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Abstract 

Effects of horizontal and vertical magnetic field components on the Rayleigh-Taylor instability of 
stratified incompressible plasmas layer of variable density through Darcy porous medium are 
studied. The basic magnetohydrodynamic (MHD) set of equations has been constructed and linea-
rized. Then the linear normalized growth rate is obtained analytically as a function of the physical 
parameters of the system considered. Numerical calculations have been performed to see the ef-
fects of various parameters on the normalized growth rate of Rayleigh-Taylor instability. It is 
found that the parameter DLλ λ∗ =  ( λ  is constant and DL  is the density-scale length) has an 

important role on the happening stability, where the maximum instability comes at 0.5λ ∗ = −  and 

to get more stable model we select λ ∗  through the region or0.5 0.5∗ ∗− <   < −λ λ . The system will 

be more stable for the positive values of λ ∗ . 
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1. Introduction 

The hydromagnetics stability of a magnetized plasma of varying density is of considerable importance in several 
astrophysical situations such as supernova explosions, in heating in solar corona, theories of sunspot magnetic 
fields, the formation and mixing of clouds and the stability of the stellar atmospheres in magnetic fields. 

The classical study of the equilibrium of an incompressible, inviscid fluid of variable density was first under-
taken by Rayleigh [1], and later applied to all accelerated fluids by Taylor [2]. Rayleigh showed the equilibrium 
of a horizontal layer of incompressible, ideal fluid is stable or unstable according as the density increases or de-
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creases anywhere in the vertically upward direction. Since then the problem is called Rayleigh-Taylor instability 
(RTI). RTI occurs naturally in many phenomenons of astrophysics, geophysics, and laboratories. It derives its 
character from the adverse density distribution of the matter, where the investigation of Rayleigh-Taylor insta-
bilities in a magnetized plasma is a problem of considerable interest in space (ionospheric spread-F), fusion 
(curvature induced instabilities like interchange, ballooning, etc.) and the astrophysical plasmas. 

Under various physical effects, the Rayleigh-Taylor instability problem of a finite layer of a fluid has been 
studied by several authors in hydrodynamics and in magnetohydrodynamics domain; the stabilizing effect of 
magnetic field on RTI problem for an incompressible plasma has been demonstrated by Kruskal and Schwarz-
schild [3] for a horizontal orientation of the magnetic field and by Hide [4] for a vertical orientation. The effects 
of viscosity and compressibility on the RTI of stratified plasma in the presence of magnetic field have been stu-
died by Bhatia [5]. The RTI in a rotating plasma of variable density including simultaneously the effects of vis-
cosity and the finiteness of the ion Larmor radius have been investigated by Bhatia and Steiner [6]. The effect of 
Hall current and finite electrical resistivity on the RTI of viscous, incompressible, finitely conducting plasma in 
a downward gravitational field under the influence of a uniform magnetic field normal to gravity has been stu-
died by Kamla and Srivastav [7]. The RTI of an infinitely conducting stratified dusty plasma medium including 
the effects of FLR corrections in the presence of a horizontal magnetic field has been studied by Kamal and 
Chhajlani [8]. The RTI of a plasma layer in the presence of a horizontal magnetic field is investigated, taking 
into account the effects of Hall-currents and an arbitrarily large density gradient by Donald [9]. The effects of 
Hall currents and viscosity on the RTI of an incompressible infinitely conducting stratified plasma permeated by 
a two-dimensional horizontal magnetic field have been investigated by Ahsan and Bhatia [10]. The effects of 
Hall currents on the RTI of a finitely conducting stratified partially ionized plasma, where the plasma is per-
meated by a two dimensional horizontal magnetic field have been studied by Aiyub and Bhatia [11]. In the 
presence of magnitude of the gravitational acceleration, the RTI of stratified incompressible plasma has been 
studied by Goldston and Rutherford [12]. The RTI in the presence of horizontal magnetic field of incompressi-
ble plasma has been studied by Wu et al. [13]. 

The RTI of magnetized plasma through porous medium problem has a great scientific interest, where this 
problem corresponds physically (in astrophysics) to the Rayleigh-Taylor instability of an equatorial section of a 
planetary magnetosphere or of a stellar atmosphere where the magnetic field is perpendicular or parallels to 
gravity. So, the RTI of a stratified plasma through porous medium in the presence or absence of magnetic field 
has been studied by a number of researchers (Chhajlani and Vaghela, Vyas and Chhajlani, Sharma and Bhardwaj, 
Sharma and Sharma, Sharma and Trilok, Sharma and Sunil, Shikha and Bhatia, Opara, Sharma and Sunil, Sunil 
and Sharma, Sharma and Thakur and Sharma and Rajput). In this case (Darcy’s model), the usual viscous term  

in the equation of motion is replaced by the resistive term 
1

ak
µ 

− 
 

U , where µ  is the fluid viscosity, 1k  is  

the medium permeability and aU  is the Darcian (filter) velocity of the fluid.  
In all the above-mentioned studies, the behaviour of growth rates is considered with respect to the porosity of 

porous medium and the medium permeability in the presence of an variable magnetic field in x − direction only 
or in z − direction only. Here, we will discuss the role of resistive term (Darcy’s term) besides the components 
of magnetic field in both x − and z − direction on growth rates of RTI of plasma layer 

