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Abstract 
 
This paper deals with Bianchi type VI0 anisotropic cosmological models filled with a bulk viscous cosmic 
fluid in the presence of time-varying gravitational and cosmological constant. Physically realistic solutions 
of Einstein's field equations are obtained by assuming the conditions 1) the expansion scalar is proportional 
to shear scalar 2) the coefficient of the bulk viscosity is a power function of the energy density and 3) the 
cosmic fluid obeys the barotropic equation of state. We observe that the corresponding models retain the well 
established features of the standard cosmology and in addition, are in accordance with recent type Ia super-
novae observations. Physical behaviours of the cosmological models are also discussed. 
 
Keywords: Bianchi VI0, Cosmology, Bulk viscosity, Variable G and . 

1. Introduction 
 
The adequacy of spatially homogeneous and isotropic 
Friedman-Robertson-Walker (FRW) models for describ-
ing the present state of the universe is no basis for ex-
pecting that they are equally suitable for describing the 
early stages of evolution of the universe. Cosmological 
models which are spatially homogeneous but anisotropic 
have significant role in the description of the universe at 
it’s early stages of evolution. Bianchi space I-IX are use- 
ful tools in constructing models of spatially homogene-
ous cosmologies [1]. Considerable work has been done 
for constructing various Bianchi type cosmological mod-
els and their inhomogeneous generalizations. Among 
these Bianchi type I spaces are simplest which subsequ- 
ent generalizations of zero-curvature FRW models are. 
Bianchi type VI0 spaces are of particular interest since 
they are sufficiently complex, while at the same time, 
they are simple generalizations of Bianchi type I spaces. 
Barrow [2] has pointed out that Bianchi type VI0 models 
of the universe give a better explanation of some of the 
cosmological problems such as primordial helium abun-
dance and they also isotropize in a special sense.  

Ellis and MacCallum [3] obtained solutions of Eins-
tein's field equations for a Bianchi type VI0 space-time in 
the case of a stiff-fluid. Collins [4] and Ruban [5] presen- 
ted some exact solutions of Bianchi type VI0 for perfect 
fluid distributions satisfying specific equations of state. 

Dunn and Tupper [6] investigated a class of Bianchi type 
VI0 perfect fluid cosmological models associated with 
electromagnetic field. Lorentz [7] has generalized the 
dust model of Ellis and MacCallum [3]. Roy and Singh 
[8] derived some exact solutions of Einstein-Maxwells 
equations representing a free gravitational field of mag-
netic type with perfect fluid and incident magnetic field. 
Shri Ram [9] presented an algorithm for generating exact 
per- fect fluid solutions of Einstein's field equations, not 
satis- fying the equation of state, for spatially homoge-
neous cosmological models of Bianchi type VI0. 

Bulk viscosity is supposed to play a very important 
role in the early evolution of the universe. There are many 
circumstances during the evolution of the universe in 
which bulk viscosity could arise. The bulk viscosity co- 
efficient determines the magnitude of the viscous stress 
relative to the expansion. Ribeiro and Sanyal [10] studied 
Bianchi type VI0 models containing a viscous fluid in the 
presence of an axial magnetic field. Patel and Koppar [11] 
presented some Bianchi type VI0 viscous fluid cosmo-
logical models with expansion and shear. Bali et al. [12] 
studied a Bianchi type VI0 magnetized barotropic bulk 
viscous fluid massive string universe. Bali et al. [13] ob- 
tained some exact solutions for a homogeneous Bianchi 
type VI0 space-time filled with a magnetized bulk visc-
ous fluid in the presence of a massive comic string. Bali 
et al. [14] have also discussed the properties of the free 
gravitational fields and their invariant characterizations 
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and imposing certain conditions over the free gravitatio- 
nal fields. 

