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Abstract

In this paper, we studied a non-autonomous predator-prey system where the prey dispersal in a two-patch
environment. With the help of a continuation theorem based on coincidence degree theory, we establish suf-
ficient conditions for the existence of positive periodic solutions. Finally, we give numerical analysis to show

the effectiveness of our theoretical results.
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1. Introduction

In recent years, non-autonomous predator-prey systems
have been widely studied [1-6]. There has been a grow-
ing interest in the study of mathematical models of pop-
ulations dispersing among patches in the nature world
[3,7-9].

In the classical predator-prey models it is usually as-
sumed that each individual predator admits the same abi-
lity to feed on prey. However, it is different for some
species whose individuals have a life history that takes
them through two stages, immature and mature, where
immature predators are raised by their parents, so many
models with time delays and stage structure for both prey
and predator were investigated and rich dynamics have
been observed [4,6,10-12].

In this paper, we are considered the effects of prey dif-
fusion in two patches and maturation delay for predator
on the dynamics of an impulsive predator-prey model.
We discuss the differential equation: (See 1.1)

Where we suppose that the system is composed of two
patches connected by diffusion. x (t)and x,(t) repre-
sent the densities of prey species in patch | and 11 at time t,
y;(t) and vy, (t)represent the densities of the imma-
ture and mature predator at time t in patch Il, respectively.
¥, (t), X, (t) can diffuse between patch I and Il while the
predator species is confined to patch Il. = repre- sents a
constant time to maturity. a (t)(i=12)is the intrinsic
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3 (6) = o(0), (02 (1) e

O (t-1)y, (t-7) (1.1
—d()y, ()= (1) ¥: (1),

¥, (t)=c(t —r)ef“*f'r(s)dsx2 (t-7)y,(t-7)
— 0, (1) 3 (1),

X (6)=(1+ 6% (t),

X (1) = (1+ 6, )% (1),

Y (6) =@+ o) v (8 Y2 (8 ) = 2 (8,

t=t,,

growth rate; ﬂ(izl,g) is the carrying capacity;
3 (t)

d;(t)(i=12) is the dispersal rate of prey species;

k (t) is the capture rate of mature predator. c(t)is a con-

version efficiency. d(t)is the death rate of the imma-

ture predator. ¢, (t)(i=1,2) is the rate of intra-specific
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competition. &, and ¢, represent the annual birth pul-
se of x(t),y,(t)(i=L2)at t (keZ"). We make the
following assumptions for our model:
Da(t),r(t),d(t),q(t)(i=12),d(t),k(t),c(t)and
r(t)are continuous positive & — periodic functions:
2)6,.6,, and ¢, are constants and there exists a po-
sitive integer g such that

6

lk+q — Hlk 162k+q - 92k !¢k+q =@ 'tk+q = tk to.

2. Preliminaries

Denote by PC(J,R)(J < R)the set of functions y :
J — R, which are piecewise continuous in [0,@], and
have points of discontinuity t €[0,w]. Let PC'(J,R)
denote the set of functions y with derivative y(t)e
PC(J,R). We define the Banach space of - periodic

functions PC, —{(// e PC([0,0],R)|w (0) (//(a))} with
() :t[0,@]} and PC}, with W lloce. =

"W"Pc = SUp{ 4

max {f ®lc, .
PC, x PC_ with the norm

}, we will considered the

”(‘/’1:‘//2)”pc = "%"Pc +||l//2 "PC :

We define:

:_I f(t

b=min f(t), "

[min =max f(t).

te[0,0]

3. Existence of Positive Periodic Solutions

In this section, we study the existence of positive period-
ic solutions of system (1.1).

Before stating our result on positive @ — periodic solu-
tions of system (1.1), we need the following lemma:
Lemma 3.1 ([13]). LetQ e X be an open bounded set.
Let L be a Fredholm mapping of index zero and N
be L-compacton Q. Assume

1)for each 1 e(0,1), X is any solution of Lx = ANx
such that x ¢ 0Q ;

2) for each QNx = 0 for each x e 6Q " KerL ;

3) deg{JQN,Q N KerL,0} 0.

