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ABSTRACT 
The present paper deals with motion of carbon nanotubes in a temperature gradient field. A determined-static 
theory of nanosized particles’ thermophores is developed. Analytical expressions for thermophoretic velocity and 
force of ultramicroheterogeneous particles in a gaseous atmosphere under near-normal conditions are provided. 
The calculations performed according to the suggested theory, as applied to closed carbon nanotubes, found the 
value of dimensionless velocity of thermophoresis. In accordance with the proposed hypothesis, Waldman’s limit 
is achieved, which is expressed in constancy of thermophoretic velocity within the interval of the Knudsen para-
meter change from 10 to 100. In addition, it is found out that under conditions defined below, velocity of ther-
mophoresis is independent of the length of a carboxylic nanotube. A good agreement with experiments is reached, 
which makes it possible to assume correspondence of the theory to the physical truth. 
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1. Introduction 
Thermophoresis of fine, yet not nanosized particles, has 
been reported in a large number of studies among which 
it is possible to point out the following scientific works 
of general character [1-5]. 

In this work, we follow the approach described in [6,7], 
which is used to determine the velocity of thermophoret-
ic displacement of a particle in a temperature-gradient 
field, as well as the thermophoretic force acting on the 
moving sample particle, which is balanced by the force 
of particle drug under equilibrium conditions. 

2. Particle Thermophoresis Velocity 
Similar to the case of finding the force of particle drag 
[6], to calculate thermophoresis velocity it is enough to 
consider the process of momentum exchange between a 
particle and molecules being present in a layer of thick-

ness λ (in the layer surrounding the particle equal to the 
free path length of a molecule). Let a temperature change 
occur in one of the predetermined directions. Within the 
length equal to λ these changes are insignificant but they 
entirely govern the processes of thermophoretic motion 
of particles. Let us populate the λ-layer with gas envi-
ronment molecules, making sure their statistical distribu-
tion is homogeneous.  

Therefore we state a stepped temperature change in 
our theory, the size of a step in this gradation also being 
equal to λ. 

For example, Figure 1 shows eight temperature layers, 
the tube being placed within six of them. The two cover-
ing layers also contain some molecules included in the 
whole amount of those hitting the carboxylic tube. The 
number of temperature layers is not important in the 
suggested calculation technology. It may be equal to two, 
four, six, etc. 

OPEN ACCESS                                                                                         ANP 

http://www.scirp.org/journal/anp
http://dx.doi.org/10.4236/anp.2014.31006
mailto:alexy121@mail.ru
mailto:kanc@spti.tsu.ru
mailto:michael121@mail.ru
mailto:kva635133@mail2000.ru


A. BUBENCHIKOV  ET  AL. 37 

 
Figure 1. The λ-layer surrounding a closed nanotube put 
into six temperature λ-layers. 
 

Let us orient the tube along the temperature gradient and 
define the velocity of a particle moving under the action 
of thermophoretic force. Kinetic energy of translatory mo- 
tion is distributed to three degrees of freedom, therefore 

( )23
2 2

m T
kT

υ
= .             (1) 

From this equation, we get 

( ) 3kTT
m

υ = .               (2) 

Let vector grad T be directed along the Oz-axis. Take 
a derivative with respect to the z-coordinates for both 
parts of Equation (2): 

d d d 1 3 d
d d d 2 d

T k T
z T z mT z
υ υ
= = .         (3) 

It is reasonable to assume that in the neighbourhood of 
an ultrafine or nanosized particle the behaviour of tem-
perature variation is linear 

d const
d
T q
z

− = = .             (4) 

Replace the left-hand part of Equation (3) with finite 
differences that correspond to the velocity variation dur-
ing a transition from one isothermal layer to another. 
Thus instead of Equation (3) we can approximately write 

3
2

k q
mT

λυ∆ = .               (5) 

When determining the action of molecules on the par-
ticle let us use a scheme of equalized actions [6]. For this 
purpose let us divide the entire collection of molecules 
found in the λ-layer into counter-moving pairs. This will 
allow us to significantly simplify the calculation of the 
momentum exchange between the particle and the mole-
cules. However, as it will be shown later, the statistically 
average result will be preserved. It should be noted that 
there is no particle velocity distribution in the Maxwel-
lian representation in this model. In essence, it is a mo-
nokinetic (single-velocity) model. 

Since within the path length shorter than λ there is no 
molecular collision, it is reasonable to assume the tem-
perature in every of the layers marked out and the veloci-
ties of thermal motion to be equal υ(T). 

We have limited the amount of surrounding molecules 

by their amount in the λ-layer. However, it is not enough 
to perform the simplest calculation of thermophoresis 
velocity. Let us pick an elementary interaction act out of 
the whole collection of molecules interacting with the 
particle, in which a particle and a counter-moving pair of 
molecules participate. Therefore, we substitute all actual 
double collisions by model triple ones which do not cau- 
se Brownian motions. If we accept a regular pattern of 
particle reflection, the final result would represent a sim-
ple sum of interaction acts between the counter-moving 
pair and the particle. 

3. Balance of Momentum Projection on the  
Oz-Axis 

The top part of Figure 2 shows the projections of the 
counter-pair molecules’ velocities onto the Oz-axis prior 
to their collisions with the particle. The bottom part 
shows the velocity projections after a frontal elastic and 
regular reflection from the particle. 