2. Formulation of the Problem 

We consider the strata of incompressible and inviscous plasma as a fluid of electrons and immobile ions through 
Darcy porous medium in the presence of magnetic field B , where the relevant equations may be written, re-
spectively (see references [12]-[25]), 

( )
1

1

e

P
t k

ρ µρ
ε ε µ

∂ + ⋅ = − + + × × − ∂ 

U U g B B U∇ ∇ ∇ ,                    (1) 

0⋅ =U∇ ,                                            (2) 

t ε
∂  = × × ∂  

B U B∇ .                                       (3) 
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For incompressible flow the fluid elements move without changing density is to say that the Lagrangian total 
derivative of density is zero, that is (see reference [1]) 

d 0
dt t
ρ ρ

ε
∂ = + ⋅ = ∂ 

U
∇                                  (4) 

where U  is the velocity of the fluid, ρ  is the density, p  thermal pressure, eµ  magnetic permeability, 0µ  
coefficient of dynamic viscosity and g  is the gravitational acceleration. 

One can see that the set of Equations (1)-(4) is complete for describing the magnetic field effects on the R-T 
instability of incompressible plasma, since its number of equations exactly equals its number of unknown quan-
tities: Two unknown vector quantities U  and B  and two unknown scalar quantities P  and ρ . For the 
equilibrium profiles can be expressed in the form ( ) ( )0 0 0 00, ,U z p p zρ ρ= = =  and ( ) ( )0 0 0x x z zB z B z= +B e e . 

Now, we assume a small perturbation in the system of Equations (1)-(4), where the perturbations in the veloc-
ity U , pressure p , magnetic field B , and density ρ , respectively, are ( )1 , , , ,U U x y z t=   

( ) ( )0 1 , , ,p p z p x y z t= + , ( ) ( )0 1 , , ,B B z B x y z t= + , and ( ) ( )0 1 , , ,z x y z tρ ρ ρ= + . Then, the linearized equa-
tions can be easily derived from Equations (1)-(4) in the form 

( ) ( )0 01
1 1 0 1 1 0 1

1

1

e

P B B B B
t k

ρ µ
ρ

ε µ
∂

 = − + + ∇× × + ∇× × − ∂
U g U∇                  (5) 

1 0∇ ⋅ =U                                        (6) 

1 1
0t ε

∂  = × × ∂  

B U B∇                                   (7) 

1 1
0 0

t
ρ

ρ
ε

∂  + ⋅ = ∂  

U
∇                                 (8) 

Now, let ( )1 1 1 1, ,x y zu u u=U , ( )1 1 1 1, ,x y zB B B=B , ( )0,0, g= −g  and the fluid is arranged in horizontal 
strata, then 0ρ  is a function of the vertical coordinate z  only (i.e. ( )0 0 zρ ρ= ) and 

( ) ( )0 0 0x x z zB z B z= +B e e . Then the system of Equations (4)-(8) become 

( ) ( )00 0 1 1
1 1 0

1

1 x x z
x z z

e

B z B Bpu B B z
t k x z z x

ρ εν
ε µ

∂   ∂ ∂∂ ∂   + = − + + −    ∂ ∂ ∂ ∂ ∂     
                   (9) 

( ) ( )1 10 0 1 1
1 0 0

1

1 y yx x
y x z

e

B BB Bpu B z B z
t k y x y z y

ρ εν
ε µ

 ∂ ∂      ∂ ∂∂ ∂  + = − + − + −      ∂ ∂ ∂ ∂ ∂ ∂       
         (10) 

( ) ( )00 0 11
1 1 0 1

1

1 x xz
z x x

e

B z BBpu B B z g
t k z z x z

ρ εν
ρ

ε µ
∂   ∂∂∂ ∂   + = − + − + − −    ∂ ∂ ∂ ∂ ∂     

          (11) 

11 1 0yx zuu u
x y z

∂∂ ∂
+ + =

∂ ∂ ∂
                                 (12) 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )

11
1 1 1 0 0 1 0 1

1 1
0 0 1 0 1 0 1 0

1, , ,

,

y
x y z x z x x z

y y
x z y x z z x z

u
B B B B z B z u B z u

t t y z

u u
B z B z u B z u B z u B z

x z x y

ε
 ∂ ∂ ∂ ∂= = + ∂ ∂ ∂ ∂ 

∂ ∂    ∂ ∂ − − −    ∂ ∂ ∂ ∂    

− −



B

,           (13) 