Then the equation Lx = Nx has at least one solution
in Q~DomL.

Theorem 3.1 If the system (1.1) satisfies

(HD) aa)+ln[ﬁ(1+6' )}

k=1
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Jw—ln[ﬁ(lwk)}o,

k=

[N

(H2) ,';11—d1w+ln{li[(1+6k )} >0,

- q
a, —d,o—k" e o+ In[l_[(1+6?2k )} >0
k=1
(H3) CLem2+m4 —CM e—rL+M2+M4 >0 ,
then the system (1.1) has at least one @ — periodic posi-
tive solution.

Proof. Let x (t)=€"" x,(t)=e"",y, (t)=e"",
y, (t)=e", then
U (t) =, (t) -1 ()" +d, (t)e'=) 0
_dl(t)'
(08, -5 0 k(e
+d, ()20 —d, (1),
0y (1) = (1) 00 g 1) —g, (1) [ e
—c(t-7)e L,f (s )dseuz(I—T)+u4(t—r)—u3(t)’
u,(t)=c(t-r)e el T(5)88 qua (o) v (t-2)-g (1)
—q, (t)e
ul(tk*):u (t)+In(1+6,),
(t )=u2(tk)+ln(1+92k), t=t,
U (8 ) = s (t) +In(L+ g ), U (67) = U, (1),
(3.1)

One can easily see that if system (3.1) has one
— periodic solution (u, (t),u, (t),u;(t),u, (t))T , then

.
(eul(l)'euz(t)’eua(t) . e“4(t)) = (xl* (t) X, (t) A (t) A (t))T

is a positive o — periodic solution of system(1.1). Thus,
in what follows our goal is to show that system (3.1) has
at least one @ — periodic solution.

Here, we rewrite

Let
DomL = PC! x PC} x PC},
and
N:PC. xPC. xPC: —Z,
with
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f (t a
U, (1) In(1+6,) (___jj f( dt+2|n (1+6,)
Nl | f,(t) | |In(1+6y) 2
Uy f(t) || In(1+a,) (___jj f,( dt+ZIn (1+6,)
u, f, (1) 0 |\t 2
and o2 (s)dt+ D In(1+
e e (3Lt Snra)
C
KerL={| 2 |:| "2 || 2 eR%te[0,0]}- [“—jj A
u3 u3 C3
u, ) \u,) (G, In order to apply the Lemma 3.1, we also need to find
Where Q is defined by an appropriate open and bounded subset Q. Corrspon-
) q ing to the operator equation Lu=ANu, here, 1(0,1),
f(t)dt+Zak u=(u,U,,U,u,)" , we can get
0 q
1 I 9 dt+zb 0 ul(t) ’”() ():ﬂfz(t)' tet,,
QZ ==~ o Uy (t) =215 (t),u, () =21, (1),
wl re
[“n(t) dt+ZCk
0 Pt 0], u (8 ) =uy (t)+ AIn(1+6,),
o . d B 3.2
joj(t)d”;dk uz(tk*) U, (t )+ A1In(1+6,), 32
= t=t,
Furthermore, K, :ImL — KerP ~ DomL is given by U () = us (t, )+ 2In(1+ ¢, ), ‘
[7f (t)dt+ zak-—j [ (s)dsdt - zak Uy (8) = (1),
O<ty <
- Supposeu = (u,,u,,U;,u )T is a @ — periodic solution to
[Ca(t dt+2b—-”g dsdth pROseU =t tz Uty ) 158 @ =P
K 7 0l et (3.2). By integrating over [0, ] ,
P - .
h(t)dt ~=["["h(s)dsdt- — . 1 If
.[ +g<tzk:<tCk J. .[ S ch al—d1+gln[n(l+91k)}
[Ti(tydt+ Y d, - j [ i(s)dsdt— Zd :—I( Ul _ t)euzm—ul(r))dt
O<ty <t ’
Thus, _
“h(Od+ Y L+, ) afd“;'”m(“@k)}
O<ty <t
u 1 o u u ug (t)-u.
s S maea,) :;jo(rz(t)ez(r)+k(t)e4<t>_d2(t)e1(r> ) at,
Ko (1-Q)N| *|= o1 {ﬁ( )
3 f()dt+ > In(1+ ——In| | [(1+ o }
u, '[ 0<%<t ( (plk) @ k=1
J‘w f4 t dt :% :)(C(t)euz +Ug (t 3(t)_ql(t)eu3(l))dt
—j‘“ [RA dsdt+2|n(1+¢91k) —i el et ulie) (0 g
” f( dsdt+ZIn(l+92k) ;jo 0, (t)e" et
- 1o j! L—T(8)ds [y (t—7)+ug (t-7)-uy (t)
Hf dsdt+2|n(1+(pk) == clt-r)e er T,
—j [ £,(s) dsclt (33)