The cosmological constant  and the gravitational 
constant G are two parameters present in Einstein's field 
equations. The Newtonian constant G plays the role of 
coupling constant between geometry and matter in Eins-
tein's field equations. There have been numerous mod-
ifications of general relativity in which G varies with 
time in order to achieve possible unification of gravita-
tion and elementary particle physics or to incorporate 
Mach's principle in general relativity. From the point of 
view of incorporating particle physics into Einstein's 
theory of gravitation, the simplest approach is to interpret 
the cosmological constant  in terms of quantum me-
chanics and the physics of the vacuum [15]. The  term 
has also been interpreted in terms of Higg's scalar field 
[16]. Linde [17] proposed that  term is a function of 
temperature and related it to the process of broken sym-
metries. The cosmological constant problem related to 
the existence of  has been extensively discussed in lite-
rature. A phenomena logical solution to this problem is 
suggested by considering  as a function of time, so that 
it was large in the early universe and got reduces with the 
expansion of the universe [18]. A number of authors e.g. 
Kalligas et al. [19], Arbab [20], Abdussattar and Vish-
wakarma [21] proposed linking of variations of G and  
within the framework of general relativity. This approach 
is appealing as it leaves the form of Einstein equations 
formally unchanged by allowing a variation of G to be 
accompanied by change in . Pradhan and Yadav [22] 
investigated bulk viscous anisotropic cosmological mod-
els with variable G and . Pradhan et al. [23] derived 
FRW universe with verying G and . Since Bianchi type 
I spaces are subsequent generalization of zero curvature 
FRW models, Singh et al. [24] obtained some Bianchi 
type I models with variable G and . Singh et al. [25] 
obtained early viscous universe with variable G and . 
Singh and Tiwari [26] presented Bianchi type I models in 
the presence of a perfect fluid with time varying G and  
in general relativity. Singh and Kotambkar [27] dis-
cussed cosmological models with variable G and  in 
space-times of higher dimensions. Singh and Kale [28] 
dealt with Bianchi type I, Kantowski-Sachs and Bianchi 
type III anisotropic models of the universe filled with a 
bulk viscous cosmic fluid in the presence of variable G 
and . Bali and Tinker [29] investigated Bianchi type III 
bulk viscous barotropic fluid cosmological model with 
variable G and  which leads to inflationary phase of the 
universe. Recently, Verma and Shri Ram [30] obtained 
Bianchi type III bulk viscous barotropic fluid cosmolog-
ical model with variable G and  in simple and syste-
matic way. Homogeneous cosmologies with Bianchi type 
VI0 space filled with perfect fluids, satisfying specific 

equation of state linking the pressure and matter energy 
density are widely used to study different properties of 
solutions of Einstein's field equations. Pradhan and Bali 
[31] presented magnetized Bianchi type VI0 barotropic 
massive string universe with decaying vacuum energy 
density. Recently, a new class of LRS Bianchi type VI0 
universe with free gravitational field and decaying va-
cuum energy is obtained by Pradhan et al. [32]. 

In this paper, we investigate Bianchi type VI0 bulk 
viscous barotropic fluid cosmological models with time 
varying gravitational and cosmological constants. The 
paper is organized as follows, we present the metric and 
Einstein's field equation for a viscous fluid with time-de- 
pendent G and. We deal with solutions of the field eq-
uations and we obtain solutions of the field equations 
under the assumptions that 1) the expansion scalar is pro- 
portional to the shear scalar 2) the bulk viscosity coeffi-
cient is a power function of the energy density and 3) the 
cosmic fluid obeys the barotropic equation of state. The 
corresponding models represent expanding, shearing and 
non-rotating universe which give essentially space for 
large time. We also discuss the physical and kinematical 
behaviours of Bianchi type VI0 anisotropic cosmological 
models. Some concluding remarks have also been given. 

2. Field Equations and General Expressions 

We consider Bianchi type VIo metric in the form 

2 2 2 2 2 2 2 2 2mx mxds dt A dx B e dy C e dz          (1) 

where , andA B C are function of cosmic time t and m is 
a constant parameter. 