( )01
1

d1 0
d z

z
u

t z
ρρ

ε
∂

+ =
∂

                                    (14) 

If we assume that the perturbation in any physical quantity takes the form 

( ) ( ) ( ){ }1 1, , , exp i x yx y z t z k x k y tψ ψ ω= + − ,                          (15) 



G. A. Hoshoudy 
 

 
189 

where xk  and yk  are horizontal components of the wave-number vector k  such that 2 2 2
x yk k k= +  and ω  

(may be complex ( )irω ω γ= + ) is the frequency of perturbations or the rate at which the system departs from 
equilibrium thee initial state. Using the expression (15) in the system of Equations (9)-(14), we have 

( ) ( ) ( )0 10 0
1 1 1 0 1

1

1i i ix x
x x z z x z

e

B z B z
u k p B B z k B

k z z
ρ εν

ω
ε µ

 ∂ ∂    − = − + + −    ∂ ∂     
,            (16) 

( ) ( ) ( )10 0
1 1 0 1 1 0 1

1

1i i i iy
y y x x y y x z y z

e

B z
u k p B z k B k B B z k B

k z
ρ εν

ω
ε µ

 ∂     − = − + − + −      ∂      
,       (17) 

( ) ( ) ( )0 10 0 1
1 1 1 0 1

1

1i ix x
z x x x z

e

B z B zpu g B B z k B
k z z z

ρ εν
ω ρ

ε µ
 ∂ ∂   ∂  − = − − + − + −    ∂ ∂ ∂     

,            (18) 

1
1 1i i 0z

x x y y
uk u k u
z

∂
+ + =

∂
,                                  (19) 

 
{ } ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )

1 1 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

1i , , i ,

i , i i

x y z y x y z x x z

x x y z y x x z z x y z y

B B B k B z u B z u B z u
z

k B z u B z u k B z u B z u k B z u
z

ω
ε

 ∂ − = − + − ∂ 
∂    − − −    ∂  

,     (20) 

0
1 1

d1i 0
d zu

z
ρ

ωρ
ε

− + = ,                                (21) 

Now, if we eliminate some of the variables from the system of Equations (16)-(21), we have a differential 
equation in 1zu  

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

2 4 3
0 01 1

0 0 04 3

2
0 0 01 1

0 2
1 1

0 0
0

1

dd d1 4 2i
dd d

dd d
i i i i

d dd

d
i i

d

z z z
z x x z

e e

z z

B z B zu uB z k B z B z
zz z

u uA B
k k z zz

g C
k z

µ µ

εν εν ρ
ω ρ ω ω ω

εν ρ
ω ρ ω

       + +    
      

           + − + + − +        
          

   − − + −   
  

1 0zu
 =

 

,          (22) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22
20 0 0 02 2 2

0 0 0 0 02

3 2
0 0 0 0 02 2

0 0 03 2

2
0 2

0 0 02

d d d d1 3 2 3i
d d dd

d d d d d1 2 2
d d dd d

d
i 2 2

d

z z z x
x x z z x x z

e

x z z z z
x x z z

e

x
x z x z

B z B z B z B z
A k B z B z k B z k B z B z

z z zz

B z B z B z B z B z
B k B z B z k B z

z z zz z

B z
k B z k B z B z

z

µ

µ

     = − + + − + +   
     

= − + + −


+ − +
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
0 0 0 0

2

3 3
0 0 0 0 02 2

0 0 0 02 3

d d d d
2

d d d d

d d d d d1 1i ,
3d d dd d

x z x z

x z x z x
x x x z x z

e

B z B z B z B z
z z z z

B z B z B z B z B z
c k B z k B z B z B z

z z zk z zµ

 + 
  

    = + + − −         

 

(23) 

3. A Continuously Stratified Plasma 

In this section we consider the case of incompressible continuously stratified plasma layer of thickness h  con-
fined between two rigid boundaries, in which the density and magnetic field distribution are given, respectively, 
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by  

( ) ( ) ( )0 0 0 exp Dz z Lρ ρ= , ( ) ( ) ( )0 0 0 exp 2x x Dz B z LB =  and ( ) ( ) ( )0 0 0 exp 2z z Dz B z LB =  

where ( )0 0ρ , ( )0 0xB  and ( )0 0zB  and DL  (the density-scale length) are constants, then Equation (22) 
takes the form 

{ } ( )

( ) ( )

4 3
2 2 2 2 2 201 1

4 3 2
1

2
2 2 2 2 201

2 2 2
1

3id d2 5i i i
d d 4

d 1 1 5i i 2 i
d 4 4

z x
z z z x x z

x z z x

x f fz z
f f x D f f x f f

D DD

z
x f f x D f f

D D D

ku uk L k k
L k Lz z L

u k k k k L
L kz L L

υ υεν
υ υ υ υ ω ω υ υ

εν
ω ω υ υ υ υ

    + + + − − + − +   
     

      ⋅ + − − + − + −     
       

( ) ( )

1

2 2 20
12 3

1

d
d

1 1i i i 0.
4x z x

z

x f x D f f z
D DD

u
z

gk k k L u
k L Lk L

εν
ω ω υ υ υ

    − − + − − − =   
     

    (24) 

where ( )
( )

2
02

0 0

0
0x

x
f

B
υ

µ ρ
=  and ( )

( )

2
02

0 0

0
0z

z
f

B
υ

µ ρ
=  are Alfvén velocity. 