According to (3.2) and (3.3), we have

Copyright © 2011 SciRes. AM
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Ji s (0]t < [ fay (£)=di (1)
R0 —d e 0ld @4

<23 -d,o+In {ﬁ(h O )}
k=1

k=1

[7lu, (1)]dt < 2a, ~d, 0+ In{lﬂ[(h Oy )} (3.5)

V| (t)|dt < 2deo+ |n[ﬁ(1+ o, )} (3.6)

k=1
Jo Lo

Scince u; (t)e PC, , 3&,7, €[0,®](i=1,2,3,4), such
that

dt<2["q, (t)e"Vdt (3.7)
0 2

o (6)= min  (9)0 (n) = e (0).

te[0,0]
Letv(t)=max{u, (t),u,(t)}, then v(t)ePC,
1) ifu, (t)>u,(t)oru (t)=u,(t), butu, (t)>u,(t),
thenv(t)=u, (t)and
ul(t)s/1(all(t)—rl(t)e“l(‘))s/i(a1 rLe“l())
2) ifu,(t)>u (t)oru (t)=u,(t), butu,(t)=u,(t),
thenv(t) =u, (t)and
uz(t)S/l(az(t)—rz(t)eUZ(‘))S/i( rzLe“Z()).
Dnote

a=max{a, '}, p=min{r", 57}, 6 =max{6,,0,]
then

+ _ v(t)
D v(t)g/i(a pe ) t=t, 38)
Av(t )< AIn(1+6,), t=t,
Integrating (3.8) over[0, »] , we get
q [
—In [H(l+9k )} <aw- pjo et
k=1
Therefore,
q
aa)+ln{H(l+9 )}
@ (&) @ ui(t) k=1
jo e dtsjoe Ut < > (3.9)
q
aa)+ln[H (1+6,) }
(&)< - =12),
0 (5)<n——= )
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)+ [( [ (1)] e+ |n{lﬂ[(1+ Oy )}

k=1

q
ao+In| [](1+6,)

<In SS s (3.10)
P

[:N

in|[1(2+6,) ]gwi:l,z),

L k=

-

+2(ai —-do+

According to the fourth equation of (3.3), we have
0“’ q2 (t)62u4(t)dt — _[Omc(t _ T) jt,

dSeuz(t T)+ug(t-7 dt

(3.11)
2 1) L
qL eZu4(t)dt < CM e—r r+M2+u4(t—r)dt
2 .[o .[o (3.12)
— CM e—rLr+M2 J““eu4(t)dt’
0
Due to
@ 2 @ u
( [! e“““’dt) < of eVt (3.13)
From (3.11) and (3.12), we have
[e Ot <—c“"e‘r FreMy (3.14)
2
L
CM e—r 7+Mj
u, (&)<hs—=——
Q;
According to (3.7) and (3.14), we get
(1) dt <2 q, (t)e" Vit
» M 4-r 1+M2
<2g) jo Wt < 20" Le ,
2
U, (t)Su4 (‘:KA)"',[O |L'|4 t |dt
M —rLr+M2 M -1 r+M2 (315)
<nt.® i +2q2 wc’e AM,,
q; qz o