The energy-momentum tensor for a bulk viscous fluid 
distribution is given by  

 j j j
i i iT p v v pg              (2) 

where 

;p= p vi
i                  (3) 

Here , , andp p   are respectively, energy-density of 
matter, thermodynamic pressure, effective pressure and 
bulk viscosity coefficient. The four-velocity vector of the 
fluid satisfies. 

1i
iv v                     (4) 

A semicolon stands for covariant differentiation. 
The Einstein’s field equations with time-dependent 

G and   are 

1
8 .

2i j i j i j i jR Rg GT g            (5) 

For the line-element (1) with a bulk viscous fluid dis-
tribution, the field Equation (5), in commoving frame, 
give rise to the following equations: 
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2

2
8

B C BC m
G p

B C BC A
     

  
       (6) 

2

2
8

A C AC m
G p

A C AC A
     

   
       (7) 

2

2
8

A B AB m
G p

A B AB A
     

  
       (8) 

2

2
8

AB AC BC m
G

AB AC BC A
     

    
      (9) 

0
B C

B C

 
  

 


              (10) 

where a dot denotes differentiation with respect to .t  
An additional equation for time changes of G  and   
is obtained by the divergence of Einstein tensor, i.e. 

;

1

2
j j

i i
j

R Rg
  
 

, which leads to  
;

8 0j j
i i j

GT g    

yielding 

 8 8 0
A B C

G G p
A B C

    
  

       
   

     (11) 

The conservation of energy Equation (11), after using 
Equation (3), splits into two equation 

  0
A B C

p
A B C

 
 

     
 

 
         (12) 

2

8 8
A B C

G G
A B C

   
 

    
 

         (13) 

The average scale factor S for the metric (1) is de-
fined by  

3S ABC                 (14) 

The volume scale factor V is given by 
3V S ABC                (15) 

The generalized mean Hubble parameter H is given by 

 1 2 3

1

3
H H H H              (16) 

where 1 2 3, ,
A B C

H H H
A B C

  
 

 The expansion scalar 

.  and shear scalar   are given by 

;
i
i

A B C
v

A B C


 
    

 

 
           (17) 

and 

 
2 2 2

2
2 2 2

1

3

A B C AB BC AC

AB BC ACA B C


 
      

 

       
   (18) 

An important observational quantity in cosmology is 
the deceleration parameter q  which is defined as 

2

SS
q

S
 


                 (19) 

The sign of q  indicates whether is model inflates or 
not. The positive sign corresponds to the standard dece-
lerating model whereas the negative sign indicates infla-
tion. 

3. Solution of the Field Equations 

We are at liberty to make certain assumptions as we have 
more unknown , , , , , , andA B C p G   with lesser num-
ber of field Equations (6)-(13). For complete determina-
tion of these field variables, we first assume that the ex-
pansion scalar   is proportional to the shear scalar  . 
This condition leads to  

nA B                  (20) 

where n  is a positive constant. 
Equation (10), on integration, yields 

B lC                  (21) 

where l  is an integration constant. Without loss of ge-
nerality we can take l . From Equations (6) and (7), we 
obtain  

2

2

2
0

B A B B A m

B A B B A A

 
     

 

   
      (22) 

Substitution of Equations (20) and (21) in Equation 
(22) 

    
2 2

2
2

2
1 0

1
nB B m

n B
B nB

   


 
        (23) 

which reduce to 

   
2 2

2 14
2 2 1 0

1
nB m

B n B
B n

    


      (24) 

On assuming ( ),B f B  takes the form 

   2 2 2 2 12 1 nnd
f f M B

dB B
 

       (25)  

where 
2

2 4
, 1.

1

m
M n

n
 


 Equation (25) has the general 

solution  

 2 4 2

2 2
2 24 n

M B a
f B

B 


             (26) 

where a  is the constant of integration. From Equation 
(26) we have  

1

4 2 2

nB dB M
dt

B a






             (27) 



M. K. VERMA  ET  AL. 
 

Copyright © 2011 SciRes.                                                                             AM 

351

The solution of Equation (27) is not valid for 1n  . 
We can obtain physically realistic models by choosing 
the values of n  for which Equation (27) is integrable. 