Now, if we choose 1zu  in the form ( )1
πsin expz

nu z z
h

λ =  
 

 and by substituting in Equation (24), we will 

have an equation in both πsin n z
h

 
 
 

 and πcos n z
h

 
 
 

. Then coefficients both πsin n z
h

 
 
 

 and πcos n z
h

 
 
 

, 

respectively, are given by: 

{ }

( )

( )

4 2 2
2 4 2 2 2

2
2 2 2 2 20

2
1

20

1

π π 2 π6 i 3

3i5 πi i
4

i i

z z z x

z x
x z

f f x D f f
D

x f f
x f f

DD

x
D

n n nk L
h h L h

k nk k
k L hL

k
L k

λυ λ λ υ υ υ λ

υ υεν
ω ω υ υ λ

ενλ ω ω

           + − + + −        
           

       + − − + − + −      
        

 
+ − − 

 
( )

( ) ( )

2 2 2 2
2 2

2 2 20
2 3

1

1 5 2 i
4 4

1 1i i i 0,
4

x z z x

x z x

f f x D f f
D D

x f x D f f
D DD

k k k L
L L

gk k k L
k L Lk L

υ υ υ υ

εν
ω ω υ υ υ

     + − + −    
     

    − − + − − − =   
     

               (25) 

{ }

( )

( )

2 2
2 2 2 2

2 2 2 20
2

1

2 2 2 2 20
2 2

1

π π4 2 i 3

3i52 i i
4

1 1 5i i 2
4 4

z z z x

z x
x z

x z

f f x D f f

x f f
x f f

DD

x f f
D D D

n nk L
h h

k
k k

k LL

k k k
L k L L

λυ λ υ υ υ λ

υ υεν
λ ω ω υ υ

εν
ω ω υ υ

         − + + −      
         

    + − − + − +   
     

   
+ − − + − + −   

    
( )i 0.

z xx D f fk L υ υ
   = 
  

        (26) 

Now, we define the dimensionless quantities  

0
2 22

12 2 2 2 2 2
Darcy2 2 2 2 2

1 222
2 2 2 2 2 2 2 0

2 2 2

, , , , ,

, , , , .

x z
x z

f f
f f D

pepe pe D pe D

D x x D pe
D pe D e

k D L
L L

eh gh k k L k k L g
L L m

εν
υ υωω ω ω ω λ λ

ωω ω ω

ρ
ω

ω

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 
 
 

= = = = =

 
= = = = =  

 

                (27) 

Then Equations (25) and (26), respectively, take the form 
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{ }

( )

4 2 2
2 4 2 2 * 2

2
2 2 2 2 * 2

Darcy

Darcy

π π π6 2 i 3

5 πi i 3i
4

i

z z x z

x z x z

f f x f f

x f f x f f

n n nk
h h h

nk k k
h

ω λ λ λ ω ω ω λ

ω ω ω ω ω ω ω λ

λ ω ω

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗

           + − + + −        
           

       + − − + − + −             

+ − ( ) ( )

( ) ( )

2 2 2 2 2 *

2 2 2 *
Darcy 2

1 5i 2 i
4 4

1i i 1 i 0,
4

x z x z

x x z

x f f x f f

x f x f f

k k k k

k g k k
k

ω ω ω ω ω

ω ω ω ω ω ω

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

     − + − + −          
   − − + − − − =      

            (28) 

 

{ }

( )

( )

22
* 2 2 2 * 2

*

* * 2 2 2 2 *
Darcy

2 2 2 2
Darcy

π π4 2 i 3
*

52 i i 3i
4

1 5i i 2
4 4

z z x z

x z x z

x z

f f x f f

x f f x f f

x f f

n nk
h h

k k k

k k

λ ω λ ω ω ω λ

λ ω ω ω ω ω ω ω

ω ω ω ω ω

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

        − + + −                
   + − − + − +      

  + − − + − + −    
( )2 *i 0.

x zx f fk k ω ω∗ ∗ ∗   =  
  

            (29) 

Now, we put irω ω γ∗ ∗= +  and for 0rω∗ =  (stable oscillations), then Equations (28) and (29) may be given 
by: 

 

{ }

( )

( )

4 2 2
2 4 2 2 * 2

2
2 2 2 2 * 2

Darcy

Darcy

π π π6 2 i 3

5 π3i
4

z z x z

x z x z

f f x f f

x f f x f f

n n nk
h h h

nk k k
h

ω λ λ λ ω ω ω λ

ω γ γ ω ω ω ω λ

λ ω γ γ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗

           + − + + −        
           

       + + − − + − + −             

 + + −  ( )

