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Abstract 
Artificial bee colony (ABC) algorithm is one of the popular swarm intelligence algorithms. ABC has 
been developed by being inspired foraging and waggle dance behaviors of real bee colonies in 
2005. Since its invention in 2005, many ABC models have been proposed in order to solve differ- 
ent optimization problems. In all the models proposed, there are only one scout bee and a con- 
stant limit value used as control parameters for the bee population. In this study, the performance 
of ABC algorithm on the numeric optimization problems was analyzed by using different number 
of scout bees and limit values. Experimental results show that the results obtained by using more 
than one scout bee and different limit values, are better than the results of basic ABC. Therefore, 
the control parameters of the basic ABC should be tuned according to given class of optimization 
problems. In this paper, we propose reasonable value ranges of control parameters for the basic 
ABC in order to obtain better results on the numeric optimization problems. 
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1. Introduction 
Artificial Bee Colony algorithm was developed by Karaboga in 2005, inspired intelligent behaviors of real ho- 
ney bee colonies [1]. The ABC simulates foraging and dance behaviors of real bees to achieve global optimum 
for different optimization problems. Although the foraging behavior of real bees is to collect nectar from food 
sources around the hive in nature, artificial foraging in ABC is to search the solution space and to evaluate solu- 
tion parameters found [1]. In the ABC, the dance of the bees in the hive is used in order to share information 
about the positions of food sources between onlooker and employed bees as well as in nature [1,2]. The other 
type of bee is scout bee that works for foraging. 

A scout bee searches around the hive for finding new food sources. If an employed bee could not improve the 
self solution in a certain time, it becomes scout bee the main purpose of which is to increase search ability of the 
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ABC. In addition, scout bees provide to get rid of local minimums by preventing stagnation of the bee popula- 
tion. In this point, the number of scout bees and when a scout bee occurs from employed bees are important fac- 
tor for the ABC. When the number of scout bees is a very large value and time of occurrence of scout bee 
(called as limit) is short, exploitation from food source ability of ABC decreased. When the number of scout 
bees is a very small value and time of occurrence of scout bee is long, probability of getting rid of local mini- 
mum of the ABC decreased. Therefore, the number of scout bees and the time of occurrence of scout bee should 
be balanced for the problems. 

The performance of ABC algorithm is partially analyzed under the different limit values in [3,4], but the other 
peculiar parameter (number of scout bees) of ABC algorithm is taken as 1. In this study, we reported that ABC 
has two peculiar control parameters and tested effect of control parameters to the performance of ABC for nu- 
meric optimization problems. 

The paper is organized as follows; Section 1 presents introduction and literature review, The ABC algorithm 
is given in Section 2, experiments are presented in Section 3. The simulation results obtained are discussed in 
Section 4 and finally, conclusion and future works are given in Section 5. 

Literature Review 
The ABC algorithm was first introduced by Karaboga in 2005 and applied to well-known three numerical func- 
tions for finding global minimum [1]. Performance of ABC algorithm was compared with genetic algorithm 
(GA), particle swarm optimization (PSO) and differential evolution (DE) on the multivariable numerical opti- 
mization problems [3-5] and Karaboga [6] used a new method based on ABC algorithm for designing digital in- 
finite impulse response (IIR) filters and its performance was compared to other techniques. Performance of ABC 
was examined on large set numerical optimization problems and compared with GA, PSO, DE and evolution 
strategies in [7]. In order to improve ABC algorithm, many researchers proposed new approaches such as [8-12]. 
Besides improvements of ABC, ABC was used for solving many optimization problems such as [13-23]. 

As seen above the literature review, the basic ABC algorithm has many modifications and applications but the 
peculiar control parameters of the ABC algorithm have not been analyzed yet. In this paper, we analyzed the 
peculiar control parameters of the ABC algorithm by the different limit values, number of scout bees and popu- 
lation size. 

2. The ABC Algorithm 
The basic ABC algorithm has very simple, clear and adaptable model. There are two kinds of foragers in the 
hive of ABC, employed foragers and unemployed foragers. Employed foragers exploit from food sources (cor- 
responded to the potential solution of the optimization problem) continuously and they carry information about 
positions of food sources to the hive. There are two types of unemployed foragers, onlooker bees and scout bees. 
The onlooker bees go to food source in order to exploit by taking advantage of information shared by employed 
foragers. The scout bees search new food source around the hive and mean of number of scout bees averaged 
over conditions is about 5% - 10% [1,24]. In the nature, although 5% - 10% of the population is scout bee, there 
is only one scout bee in the ABC hive. Also, in the basic ABC, half of the population is employed bees and other 
half of the population is onlooker bees. 

After tasks of the bees were explained, these tasks are performed as follows: the employed bees use the Equa- 
tion (1) in order to improve self solution (let vi = xi). 
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where, ix  is ith employed bee, iv  is the candidate solution for ix , kx  is a neighbor employed bee of ix , 
Φ  is a number randomly selected in the range [−1, 1], n is number of the employed bees, D is the dimensional- 
ity of the problem and { }1,2, ,j D∈ 

 and { }1,2,k n∈   are selected randomly. In addition, only one para- 
meter of the employed bee is updated at the each iteration. Therefore, all solution parameters of the employed 
bee are copied to the candidate solution produced this bee for evaluating objective function. 