3.1. Model I 

When 2n   Equation (27) reduces to 
3

4 2 2

B dB M
dt

B a



              (28) 

which, after integration, leads to 

 
1/222 2

1 2B c t c a              (29) 

where 1c  and 2c  are arbitrary constants. 
Therefore, the metric (1) can be written in the form 

   
 

1/22 2 2 2 2 2 2

2 2 2 2mx mx

ds dt T a dx T a

e dy e dz

     


 

where  

1 2c t c T                 (30) 

It is clear that, given  t , we can find the physical 
and kinematical parameters associated with metric (30). 
The effect of bulk viscosity is to produce a change in the 
cosmic fluid and therefore exhibits essential change on 
character of the solution. In most of the investigations, 
the bulk viscosity is assumed to be a simple power func-
tion of the energy density [33, 34] 

  0t                    (31) 

where 0  and  0   are constant. For small density, 
  may even be equal to unity [35]. The case 1   
corresponds to a radiative fluid [34]. Near a big-bank, 
0 1 2   is a more appropriate assumption to obtain 
realistic models [36]. 

For the specification of  t , we also assume that the 
fluid obeys the equation of state  

p                  (32) 

where  0 1    is a constant. From Equations (12) 
and (32), we obtain 

 
2 2

2 1
0

T

T a


 


  


          (33) 

where a dash denotes differentiation with respect to .T  
Integration of Equation (33) yields 

   12 2k T a



 

             (34) 

where k is integration constant. Differentiating Equation 
(34), we obtain 

     22 22 1k T T a


 
 

            (35) 

Also, from Equation (9), we find that 

 
 

2 2 2 2

22 2

5 4 4
8

4

m T m a
G

T a
 

 
  


      (36) 

which on differentiation leads to 

   
 

 
 

2 3 2 2 2 2 2 2 2

3 32 2 2 2

5 4 8 10 4 5 8
8 8

2 2

m T m T m a a T m a
G G

T a T a
   

    
      

 
               (37) 

Using Equations (13), (31) and (35) in Equation (37), we get 

     
   

 
  

1
2 3 2 2 2 2 2 2 2 2

0
3 (1 ) 2 22 2 2 2 2 2

5 4 8 10 4 5 8 16 132

2

m T m T m a a T m a k Tk T
G

T a T a T a



  

 


  

                     

    (38) 

Using Equations (34) and (38) in Equation (36), we obtain 

     
  

 
      

 
 

1
2 3 2 2 2 2 2 2 2 2

0
4 2 1 22 2 2 2 2 2

2 2 2 2

22 2

5 4 8 10 4 5 8 2 1 4
( )

2

5 4 4
.

4

m T m T m a a T m a k T k T
t

T a T a T a

m T m a

T a



   

 


   

                  
        

 




    (39) 

The gravitational constant ( )G t  is zero initially and gradually increases and tends to infinity at late time. We 
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also observe that the cosmological term   is initially 
infinite. It is decreasing function of time and approaches 
to zero at late time which is supported by recent result 
from the observations of type supernova explosion (SNIa). 
From Equations (31) and (34), we obtain 

     12 2
0t k T a

  
 

            (40) 

The physical and kinematical parameters of the model 
(30) are given by the following expressions. 

 3 2 2V T a                 (41) 

 2 22 3H T T a               (42) 

 2 22T T a                 (43) 

 2 22 3T T a               (44) 

 2 2 23 2q T a T                (45) 

The value of the deceleration parameter is positive for 
all time which shows the decelerating behaviour of the 
cosmological model. 

For model (30), we observe that the spatial volume in-
creases with time T  and it becomes infinite for large 
value of T . At T a , the spatial volume is zero and 

, , ,p    all are infinite but vanish for large T . Thus, 
the model has a big-bank singularity at the finite time
T a . The physical and kinematical parameters are all 
well behaved for .a T   . The bulk viscosity coeffi-
cient is infinite atT a  and tends to zero for large time. 