( ) ( )

2 2 2 2 2 *

2 2 2 *
Darcy 2

1 5 2 i
4 4

1 1 i 0,
4

x z x z

x x z

x f f x f f

x f x f f

k k k k

k g k k
k

ω ω ω ω

ω γ γ ω ω ω

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗

    − + − + −    
    

   − + − + − − − =      

                (30) 

{ }

( )

( )

2 2
* 2 2 2 * 2

* *

* 2 2 2 2 *
Darcy

2 2 2 2 2
Darcy

π π4 2 i 3

52 3i
4

1 5 2
4 4

z z x z

x z x z

x z

f f x f f

x f f x f f

x f f

n nk
h h

k k k

k k k

λ ω λ ω ω ω λ

λ ω γ γ ω ω ω ω

ω γ γ ω ω

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

         − + + −      
         

   + + − − + − +      

    + + − − + − + −      
( )*i 0.

x zx f fk ω ω∗ ∗ 
= 

 

             (31) 

Now, if we rearrange the above two equations (Equations (30) and (31)), we will have 
2 2 2

2 2 2 2 2 2 2 2 2
Darcy

4 2 2
4 2 2 2 2

π π π

π π π 56 2 3
4

xx f
n n nk k k k
h h h

n n n k
h h h

λ λ γ λ λ ω γ λ λ ω

λ λ λ λ λ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

                + − − + + − − + + − −           
                

        + + − + − + −                 

{ }2

2
2 2

2 2
2 2 * 2 * 2

π 1
4

π π 5 12 3 3 2 i 0,
4 4

z

x z

f

x f f

n k
h

n n k k k k g
h h

λ ω

λ λ λ λ ω ω

∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

      − + −            
            + − + − + − + − − =                          

 (32) 
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{ } { } { }

{ } { }

2
* 2 * * 2 * 2 2

Darcy *

2
* 2 2 2 * 2 *

*

1 π2 1 2 1 2 1 2 2 2
4

π 52 1 6 6 2 2 i 0.
4

z

x x z

f

x f x f f

n k
h

nk k k
h

λ γ λ ω γ λ λ λ ω

λ ω λ λ ω ω

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

    + + + − + + + − −       
   + + − + − + − =  

   

         (33) 

From Equations (32) and (33) maybe we can specialize the next special cases: 
(i) In the case of 2 0,

xf
ω∗ =  2 0

zf
ω∗ =  and Darcy 0ω∗ =   

From Equation (33) we get 1
2

λ∗ = − , and substituting in Equation (32) we find that the normalized growth 
rate given by  

2

Goldston and Rutherford 2
21 π

4

k g
n k
h

γ
∗ ∗

∗
∗

=
 + + 
 

                           (34) 

This case is considered by Goldston and Rutherford (see reference [12]).  
(ii) In the case of 2 0,

xf
ω∗ ≠  2 0

zf
ω∗ =  and Darcy 0ω∗ =  

A second time, from Equation (33) we get 1
2

λ∗ = − , and substituting in Equation (32), then the normalized 
growth rate given by 

2
2 2

horizont magnetic field 2
21 π

4

xx f
k g k
n k
h

γ ω
∗ ∗

∗ ∗

∗
∗

= −
 + + 
 

.                      (35) 

This case studied in reference [12]. It is clarified that, the horizontal magnetic field has stabilizing effect on 
RTI problem. This influence is obvious from Equations (34) and (35), where  

horizont magnetic field Goldston and Rutherford
γ γ< . 

(iii) In the case of 2 0,
xf

ω∗ = 2 0
zf

ω∗ ≠  and Darcy 0.ω∗ =  
A third time, from Equation (33) we get 1

2
λ∗ = − , and substituting in Equation (32), the normalized growth 

rate given by  
2 2

2 2

2

vertical magnetic field 2 2
2 2

π 1 π
4

1 π 1 π
4 4

zf
n n k
h hg k

n nk k
h h

ω

γ

∗ ∗
∗ ∗∗ ∗

∗ ∗
∗ ∗

       + +     
       = −

   + + + +   
   

.             (36) 

Now, comparing between Equations (34) and (36), someone can observe that, the stabilizing role for the ver-
tical magnetic field on the considerable system, where vertical magnetic field Goldston and Rutherfordγ γ< . 