If an employed bee could not improve self solution in a certain time (during the achieving the limit), it be- 
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comes a scout bee and a new solution is generated for it by using the following equation: 

min max min( )j j j j
ix x r x x= + × − , for all 1, 2, ,j D∈                        (2) 

where, j
ix  is a parameter to be optimized for the ith employed bee on the dimension j of the D-dimensional so- 

lution space , max
jx  and min

jx  are the upper and lower bounds for j
ix , respectively and r is a random number 

in range of [0, 1]. After the generating a new solution, the scout bee becomes the employed bee. 
Every onlooker bee memorizes the solution of one of n employed bees based on fitness values of the em- 

ployed bees in order to generate a new food position by using Equation (1). Onlooker bees select an employed 
bee by using roulette wheel selection mechanism and the Equation (3): pi is to be selected probability of the ith 
employed bees and calculated as follows: 
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where, ifit  is the fitness value of ith employed bee and is computed as follows: 
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where, fi is the object function value which is specific for the problem. 
Also, initial solutions for the employed bees are produced by using the Equation (2) in initialization of the 

ABC algorithm. 
As seen from the Figure 1, in order to exploit from food sources, the onlooker bees and employed bees use 

the same equation. For the initial solutions for employed bees and generating new solution for scout bee, the 
Equation (2) is used. 

3. Experiments 
In order to analyze effects of number of scout bees and limit parameters to performance, the experiments were 
designed on the well-known five numerical functions. The design parameters are number of scout bees, limit 
values and size of the population. Size of the population opts as 20, 50 and 100. Number of scout bees is from 1 
up to number of employed bees. 

The limit values depend on dimensionality of the problem and number of employed bees. According to [1,7], 
limit value of the population is calculated as follows; 

Limit N D= ×                                          (5) 

where Limit  is the parameter which is control occurrence of the scout bee, N  is number of employed bees and 
D  is dimensionality of the optimization problem. The limit value obtained from the Equation (5), is used as 
maximum limit value in the experiments. Also, limit values used in experiments are calculated as follows: 

( 1, 2,...,5)
5i

LimitL i i= × =                               (6) 

where, L is the limit value used in experiments, Limit is obtained from the Equation (5) and i is used for deter- 
mining limit value. Also, all the parameters are shown in Table 1. 

In all experiments, dimensionality of the numerical functions is taken as 50 and maximum evaluation number 
(MEN) which is used as stopping criterion, is calculated as follows [25]: 

10000MEN D= ×                                        (7) 

where D is the dimensionality of the numerical function. 
Each of the experiments was repeated 30 times with random seeds for each limit value and number of scout 

bees, and mean of the value obtained by the runs was shown in the figures. 
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Table 1. Control parameters used in the experiments. 

 Population Size Maximum Limit Number of Scout Bees 

Experiment 1 20 500 From 1 to N* 

Experiment 2 50 1250 From 1 to N* 

Experiment 3 100 2500 From 1 to N* 
*N is the number of employed bees. 

 
The numerical functions used in the experiments have some characteristic features. If a function has more 

than one local optimum, this function is named “multimodal”. Unimodal functions have only one local optimum 
and this local optimum is the global minimum. If an-variable function can be written as the sum of n functions 
of one variable, this function is called “separable”, otherwise the function is non-separable. Non-separable func- 
tions have interrelation among their variables. Also, the dimensionality of the search space is important issue 
with the problem [7,26]. By using these functions in the experiments, search and getting rid of local minimum 
abilities of the ABC algorithm under the different conditions (different number of scout bees and limit values) 
are investigated. 

3.1. The Sphere Function 
The Sphere which is proposed by De Jong [27] in order to evaluate the capabilities of different adaptive strate- 
gies has one local minimum and this local minimum is global minimum which is on (0,...,0)x∗ =  point and 
the global minimum value is 0. The function is formulated as follows: 

2

1
( ) ( [ 100,100] )

D
D

i
i

f x x x
=

= ∈ −∑                          (8) 

Because the Sphere function is separable, unimodal, simplicity and symmetry, it is easy to solve with respect 
to other numerical functions for optimization algorithms. The obtained results are shown in Figure 1 while pop- 
ulation size is 20, 50 and 100. 

3.2. The Rastrigin Function 
The Rastrigin function [28] is multimodal and separable. The search domain of the function is in range [−5.12, 
5.12]. In this range, global minimum of the Rastrigin function is on (0,...,0)x∗ =  and on this point, *( ) 0f x = . 
Its contour is made up of a large number of local minima whose value increases with the distance to the global 
minimum. The function is described as follows: 
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The obtained results by ABC algorithm with control parameters are given in Figure 2. 

