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Abstract 

In this work, the reducibility of quasi-periodic systems with strong parametric excitation is stu- 
died. We first applied a special case of Lyapunov-Perron (L-P) transformation for time periodic 
system known as the Lyapunov-Floquet (L-F) transformation to generate a dynamically equivalent 
system. Then, we used the quasi-periodicnear-identity transformation to reduce this dynamically 
equivalent system to a constant coefficient system by solving homological equations via harmonic 
balance. In this process, we obtained the reducibility/resonance conditions that needed to be sa- 
tisfied to convert a quasi-periodic system in to a constant one. Assuming the reducibility is possi- 
ble, we obtain the L-P transformation that can transform original quasi-periodic system into a 
system with constant coefficients. Two examples are presented that show the application of this 
approach. 

 
Keywords 

L-P Transformation; Quasi-Periodic System; Reducibility 

 
 

1. Introduction 

A matrix function ( )A t  with a square matrix of dimension n  is termed quasi-periodic with k incommensura- 
ble frequencies 1, , kω ω  [1] [2]. A quasi-periodic function ( )f t  can be showed in the form 

( ) ( )1 , , nf t F t tω ω=                                      (1) 

where a continuous function is ( )1, , nF x x  of period 2π  in 1, , nx x . In addition, we can always assume 
that 1, , nω ω  are independent [2]. As Moser [3] stated, the class of all almost periodic functions is not separa- 
ble while ( )0

1, , nC ω ω  is. The integral of a quasi-periodic function is not quasi-periodic even if the mean 
value of ( )f t  is zero [3]. 

http://www.scirp.org/journal/ijmnta
http://dx.doi.org/10.4236/ijmnta.2014.31002
http://dx.doi.org/10.4236/ijmnta.2014.31002
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Let’s consider the linear equation 

( )x A t x=                                         (2) 

where nx∈  and ( )A t  is a matrix depending quasi-periodically on time. The quasi-periodicity of A  
enables it possible to raise the Equation (2) to a system of linear equations [4] [5] on n d×   basically writing 

( ) , ,x A xθ θ ω= =

                                       (3) 

where the Equation (2) is acquired when the initial value for θ  is zero.  
Now let’s consider the matrix equation for (3), so that the lifted system [2] becomes 

( ) , ,X A Xθ θ ω= =                                      (4) 

Equation (2) is said to be reducible whenever there is a linear time-varying change of variables 

( ) ,x Z t y=                                        (5) 

called Lyapunov-Perron (L-P) transformation [2], which transforms the system into an equation like ,y By=  
where B  is a constant matrix. As Fink [6] mentioned, if 1k = , then all systems are reducible by the Floquet 
theory. This view is also applicable for common linear systems [7] like 

( ) ( ) ( ) ,x t A t x t=                                     (6) 

and it means that, whenever a system like that is L-P reducible to a constant coefficients system like 

( ) ( ) ,x t Ax t=                                      (7) 

This will result in many properties of the original system “such as the growth of the solutions or their boundness” 
being the same as those of the reduced system with constant coefficients [2].  

The primary objective of this work is to develop a practical approach for reducibility of quasi-periodic system 
with strong parametric periodic excitation. It is noted that in the past, the researchers have studied quasi-periodic 
system where the order of quasi-periodicity is less than the order of the linear term [8] [9] as given by Equation 
(8) 

( ) ( )( )1 2cos cosx t t tδ ε ω ω+ + +                               (8) 

In this work, we relax this requirement. We assume the order of themost dominant “strong” periodic excita- 
tion to be of the same order as the constant term given by Equation (9) and use the L-F transformation and qua- 
si-periodic near identity transformation to 

( ) ( )( )1 2cosx t t cos tδ ω ε ω+ + +                               (9) 

reduce the system to a constant form. This research will present a practical approach to achievereducibility of 
quasi-periodic system and will lay the groundwork for future efforts in optimizing such a process. 