(iv) In the case of 2 0,
xf

ω∗ = 2 0
zf

ω∗ =  and Darcy 0ω∗ ≠  
A fourth time, from Equation (33) we get 1

2
λ∗ = − , and substituting in Equation (32), the dispersion rate 

given by 

{ }
2

2
Darcy 2

2

0.
π 1

4

k g

n k
h

γ ω γ
∗ ∗

∗

∗
∗

+ − =
    + +  
   

                         (37) 

Then, the normalized growth rate becomes  
2

2
Darcy Darcy

Darcy 2
22 2 π 1

4

k g
n k
h

ω ω
γ

∗ ∗ ∗ ∗

∗
∗

 −
= ± +      + + 

 

.                    (38) 

From Equations (34) and (38) it is very clear that, Darcy Goldston and Rutherfordγ γ< . 
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The stabilizing effects of the horizontal, vertical magnetic and resistive term, unaccompanied, (above cases 
(i)-(iv)) on the RTI have been numerically presented in Figure 1. 

(v) For the general case ( 2 20, 0
x zf fω ω∗ ∗≠ ≠  and Darcy 0ω∗ ≠ ), if we eliminate the term i

x zx f fk ω ω∗ ∗ ∗  between Eq-
uations (32) and (33) the normalized dispersion relation takes in the form.  

2
1 2 3 0ζ γ ζ γ ζ+ + =                                     (39) 

In this case the normalized growth rate given as.  

{ }2
2 2 1 3

1

1 4
2

γ ζ ζ ζ ζ
ζ

= − ± −                                 (40) 

where 

{ }

2 2
2 2 2 * 2

1 *

2 2
* 2 2 2 2

π 5 π6 6 2 2
4

π π 5 12 1 2 3 3 2 ,
4 4

n nk k
h h

n n k k
h h

ζ λ λ λ λ

λ λ λ λ λ

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

       = + − − + − + −     
       

            + + − + − + − + −                          

     (41) 

{ } 2

2 2
2 * 2 2 2

2 *

2 2
* 2 2 * 2

Darcy

5 π π6 6 2 2
4

π π 5 12 1 2 3 3 2 ,
4 4

n nk k
h h

n n k k
h h

ζ λ λ λ λ

λ λ λ λ λ ω

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

       = + − + − + − −     
       

             + + − + − + − + −                           

  (42) 

 

 

Figure 1. The role of parameter’s problem, unaccompanied, where the square normalized growth rate ( )2γ  against 

the square normalized wave number 2k ∗  is plotted at 0.4
xf

ω∗ = , 0.4
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ω∗ =  and Darcy 0.3ω∗ = .                    
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{ } 2

2 2
2 * 2 2 2

3 *

2 2
* 2 2 * 2 2 2

2 *

5 π π6 6 2 2
4

π π 5 12 1 2 3 3 2
4 4

6 6 2

xx f

n nk k
h h

n n k k k
h h

k

ζ λ λ λ λ

λ λ λ λ λ ω

λ λ

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗

       = + − + − + − −     
       

             + + − + − + − + −                           

⋅ + −
2

2
*

4 2 2 2
4 2 2 2 2 2

2 2
2 2

5 π2
4

π π π 5 π 16 2 3
4 4

π π2 3 3

n
h

n n n nk k
h h h h

n n
h h

λ λ λ λ λ λ

λ λ λ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

   + −  
   

                × + − + − + − − + −                                 

     − − + −     
      

{ } 2

2 2

2 2
* * * 2 2 2 2 * 2

* *

5 12
4 4

1 π 5 π2 1 2 2 2 6 6 2 2 0.
4 4zf

k k

n nk k g k
h h

λ

λ λ λ ω λ λ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

     + − + −          
         ⋅ + + + − − − + − + − =      

         

   (43) 

In fact, the square of normalized growth rate 2γ  in Equation (40) is a function in the dimensionless quanti-
ties of horizontal ( )xf

ω∗  and vertical ( )zf
ω∗  components of the magnetic field, the dimensionless resistive term 

Darcy(ω∗ , dimensionless Darcy term ) , the wave number k∗  and λ∗  ( DLλ λ∗ = , where λ  is constant and 
DL  is the density-scale length). The dimensionless quantities 

xf
ω∗ ,

zf
ω∗ and Darcyω∗  are the parameters of prob-

lem that maybe take a different values. But the constant λ∗  is unknown in the general case (v), while in the 
absence of magnetic field or in the presence of either them (horizontal or vertical magnetic field compo- 

nents) we note that 1
2

λ∗ = −  (special cases (i)-(iv)). So, firstly we will discuss the role of constant λ∗  on the  

square of normalized growth rate 2γ  in the presence of horizontal, vertical magnetic field components and re-
sistive term. 

