress at the wall reduces with in-
crease in α  and ∈ , as observed in Table 1. From Table 1 we note that with increase in dimensionless time 
ξ  the absolute values of the ( )0,f ξ′′  increases. 
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Table 1. Absolute values of the shear stress at the wall ( )0,f ξ′′  with 0.1N = , 0.1ζ = , 0.1= − .                     

s  ξ  0.1∈=  0.1∈=  0.1∈=  0.1α =  0.1α =  0.1α =  
  0.1α =  0.3α =  0.5α =  0.2∈=  0.3∈=  0.5∈=  

0.1  0.1  0.916046  0.789315  0.675207  0.916020  0.915979  0.915871  

 0.2  0.971297  0.842901  0.727129  0.971245  0.971165  0.970950  

 0.3  1.026690  0.896627  0.779190  1.026610  1.026490  1.026170  

 0.4  1.082220  0.950493  0.831391  1.082120  1.081960  1.081540  

 0.5  1.137890  1.004500  0.883732  1.137760  1.137570  1.137050  
0.1−  0.1  0.914484  0.825297  0.741329  0.914458  0.914416  0.914307  

 0.2  0.947040  0.857675  0.773530  0.946987  0.946905  0.946688  

 0.3  0.979406  0.889863  0.805541  0.979327  0.979206  0.978884  

 0.4  1.011580  0.921863  0.837364  1.011480  1.011320  1.010900  

 0.5  1.043570  0.953674  0.868998  1.043440  1.043250  1.042720  
 
Table 2. Absolute values of the shear stress at the wall ( )0,f ξ′′  with 0.1N = , 0.1α = , 0.1= − .                    

s  ξ  0.1∈=  0.1∈=  0.1∈=  0.1ζ =  0.1ζ =  0.1ζ =  

  0.1ζ =  0.3ζ =  0.5ζ =  0.2∈=  0.3∈=  0.5∈=  
0.1  0.1  0.883856  0.876386  0.871268  0.883819  0.883763  0.883612  

 0.2  0.962069  0.920152  0.912263  0.961998  0.961887  0.961593  

 0.3  1.040520  0.963886  0.953141  1.040420  1.040250  1.039820  

 0.4  1.119140  1.007580  0.993901  1.119000  1.118790  1.118230  

 0.5  1.197860  1.051230  1.034540  1.197690  1.197430  1.196750  
0.1−  0.1  0.879609  0.874241  0.869357  0.879572  0.879514  0.879359  

 0.2  0.926044  0.902930  0.897743  0.925970  0.925857  0.925555  

 0.3  0.971900  0.931393  0.925884  0.971792  0.971626  0.971183  

 0.4  1.017150  0.959627  0.953779  1.017010  1.016800  1.016220  

 0.5  1.061780  0.987630  0.981428  1.061610  1.061340  1.060640  
 

Table 2 shows that for fixed values of N ,  , ∈ , α  and ξ  with increase in exponential stretching ζ  
absolute value of the ( )0,f ξ′′  decreases for suction and blowing. Also with increase in Hall parameter ∈  the 
absolute values of the ( )0,f ξ′′  decreases for suction and blowing. 

4. Conclusion 
Effects of Hall current on flow of unsteady MHD axisymmetric second-grade fluid with suction and blowing 
over an exponentially stretching sheet are seen first time. The present complex explicit analytic solution is uni- 
formly valid for all dimensionless time in the entire flow regime. Convergence of the solution is appropriately 
discussed. Graphical and tabular results for Hall parameter ∈ , second-grade parameter α , exponentially stre- 
tching parameter ζ  and dimensionless time ξ  reveal that Hall parameter, second-grade parameter, exponen- 
tial stretching and dimensionless time have a significant influence on the radial and axial components of velocity. 
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