1.1. Floquet Theory Overview 

Floquet theory is very useful for finding the response or stability of linear time-periodic equations [4] [10] [11]. 
Consider the linear periodic system 

( )x A t=                                        (10) 

( )Φ t  denotes the State Transition Matrix (STM) (fundamental solution matrix) that contains n linearly inde- 
pendent solutions of Equation (10) with the initial conditions ( )Φ 0 I=  as I  is an identity square matrix of 
dimension n. 

As such the following conditions hold: 
1) ( ) ( ) ( )Φ Φ Φ ,0t T T t t T+ = ≤ ≤  and, consequently  

2) ( ) ( ) ( )Φ Φ Φ ,0 , 2,3jt jT T t t T j+ = ≤ ≤ =   

3) ( ) ( ) ( )0 , 0x t t x t= Φ ≥  



E. Ezekiel, S. Redkar 
 

 
8 

These conditions suggest that, if the solution is known for the first period, it can be designed for all time t. 
The matrix ( )Φ T  is called the Floquet transition matrix (FTM). The next condition considers the stability of 
Equation (10). Let ( )1, ,i i nζ =   denote the eigenvalues of ( )Φ T . System given by Equation (10) is asymp- 
totically stable if all iζ  lie inside the unit circle of the complex plane. If one or more of the eigenvalues of the 
FTM has magnitude greater than one, the system is unstable. The Floquet multipliers are the eigenvalues iζ .  

According to the Lyapunov-Floquet (L-F) theorem, STM (the fundamental matrix) ( )Φ t  of equation (10) 
can be written as a product of two matrices as: 

( ) ( )Φ Q eRtt t=                                      (11) 

where ( )Q t  is periodicT −  and R  is a constant matrix, both, in general, are complex. There also exists 
factorization of the same form, where R  is a real constant matrix and ( )Q t  is real 2 periodicT − . ( )Q t  is 
called the ( )Tor 2 periodicT −  L-F transformation matrix [12]. For the details on computation of the L-F 
transformation and its applications, we refer the reader to references [13]-[15]. 

1.2. Quasi-Periodic System Reducibility 

In the paper by Wooden and Sinha [15], it is mentioned that an essential class of dynamical systems may be 
showed by a set of nonlinear differential equations with periodic/quasi-periodic coefficients multiplying the 
nonlinearity. They analyzed the system where the linear term was periodic but the nonlinear terms were qua- 
si-periodic as given by equation 

( ) ( )0 1 ,x A A t x f x tε= + +                                (12) 

where 0A  is a matrix of constant coefficients, ( )1A t  is matrix with time periodic coefficients and ( ),f x t  is 
a vector with quasi-periodic coefficients. The matrices have dimensions n n×  and the vector is 1n×  dimen- 
sional. The authors used the L-F transformation and nonlinear quasi-periodic transformations to study Equation 
(12) and obtained resonance conditions. 

In the past, Arnold [10] demonstrated normal forms of quasi-periodic nonlinear systems with time-invariant 
linear part. Bogoljubov et al. [11] presented the reducibility of quasi-periodic systems to approximate time-in- 
variant forms using a small parameter strategy. Even though small parameters/perturbation type techniques have 
been successfully used to study stability and reducibility of quasiperiodic systems [9], these techniques are li- 
mited by small parameters multiplying the nonlinear and/or time-varying conditions. Belhaq et al. [16] consi- 
dered a homogeneous Mathieu equation with quasi-periodic linear coefficients and a constant nonlinear coeffi- 
cient. The small parameter strategy of multiple scales was used twice to the system to acquire an approximate 
time-invariant system. Researchers have used small parameter assumption to plot stability charts for quasiperi- 
odic systems [17] [18]. 

The system studied in this research is different that the systems studied earlier. Here, we consider the system 
of the form given by Equation (13) 

( ) ( )0 1 2x A A t A t xε= + +                               (13) 

where ( )1A t  is the time periodic matrix ( ) ( )1 1 1A t A t T= +  and ( )2A t  matrix has the coefficients with in- 
commensurate frequencies and 0A  is a constant matrix of appropriate dimensions. We present technique to re- 
duce Equation (13) to a constant coefficient system without any limitation on the magnitude of ( )1A t  i.e. small 
parameter assumption. This paper is organized as follows. In section two, the reducibility formulation is pre- 
sented and the resonance/reducibility conditions are derived. In section three, application of this approach is 
presented with two examples. Section four has discussion and conclusions. 