Since 


 constant, the anisotropy is maintained for all 

times. It can be seen that the model is irrotational. 
Therefore, the model describes a continuously expanding, 
shearing and non-rotating universe with a big-bang start 
at T a . 

3.2. Mode-II 

From Equation (27), we get 

 
1

4 2

2 nB dB
dt

M B a






            (46) 

with the help of Eq. (46), the line-element (1) reduces to 

   
2 2

2 2 2 2 2 2 2 2 2

2 4 2

4 n
n mx mxB dB

ds dB B dx B e dy e dz
M B a


    


 

  (47) 
By a suitable transformation of coordinates, the 

line-element (47) reduces to 

   
2 2

2 2 2 2 2 2 2 2 2

2 4 2

4 n
n mx mxT dT

ds dT T dx T e dy e dz
M T a


    


  

(48) 
For the model (48), the physical and kinematical pa-

rameters are given 

 2 3nV T                   (49) 

 2n

T



                  (50) 

 2

3

n
H

T


                  (51) 

 1n

T



                  (52) 

 
 
1

2

n
q

n





                  (53) 

Following the procedure as in Section (3.1), we obtain 
the expression for energy density , ,G  and as under 

  1 2
1

nk T                   (54) 

 

        

   
  

  
  

3 4 23 21/24 2
3 2 3 6 3

2 12 4 2
0 1 1

2 2 2 2

2 1 2 42 1

2 8

8 2 8 2 1

4

n n n

n n

n n M T an M m nM
G T a

T T T

k M n T a k n

T T



  

  

 



    

         
       

                (55) 

 
  

  
  

   
  

          

11/2 24 2 2 4 2
1 0 11

1 2 2 2 2 2

3 4 2 2 4 23 2 2

3 2 3 6 3 2 4 2

22 1

4

2 1 2 4 2 12 1

2 8 2

n n n
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  1 2

0 1
nk T                    (57) 

We observe that the spatial volume is zero at 0T  . 
At this epoch the energy density  , expansion  , the 
shear scalar   and the bulk viscosity coefficient are all 
infinite. Therefore the model (48) starts evolving with a 
big-bang at 0T  . The spatial volume tends to infinite 
and , , ,     become zero as for large time T. The gra- 
vitational constant G  is zero initially and tends to infi- 
nity for large time T. The cosmological term   is infi-
nite at the beginning of the model and tends decreases 
gradually to become zero at late time. The deceleration 
parameter q is positive for 1n   and is negative 1n  . 
Therefore Equation (48) represents a model of a decele-
rating universe for 1n   and a model of an accelerating 
universe for 1n  . The present day observations and 
literature favour accelerating model of the universe. The 
anisotropy in the models is maintained throughout. 

4. Conclusions 

In this paper we have studied Bianchi type VI0 space-time 
models with bulk viscosity in the presence of time-de- 
pendent gravitational and cosmological constants. We 
have presented two physically viable anisotropic models 
of the universe. For 2n  , the model I evolves with a 
big-bang start at the finite time T a  and does not ap-
proach isotropy as T  . For large T , energy density 
becomes zero. The rate of expansion in the model slows 
down tending to zero as T  . Since the deceleration 
parameter is positive for all time T , this model corres-
ponds to an expanding, shearing, non-rotating and dece-
lerating universe. For 1,o n   the model II represents 
a decelerating universe whereas it represents an accele-
rating universe for 1n  . Model II starts evolving with 
a big-bang singularity at 0T   and expands uniformly. 
The model with negative deceleration parameter is com-
patible with the recent supernovae Ia observations that 
the universe is undergoing a late time acceleration. The 
anisotropy is maintained in both the models. The gravita-
tional constant ( )G t  is zero initially and gradually in-
creases and tends to infinity at late time. The cosmologi-
cal term is infinite initially and approaches to zero at late 
time. These are supported by recent results from the ob-
servations of the type Ia supernova explosion (SN Ia). 
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