According to the third equation of (3.3), we have

Jomc(t)euz(l)+u4 dt > d(() In |:lﬂ[ (l+ @ ):| ,
k=1
Duo tou, (t) < M,,u, (t) <M, , we have
cM eM2+M4J‘ e gt >dw—In {ﬁ(1+¢k )}

k=1

CM eM2+M4w

aa)—ln{ﬁ(l+¢k )} |

k=1

Uy (&)<In

and
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u, (t)§u3(§3)+_[:|u3 (t

)| dt +

n{ﬁ(lwk )}

k=’

2N

CMeM2+M4a)

aa)—ln{ﬁ(lﬂpk )}

k=1

<In

(3.16)

+2[aa)+

|n[ﬁ(1+¢k )}

k=1

JéM3’

From the first equation of (3.3), we have
J'Ow r(t)e"™dt > J':' rn(t)

q
+In {H(H O )}

k=1

e"Vdt>a, —d,w

So,

+In{ﬁ(1+6’1k )}

u (7,)=1In Lk ,
4]

|nm(1+elk )}

a - da)+ln[ 1+6’1k}

2 ul(ﬂl)_.[:)|u |dt

>1In

(3.17)

—Z(al—dla)+

n{ﬁ(u@k )}

k=1

J éml

From the second equation of (3.3), we have

@ —— a
jo r,(t)e?Vdt > a, —d,o+ In{H(1+ Oy )}

k=1

—kMeMagp,

- q
a, —d,o+ In{H(l+ ‘ )}— k™eM
k=1

U,(7,)=1n

N,

10> 0y 7) - [} [0, O]t ~{In[[ ] 1+ 6,)

- q
a, —d,o+In[[ [ 1+ 6,)]-k"e" o
k=1

Jémz,

>1In

(P10

[T+ 6,0)]

k=1

—2[&2 -d,w+

(3.18)
From (3.11) we have
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qg/' eU4(’I4) J'w eU4 (t)dt > Jw q2 (t)ezu4(t)dt
0 0
> CLeer T+my J.Ow eu4(t)dtl

Lo—rMzem,

ce
U, ()2

02
u, (t)>u,(n,)-20) J'(”eua(f)
L —rM1+m2 2 M M, -r r+M2 (319)
Zlnc e _ B g, c e Am,,
) d; -

According to the third equation of (3.3), we have

(CLem2+m4 _ CMe—rL+M2+M4 )Iowefug(t)dt

k=1

q
<do+qMe M3w+ln{H(l+¢k )}

Similarly, we have

CLem2+m4 _CMe—rL+M2+M4
Us (75) 2 In— ; ,
do+q e w+In {H(1+ ?, )}
k=1
p q
U (t) = Uy (775)— (t)[dt - |n|:H(1+(pk )}

CLeszrm4 CM e—r +M2+M4

_ q
do+q) e o+In [H(l+ ?, )}

k=1
—2{aw+ Jéms,

Thus, we have
)| < max {[ M [M, [ [M] M, [m, [, | [m, . [m, |

=1,2,3,4),

>1In

(3.20)

k=1

|n[ﬁ(1+¢k )}

sup |u; (t
te(0,w)

AD, i
Denote M =max{D,,D,,D;,D,}+ D, ,where D, may

be taken sufficiently large such that each solution to Eg-
uations (3.21)

— — q
a, —d, —re" +de? ™ = Lin {H(h O )}
(4]

k=1

- — N q
a,—d, - I’Zeuz — ke +d2eu1—UZ =%In |:H(l+ &, ):|,

k=1
Eeuz+u4—u3 —C(t—T) L U C dseuz(t 7)+ug (t-7)-us(t)

4 g :iln[n(lwk )},

k=1
c(t-r)er"

dSeuz(t 7)+ug(t-7)

I.I
q2 ‘)

(3.21)
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<D,, then ||u||< M .