2. Reducibility Problem Formulation 

Consider the time periodic part of Equation (13), 

( )0 1x A A t x= +                                      (14) 

The state transition matrix (STM) of Equation (11) can be factored as 

( ) 1
1 1Φ Q eR tt=                                     (15) 
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where ( )Q t  is typically 12T , periodic such that ( ) ( )12Q t Q t T= +  and R  is a real-valued nxn  constant 
matrix. Applying the L-F transformation ( )1x Q t z=  to Equation (13) gives 

( ) ( ) ( )1
1 2 1z R Q t A t Q tε − = +                                 (16) 

Application of modal transformation z Mz=  to Equation (16) converts the constant part of the system in the 
Jordan form, where M  is eigenvector of R 

( ) ( ) ( )1 1
1 2 1z J M Q t A t Q zt Mε − − = + 

                            (17) 

where J  is the Jordon Form of R and ( ) ( ) ( )1 1
1 2 1M Q t A t Q t M− −  is quasi-periodic matrix with 1 2an d ω ω . 

We use following near-identity transformation to Equation (17) 

( )z y Q t yε= +                                      (18) 

where the unknown nonlinear function ( )Q t  is quasi-periodic. Substituting Equation (18) in Equation (16), we 
obtain 

( ) ( ) ( ) ( ){ } ( ) ( )1 1
1 2 1J M Q t A t Q t M y Q t y y Q t y Q t yε ε ε ε− − + + = + + 



                 (19) 

Assuming ( ) ( ) ( ) ( )1 1
1 2 1 ,M Q t A t Q t M G t− − = and expanding Equation (19) and simplification, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 3 2

y Jy JQ t y G t y G t Q t y Q t y Q t J Q t JQ t y

Q t G t y Q t G t Q t y Q t Q t y

ε ε ε ε ε ε

ε ε ε

= + + + − − ⋅ − ⋅

− ⋅ − ⋅ + ⋅







          (20) 

Now, if 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 3 2 0

JQ t G t G t Q t Q t Q t J Q t JQ t

Q t G t Q t G t Q t Q t Q t

ε ε ε ε ε ε

ε ε ε

+ + − − ⋅ − ⋅

− ⋅ − ⋅ + ⋅ =





              (21) 

Then, Equation (20) reduces to y Jy= . Thus, quasi-periodic system given by Equation (16) will be reduced 
to a constant system. 

Equation (21) is similar to the homological equation obtained in the normal form reduction. By collecting the 
coefficient of ε , we get the reducibility equation 

( ) ( ) ( ) ( ) 0JQ t G t Q t J Q t+ − − =                                 (22) 

For illustration, assume all the matrices in Equation (22) are ×2 2  of the form 

1 11 12 11 12 11 12 1 11 12

2 21 22 21 22 21 22 2 21 22

0 0 0 0
0 0 0 0

Q Q G G Q Q Q Q
Q Q G G Q Q Q Q

λ λ
λ λ

            
+ − − =            

            

 

 

          (23) 

Equation (23) can be expanded in the scalar form as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 11 11 11 1 11

1 12 12 12 2 12

2 21 21 21 1 21

2 22 22 22 2 22

0  

0  

0  

0  

Q t G t Q t Q t a

Q t G t Q t Q t b

Q t G t Q t Q t c

Q t G t Q t Q t d

λ λ

λ λ

λ λ

λ λ

+ − − =

+ − − =

+ − − =

+ − − =









                           (24) 

It can be noted that Equations (21a) and (21d) can be solved as 

( ) ( )
( ) ( )

11 11

22 22

d

d

Q t G t t

Q t G t t

=

=

∫
∫

                                    (25) 