The role of constant λ∗  in the presence of both horizontal and vertical magnetic field components  

( )0.4
x zf fω ω∗ ∗= =  and resistive term ( )Darcy 0.3ω∗ =  is plotted in Figure 2, where the square normalized growth  

 

 

Figure 2. The role of constant λ∗  on the 2γ  in the presence of 
0.4

x zf fω ω∗ ∗= =  and the resistive term Darcy 0.3ω∗ =  through the range 

( )3 2λ λ∗ ∗− ≤ ≤ .                                                  
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rate 2γ  is plotted against λ∗  ( )3 2λ∗− ≤ ≤  at 2 20,30,40k∗ = . For the values λ∗  that is less than 

( )0.5 0.5λ∗− < − , one can see that, the magnitude of 2γ  decrease with decreasing of λ∗ . For the values λ∗  
that is greater than ( )0.5 0.5λ∗− > −  the magnitude of 2γ  decrease while the magnitude of λ∗  increases. 
These implies that the maximum instability in the presence of both horizontal and vertical components of mag-
netic field happens at 0.5λ∗ = −  (in the presence or absence of resistive term). 

The general case (Equation (40)), that gives the effects of horizontal, vertical magnetic field and resistive term 
together on the instability of the considered system has been presented in Figure 3. where the square normalized 
growth rate 2γ  is plotted against the square normalized wave number 2k∗  at 0.4

x zf fω ω∗ ∗= = , Darcy 0.3ω∗ =  
and for different values of ( )1, 0.5,1λ∗ = − − . Second time, one can see that, the maximum instability (maximum 
square normalized growth rate 2γ ) happens at 0.5λ∗ = −  and at 1λ∗ = −  the magnitudes of 2γ  are less 
than their counterpart at 0.5λ∗ = − . Also, the magnitudes of 2γ  at 1λ∗ =  are less than their counterpart at 

0.5λ∗ = − . Moreover the magnitudes of 2γ  at 1λ∗ =  are less than their counterpart at 1λ∗ = − .  
In the case 1

2
λ∗ = −  (maximum instability) the system of Equations (39)-(43) take the form: 

{ }

2 2
2

2
2 2 2 2

Darcy 2 2
2 2

π 1 π
4

0.
π 1 π 1

4 4

x zx f f

n n k
h h k gk

n nk k
h h

γ ω γ ω ω

∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗
∗ ∗

      + +      
         + + + − =

   + + + +   
   

          (44) 

Then the maximum normalized growth rate gives by  
2 2

2

22Darcy 2 2 2
max Darcy 2 2

2 2

π 1 π
41 4 .

2 2 π 1 π 1
4 4

x zx f f

n n k
h h k gk

n nk k
h h

ω
γ ω ω ω

∗
∗ ∗∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗
∗ ∗

       + +       
           = − ± − + −  

    + + + +        

   (45) 

Finally, Figure 4 Shows the role of constant λ∗ , where the maximum happens at 0.5λ∗ = − . If we move  
 

 

Figure 3. The square normalized growth rate ( )2γ  against the square normalized wave 

number 2k ∗  in the presence of 0.4
x zf fω ω∗ ∗= =  and the resistive term Darcy 0.3ω∗ = .     
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Figure 4. Sketch of the λ∗  through the range ( )1.5 1.5λ∗− ≤ ≤ .           

 
toward the point 0.5λ∗ = −  from the right or left hand the system moves toward instability and vice versa if we 
move from the point 0.5λ∗ = −  to the left or right hand, the system tends to stability. 

In closing this paper, the Rayleigh-Taylor instability in stratified plasma in the presence of combined effect of 
horizontal and vertical magnetic field through Darcy porous medium is considered. The solution of the system 
leads to a dispersion relation where the physical parameters are put in the dimensionless form. Some special 
cases are particularized to explain the roles that play the variables of the problem and numerical solutions are 
made. Some stability diagrams are plotted and discussed. The results show that, as the growth rate depends on 
the horizontal and vertical components of magnetic field and resistive term (Darcy’s term) also depends on the 
parameter DLλ λ∗ = . Numerically the maximum instability (normalized growth rate) happens at 0.5λ∗ = −  
and then analytically the maximum instability gives in Equation (45). The system will be more stable if we se-
lect λ∗  such that to be different than −0.5. Finally, for the behavior of our selected system with respect to the 
parameter λ∗  we have not clear interpreting at this stage. 

References 
[1] Rayleigh, L. (1882) Proceedings of the London Mathematical Society, 14, 170-177.  

http://dx.doi.org/10.1112/plms/s1-14.1.170  
[2] Taylor, G.I. (1950) Proceeding of the Royal Society of London Series A, 201, 192-196.  

http://dx.doi.org/10.1098/rspa.1950.0052  
[3] Kruskal, M. and Schwarzschild, M. (1954) Proceedings of the Royal Society of London. Series A: Mathematical and 

Physical Sciences, 223, 348-360. http://dx.doi.org/10.1098/rspa.1954.0120 
[4] Hide, R. (1955) Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 233, 376- 

396. http://dx.doi.org/10.1098/rspa.1955.0273 
[5] Bhatia, P.K. (1974) Astrophysics and Space Science, 26, 319-325. http://dx.doi.org/10.1007/BF00645614 
[6] Bhatia, P.K. and Steiner, J.M. (1975) Astrophysics and Space Science, 34, 459-465.  