* * * * T
(ul,uz,u3,u4)

Denote ¢ : DomL x[0,1] — X as the form

satisfies ‘

¢(u11u21u u, ﬂ):

q
a,—d —rle“1+1ln{l_[ 1+€1k)}
(4]

k=:

[ q
—d, —re® +1In[]_[ 1+€2k)}
k=1

,_.

w
= = 1 [
—-d-ge”+=In| J](1+¢)

w k=1

C(t _ T) jl . dSeUz(t 7)+Uy (t-7)-u _Eeu‘l
d_leuz—ul

—ke" +den "
+/,l t 1
Eeuz Hg—Us _ (t _ T)ejt,f‘r(s)dseuz (t=7)+ug (t-7)-ug(t)

0

Where 2 €[0,1]is a parameter. With the mapping ¢,
we have ¢(u;,u,,us,u,,u)=0 for (U, U, Uy, U, ) €
oQ N KerL . So we know that |uf| <M .

Obviously, the algebraic Equation (3.22) has a unique
solution (uy, u;, u;,u; ).

a —d —Fle” In{ﬁ(h@k)}
k=1
1 q
wln H 1+92k)} ,

u
a,—d, —rzez+

(3.22)
_ _ 1 q
-d-ge*+=In|[[(1+a)|=
@ k=1
C(t—T) jt r dSeuz(t 7)+ug(t-7)-u _q_zeu4 =0,

From the coincidence degree theory, we can obtain
deg (JQNu,Q ~KerL,0)
=deg(¢(u,u,, Uz, Uy, 1), QN Kerl,0) =1,

4. Numerical Analysis

In this paper, we have focused on the dynamics comple-
xity of a stage-structured system with diffusion and im-
pulsive effects. By using the method of coincidence de-
gree, we obtain the sufficient condition for the existence
of at least one positive @ — periodic solution. In this sec-
tion, we give the numerical results.

Copyright © 2011 SciRes.

¥ (t) =% (t)[3—1.6cos(wt)—1.5x (t)]
+(2—cos(wt)[x, (t)—x (t)],

X, () =X, (t)[5.2—-3.2sin (t)—2.4x, (1)]
—(3-2.5sin(wt))x, (1) y, (t)
+(2-1.2sin(t))[x, (t)— X, (t)],

(1) = (1.2=sin(at))x, (), (1) - t# L
(L.2-sin(w(t—7))e*x, (t-7)y, (t-7)
-0.2y, (t)—(1-0.5cos(est)) 7 (t),

Y, (t)=—(1-0.75cos(wt))y; (t)+
(1.2—sin(a)(t—r))e'08X2(t—r)yz(t—z'),

% () =L+ 6% (t),

% (6)=(1+6,)% (t,), t=t,,

Vi (6) =L+ @) i (). Y2 (8 ) = Y2 (8,

(4.1)

Numerical analysis indicates that the complex dynam-
ic behavior of system (1.1) depends on the values of im-
pulsive perturbations ¢, , , (i =1,2)in model (1.1). Our
theoretical results are confirmed by numerical simula-
tions. we can see that the dynamic behavior of the system
(4.1) has obviously varied as the impulse value changing.
Letg, =0.001,6, =0.002,» =0.003, it is easily proved
that the system (4.1) satisfies all the conditions of Theo-
rem 3.1, that mean the system (4.1) has at least one posi-
tive periodic solution (Figure 1). As impulses increase,
the periodic oscillation of system (4.1) will be destroyed
(Figure 2).
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6. Conclusions

There is much previous work reported on non-autono-
mous stage-structured system or diffusive system. This
motivates us to study a non-autonomous stage-structured
predator-prey system with impulsive effects. As pointed
out in Section 1, we built system (1.1). In Section 2, we
give some preliminaries. In Section 3, by using the me-
thod of coincidence degree, we obtain the sufficient con-
dition for the existence of at least one positive periodic
solution. In Section 4, we give the numerical simulations
on the dynamic behaviors of the system through two ex-
amples. But we did not discuss the global stability of the
periodic solutions periodic solution of system (1.1). We
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Figure 1. Dynamic behavior of the system (4.1) with initial
values(1.2,1.2,0.8,0.6) , = = 0.1and impulsive perturbations
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6, =0.001,60, =0.002 , ¢ = 0.003 .
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leave these aspects for future research.
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