To find the solution of Equation (24b) and (24c), elements of ( )Q t  and ( )G t  will have to be expanded in 
multiple Fourier series as 
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( )

( )

1 2
1 2

1 2
1 2

e

e

i p t
mn mnp p

p p

i p t
mn mnp p

p p

Q h

G V

ω

ω

+∞ +∞
⋅ ⋅

+∞ +∞
⋅ ⋅

=−∞ =−∞

=

=

∑∑

∑ ∑
                                   (26) 

where 
1 2mnp ph  are the unknown and 

1 2mnp pv  known coefficients. Term by term comparison yields 

( )
1 2

1 2

mnp p
mnp p

m n

v
h

i p ω λ λ
=

⋅ + −
                                   (27) 

Thus, Equation (27) can be solved if 

( ) 0m ni p ω λ λ⋅ + − ≠                                      (28) 

Equation (28) is called as the reducibility condition. Thus, a quasi-periodic system can be reduced to a con- 
stant system provided Equation (28) is satisfied. It is also noted that since the order of quasi-periodicity is ε , 
we obtain solution of ( )Q t  to the order ε . It is possible to extend this approach to higher orders of ε , if 
needed. 

3. Applications 

In this section, we present two examples—a commutative system and a quasi-periodic Mathieu equation. We ap- 
ply the procedure discussed in Section two to reduce the quasi-periodic system to a constant one. 

3.1. Commutative System 

Consider the following commutative system 

( ) ( )x A t A t x = + 

                                        (29) 

where 

( ) ( ) ( ) ( )
( ) ( ) ( )

2

2

1 cos 1 sin cos
1 sin cos 1 sin

t t t
A t

t t t
α α

α α
 − + −

=   − − − + 
 

( ) ( ) ( )
( ) ( )

sin π cos π
sin π cos π

t t
A t

t t
 

=  
 

  and α  is a system parameter 

The L-F transformation for matrix ( )1Q t  is 

( ) ( ) ( )
( ) ( )1

cos sin
.

sin cos
t t

Q t
t t

 
=  − 

                              (30) 

and 
( )1 0

.
0 1

R
α − 

=  − 
 

Applying the L-F Transformation 1x Q z=  to Equation (31) yields 

( )1
1 1z R Q A t Q zε − = + 


                                (31) 

It is noted that for this special case matrix R  is in the Jordan form R J= . Thus 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

cos sin sin π cos π cos sin1 0
sin cos sin π cos π sin cos0 1

J G t

t t t t t t
z z

t t t t t t
α

ε
 −     − 

= + ⋅ ⋅       −−       




            (32) 

Equation (32) can be reduced to a constant coefficient system with the procedure discussed in section two. 
First a quasi-periodic near identity transformation ( )z s Q t sε= +  can be substituted in Equation (32) where 
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( )Q t  is the quasi-periodic matrix with unknown coefficients. The elements of this matrix have the form given 
by Equation (26) with 1 21, πω ω= = . At this point, collecting the terms of order ε  yields the homological 
equation 

( ) ( ) ( ) ( ) 0JQ t G t Q t J Q t+ − − =                              (33) 

Expanding ( )Q t  and ( )G t  in the form given by Equation (26) and collecting the terms via harmonic bal- 
ance yields the elements of ( )Q t  if the resonance condition given by Equation (28) is satisfied. Thus, we re- 
duce the quasi-periodic system given by Equation (26) to a constant coefficient system given by Equation (31) 

s Js=                                           (34) 
To compare the results we integrate Equation (29) numerically and generate the time traces and phase plane. 

For the reduced system given by Equation (31), it is possible to find a closed form solution as 

( ) 0eJts t s=                                        (35) 

where 0s  is the initial condition. Using the transformation ( )z s Q t sε= +  it is possible to obtain the closed 
form solution in ( )x t . 