http://dx.doi.org/10.1007/BF00644812 
[7] Abani, K. and Srivastav, K.M. (1975) Il Nuovo Cimento B Series 11, 26, 419-432.  

http://dx.doi.org/10.1007/BF02738570  
[8] Sanghvi, R.K. and Chhajlani, R.K. (1987) Astrophysics and Space Science, 132, 57-64.  

http://dx.doi.org/10.1007/BF00637781 
[9] Donald Ariel, P. (1991) Astrophysics and Space Science, 184, 205-219. http://dx.doi.org/10.1007/BF00642969 
[10] Ali, A. and Bhatia, P.K. (1993) Physica Scripta, 47, 567-570. http://dx.doi.org/10.1088/0031-8949/47/4/016 
[11] Khan, A. and Bhatia, P.K. (1993) Physica Scripta, 48, 607-611. http://dx.doi.org/10.1088/0031-8949/48/5/017 
[12] Goldston, R.J. and Rutherford, P.H. (1995) Introduction to Plasma Physics Institute of Physics, Institute of Physics 

Publishing, Bristol. http://dx.doi.org/10.1201/9781439822074 
[13] Wu, Z., Zhang, W., Li, D. and Yang, W. (2004) Chinese Physics Letters, 21, 2001-2004.  

http://dx.doi.org/10.1088/0256-307X/21/10/038 
[14] Vyas, M.K. and Chhajlani, R.K. (1988) Astrophysics and Space Science, 140, 89-104.  

http://dx.doi.org/10.1007/BF00643533 
[15] Sharma, R.C. and Bhardwaj, V.K. (1990) Czechoslovak Journal of Physics, 40, 753-760.  

http://dx.doi.org/10.1007/BF01606015 
[16] Sharma, R.C. and Sharma, Y.D. (1989) Astrophysics and Space Science, 155, 295-300.  

http://dx.doi.org/10.1112/plms/s1-14.1.170
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1098/rspa.1954.0120
http://dx.doi.org/10.1098/rspa.1955.0273
http://dx.doi.org/10.1007/BF00645614
http://dx.doi.org/10.1007/BF00644812
http://dx.doi.org/10.1007/BF02738570
http://dx.doi.org/10.1007/BF00637781
http://dx.doi.org/10.1007/BF00642969
http://dx.doi.org/10.1088/0031-8949/47/4/016
http://dx.doi.org/10.1088/0031-8949/48/5/017
http://dx.doi.org/10.1201/9781439822074
http://dx.doi.org/10.1088/0256-307X/21/10/038
http://dx.doi.org/10.1007/BF00643533
http://dx.doi.org/10.1007/BF01606015


G. A. Hoshoudy 
 

 
197 

http://dx.doi.org/10.1007/BF00643865 
[17] Sharma, R.C. and Chand, T. (1989) Astrophysics and Space Science, 155, 301-310.  
[18] Sharma, R.C. and Sunil (1992) Astrophysics and Space Science, 194, 303-311. http://dx.doi.org/10.1007/BF00643999 
[19] Oza, S. and Bhatia, P.K. (1993) Astrophysics and Space Science, 199, 279-288. http://dx.doi.org/10.1007/BF00613201 
[20] Opara, F.E. (1994) Astrophysics and Space Science, 213, 197-204. http://dx.doi.org/10.1007/BF00658210 
[21] Sharma, R.C. and Sunil (1994) Czechoslovak Journal of Physics, 44, 927-936. http://dx.doi.org/10.1007/BF01715486 
[22] Sharma, R.C. and Sunil (1995) Physics of Plasmas, 2, 1886-1892. http://dx.doi.org/10.1063/1.871275 
[23] Sunil and Sharma, Y.D. (1996) Polymer-Plastics Technology and Engineering, 35, 221-231.  

http://dx.doi.org/10.1080/03602559608000580 
[24] Sharma, R.C. and Thakur, K.P. (1982) International Journal of Mathematics and Mathematical Sciences, 5, 365-367.  

http://dx.doi.org/10.1155/S0161171282000350 
[25] Sharma, R.C. and Rajput, A. (1992) Astrophysics and Space Science, 187, 105-111.  

http://dx.doi.org/10.1007/BF00642690 

http://dx.doi.org/10.1007/BF00643865
http://dx.doi.org/10.1007/BF00643999
http://dx.doi.org/10.1007/BF00613201
http://dx.doi.org/10.1007/BF00658210
http://dx.doi.org/10.1007/BF01715486
http://dx.doi.org/10.1063/1.871275
http://dx.doi.org/10.1080/03602559608000580
http://dx.doi.org/10.1155/S0161171282000350
http://dx.doi.org/10.1007/BF00642690

	Rayleigh-Taylor Instability of Magnetized Plasma through Darcy Porous Medium
	Abstract
	Keywords
	1. Introduction
	2. Formulation of the Problem
	3. A Continuously Stratified Plasma
	References