3.3. The Griewank Function 
The Griewank function [29] is non-separable and multimodal features. Number of local minimum is huge. The 
global minimum is on (0,...,0)x∗ =  and this point, *( ) 0f x = . Search domain is range of [−600, 600]. The 
Griewank function is defined as follows: 
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Figure 3 shows the obtained results by ABC algorithms under the different values of control parameters. 

3.4. The Ackley Function 
The Ackley function, originally proposed by Ackley [30] and generalized by Bäck and Schwefel [31], is  
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(a)                                                   (b) 

 
(c) 

Figure 1. The means of 30 runs for the Sphere function. (a) Population size = 100; (b) Population size = 50; (c) 
Population size = 20. 

 

    
(a)                                                   (b) 

 
(c) 

Figure 2. The means of 30 runs for the Rastrigin function. (a) Population size = 100; (b) Population size = 50; 
(c) Population size = 20. 
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(a)                                                   (b) 

 
(c) 

Figure 3. The means of 30 runs for the Griewank function. (a) Population size = 100; (b) population size = 50; (c) 
Population size = 20. 

 
multimodal and non-separable, and has an exponential term that covers its surface with numerous local minima. 
The global minimum value is 0 and the global minimum is located in the origin. Search domain of the function 
is in range [−32, 32] and its formulation is given in Equation (11): 

2

1 1

1 1( ) 20exp 0.2 exp cos(2 ) 20
D D

i i
i i

f x x x e
D D

π
= =

   = − − − + +       
∑ ∑                   (11) 

For Ackley function, ABC with different values of control parameters is applied and obtained results show in 
Figure 4. 

3.5. The Rosenbrock Function 
The Rosenbrock’s banana function, first proposed by Rosenbrock [32], is non-separable because of interrelation 
between variables. It is unimodal for D = 2 and D = 3 but may have multiple minima in high dimension cases 
and its global minimum is inside a narrow, curved valley [33]. Due to the non-linearity of the valley, many algo- 
rithms converge slowly because they change the direction of the search repeatedly [26]. Global minimum is on 

(1,...,1)x∗ =  and this point *( ) 0f x = . Search domain of the Rosenbrock function is in the range [−30, 30] and 
it is denoted as follows: 

( ) ( )
1 2 22

1
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( ) 100 1
D
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 = − + −  ∑                                (12) 

The results obtained by ABC algorithm for Rosenbrock function is given in Figure 5. 
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(a)                                                   (b) 

 
(c) 

Figure 4. The means of 30 runs for the Ackley function. (a) Population size = 100; (b) Population size = 
50; (c) Population size = 20. 

 

   
(a)                                                   (b) 

 
(c) 

Figure 5. The means of 30 runs for Rosenbrock function. (a) Population size = 100; (b) Population size = 
50; (c) Population size = 20. 
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4. Result and Discussion 
As seen from figures belonged to the experiments, when the population size is increased, effects of scout bee  
and limit values decrease because great population size provides enough diversity in the population for the 
problem. For all functions, when population size is taken as 100, the ABC algorithm shows high performance 
but in this case, effects of peculiar control parameters are not seen. When population size is taken as 50, perfor- 
mance of ABC algorithm is slightly reduced and the smallest limit value in the experiments prevents from 
reaching saturation of the population. Effects of number of scout bees are clearly seen when population size is 
taken as 20. While population size is 20, for all functions except Rosenbrock function, when number of scout 
bees is taken as 15% - 30% of the population, the good results are obtained with respect to others. 

For the Rosenbrock function, because it has peculiar features (global minimum is inside a narrow, curved 
valley), the search ability of the ABC algorithm which is provided by scout bees and limit value, is the most 
important factor for finding the global minimum. As seen from the Figure 5, the search ability and performance 
of ABC algorithm increases, when the number of scout bees is chosen a greater number than one and the limit 
value is chosen a little number with respect to others. 

The actual effect of number of scout bees and limit value is to provide to prevent from stagnation of the pop- 
ulation. Stagnation of the population is to come together on the same point all of the individuals and not to pro- 
duce a new solution interaction between them. Therefore, more than one scout bee and limit value ease to get rid 
of local optimum of the population and many scout bees and small limit value provide to increase search ability 
of the ABC algorithm. The good search ability ensures to find minimum points on the solution space. After ana- 
lyzing the number of scout bees and limit values, we propose that number of scout bees can be 10% - 30% of the 
population and limit value can be selected nearby of value obtained by equation 13 for this class of optimization 
problems. 

2
D NLimit ×

=                                        (13) 

Where D is the dimensionality of the optimization problem and N is the number of employed or onlooker bees. 
Finally, the search and exploitation abilities in the ABC algorithm should be balanced using limit, number of 

scout bees and population size in order to obtain better quality results in a reasonable time. 

5. Conclusion and Future Works 
This work examined performance of ABC algorithm with the different control parameters on the well-known 
five numerical benchmark functions. From the results obtained in this work, peculiar control parameters (num- 
ber of scout bees and limit value) of the ABC algorithms should be tuned in order to obtain better results for the 
multimodal and multidimensional optimization problems. 

Future works include adaptive approaches for number of scout bees and limit value for the population.  
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