In Figure 1, the solutions of the original system and the reduced order system are compared. Time traces 
shown in red were obtained via numerical integration of Equation (29) and time traces in blue were obtained by 
solving the reduced constant coefficient system in the closed form (given by Equation (35))and mapping it back 
to original coordinates ( )x t  via quasi-periodic near identity and L-F transformation. It can be observed that the 
time traces match quite well. In Figure 2, phase portraits of the original and reduced system are compared. It 
can be seen that the phase portraits also match quite well. 

3.2. Quasiperiodic Mathieu Equation 

Consider a Quasiperiodic Mathieu equation given by 

( )1 2cos cos 0x t t Xδ ω ε ω+ + + =                               (36) 

where 1 20.5, π and 1δ ω ω= = =  are incommensurate frequencies and ε  is the small parameter. Equation (36) 
can be represented in the state space form as given by Equation (13) where 

0 1 2
1 2

0 0 0 00 1
, , ,

cos 0 cos 00
x x x A A A

t tω ωδ
    

 = = = =      − −−     
                  (37) 

It is noted that the parametric excitation is strong and the L-F and modal transformation is applied to get Equ- 
ation (38). 

( ) ( ) ( )1 1
1 2 1x J M Q t A t Q t M zε − − = + 

                           (38) 
 

   
Figure 1. Time Trace Comparison.                                                                        
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Figure 2. Phase portrait comparison.                            

 

where 
0.26 0
0 0.26

i
J

i
+ 

=  − 
 and the detailed expression for ( ) ( ) ( ) ( )1 1

1 2 1G t M Q t A t Q t M− −=  was obtained  

by Mathematica™. At this stage, as before, a quasi-periodic near identity transformation ( )( )z I Q t sε= +  can 
be substituted. After collecting the terms of order ε Equation (35) can be obtained 

( ) ( ) ( ) ( ) 0JQ t G t Q t J Q t+ − − =                            (39) 

Expanding ( )Q t  and ( )G t  in the form given by Equation (23) and collecting the terms via harmonic bal- 
ance, elements of ( )Q t  can be found out. It is noted that in this case the reducibility condition (given by Equa- 
tion (25)) was satisfied. Thus, we could reduce the quasi-periodic system given by Equation (36) to a constant 
coefficient system given by Equation (40) 

1 1

2
2

0.26 0
0 0.26

s si
i ss

   +    =    −       





                             (40) 

The solution of Equation (40) can be found in the closed form as 

( ) 0eJts t S=                                     (41) 

where [ ]T1 2s s s=  and 0s  is the vector of typical initial conditions. To compare the results we integrated Equ- 
ation (36) numerically and generated the time traces and phase portrait. For the reduced system, we used Equa- 
tion (41) andapplied the quasi-periodic transformation ( )( )z I Q t sε= + , L-F and modal transformation to ob- 
tain the time traces and phase portrait of vector x x x =  

 . Thesesolutions are compared in Figures 3 and 4. 
Figure 3 shows the time traces of the states and Figure 4 shows the phase portrait of the “Original” and “Re- 
duced” states. It can be seen that these solutions match quite well. 

4. Conclusions 

In this work, a new approach for reducibility of quasi-periodic system analysis is presented using the L-F trans- 
formation and quasi-periodic near identity transformation. In this process, one obtains the reducibility conditions 
and the quasi-periodic system can be converted to a constant coefficient system provided the reducibility condi- 
tions are satisfied.  

The resulting homological is expanded using multiple Fourier series which can solved for the unknown 
Fourier coefficients of the near-identity transformation coefficients via harmonic balance. Two examples pre- 
sented a commutative system and quasi-periodic Mathieu equation. In both cases, the parametric excitation is  
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Figure 3. Time Trace Comparison.                                                                       

 

 
Figure 4. Phase Plane Comparison.                             

 
strong. Simulations and phase plane were plotted to compare results from numerical integration and closed form 
solution. It can be seen that the results matched quite well. Thus, if the reducibility conditions are satisfied then 
the quasi-periodic systems with strong parametric excitation can be reduced to a constant form using the L-F 
transformation. It is possible to analyze or control this reduced order time invariant system and map the results 
back using appropriate transformations to study and control original quasi-periodic system. 
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