The balance of momentum projection onto the Oz-axis 
in a laboratory reference system for the case of a regular 
reflection is given by 

( ) ( )
z z z P

P z P z z P

m m m M

M m m

υ υ υ υ

υ υ υ υ υ υ

+ ∆ − +

′= + + − + ∆ −
.   (6) 

Hence  

( ) 2 2Pi Pi Pi zi PiM M m mυ υ υ υ υ′∆ = − = ∆ − .   (7) 

Here m, M are the masses of the molecule and the par-
ticle, respectively, and Piυ′ , Piυ′  are the particle veloci-
ties prior to and after the collision with the counter- 
moving pair 

cos .zi iυ υ γ∆ = ∆               (8) 

Summing Equation (7) over all counter-moving pairs 
we obtain 

( )P P PM nm nmυ υ υσ υ′ − = ∆ − .       (9) 

Here n is the number of molecules that have collided 
with the particle and υP is the average thermophoresis 
velocity of the tube prior to counter-moving pairs colli- 

sions in the λ-layer, 
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 is the average ther- 

mophoresis velocity of the tube after counter-moving  
 

 
Figure 2. Elastic-contact interaction of a counter-moving 
pair with a moving particle. 
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pairs collisions which is equal to υP under equilibrium 
conditions. 

Taking into account that the left-hand part (Equation 
(9)) is equal to zero we get 

 .Pυ σ υ= ∆               (10) 

This velocity is the particle thermophoresis velocity.  
In Equation (10), σ is found as  

2
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.              (11) 

In cases of practical calculation we use the following 
formula for σ:  

1
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∑
.              (12) 

Thus σ is the average value of slope angle cosines 
modules of counter-moving pairs. Introducing Δυ from 
Equation (5) into Equation (10), we finally get 

3
2p

k q
mT

λσυ = .            (13) 

4. Calculation Statistics 
The λ-layer under consideration is found between the 
effective surface of the nanotube and the equidistant sur- 
face λ-spaced from it. Let us circumscribe a parallelepi- 
ped around the outer surface of the tube. Let us populate 
this parallelepiped with molecules of the gas surrounding 
the particle with the help of the random number genera- 
tor used three times for every molecule, for the purpose 
of setting its spatial coordinates. Let us form a unit cube 
around every molecule and place a sampling particle into 
it in a random manner, i.e. use the random number gen- 
erator three more times. Let us join this particle with the 
molecule, the resulting right line determining the direc- 
tion of molecules motion in space. From here on we de- 
fine N as the number of molecules initially present in the  

λ-layer (Figure 1). For the time interval λτ
υ

=  we get  

n which is the number of molecule-particle collisions. In 
this case, the fraction of molecules collided with the par- 

ticle is defined by the equation n
N

δ = . 

This value is included in the formulae used for defin-
ing particle resistance. 

The value σ determining thermophoresis is found as 
the average of the slope angle cosines modules of mole-
cules trajectories against the temperature gradient direc-
tion. Calculating δ and σ is the final stage of one test. The 
suggested number of such tests is 150, the values of δ 

and σ being averaged thereafter.  

5. Orientation of Moving Particles 
Motion of nanotubes in gas is governed by the principle 
of least action or the principle of least constraint which 
are the same under the conditions of equilibrium. Both 
principles state the fact that in a gradient medium of mo-
lecules a nanotube is fixed along the direction grad T, i.e. 
it is subject to least resistance. 

6. Thermophoresis Velocity 
The particle motion velocity found in Equation (13) is 
actually the velocity of thermophoresis. As seen, it is 
independent of the number of molecular collisions (pro-
vided their number is sufficient to ensure proper statis-
tical data for determination of σ) and is weakly depen-
dant on the particle size. Within the Knudsen number  

range [ ]10,100
p

Kn
r
λ

= ∈ , which corresponds to proper  

nanoparticles, the thermophoresis velocity does not de-
pend on the particle size and is solely determined by the 
number of atoms in a gas molecule and the values of 
temperature gradient and geometrical parameter σ (see 
Equation (11)). Yu. V. Valtsyferov and S. M. Muradyan 
[2] state the following formula for the particle velocity due 
to thermophoresis: 

p f q
T
υυ = ,             (14) 

where f is the dimensionless coefficient that depends on 
the Knudsen number and varies within the range of 0.05 - 
1.56 and υ is the coefficient of kinematic gas viscosity. 

Comparing Equation (13) and Equation (14), we obtain  

3
2

kTf
m

σ
υ
λ

= .            (15) 

Statistical estimation for a spherical particle states σ = 
0.515. Introducing this value into the previous formula 
we obtain that f = 0.535 which is in a good agreement 
with the measurement data and the theoretical results 
introduced in [11]. 

In order to take into account the occupied volume of 
the spherical particle in case 1Kn ≥ , we take into con-
sideration four temperature layers, as shown in Figure 3. 

In case 1Kn = , we get that rp = λ, in cases when the 
Knudsen number has a greater value, the rp-layer is con-
sidered in the same way as the λ-layer. Figure 4 shows 
the experimental data obtained for the dimensionless 
thermophoresis velocity of fine and ultrasized particles. 
The full curve line illustrates the calculation results.  

Analogic complex distribution (the dashed line and the 
full curve line) can be obtained for the friction coefficient. 
In such a case, the dashed line will refer to Stockes distri- 
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Figure 3. The occupied volume of the spherical particle ta- 
ken into account. 
 

 
Figure 4. Dimensionless velocity of thermophoresis versus 
the Knudsen number. —experimental results [8], —ex- 
perimental results [9], —experimental results [10], 
—calculation results via proposed monokinetic theory, 
—monotone approximation of experimental data. All data 
refer to spherical particles. 
 
bution and the full curve line will refer to Cunningham- 
Milliken-Davis data which agree with calculations via 
monokinetic theory [6]. 

7. Thermophoretic Force 
Thermophoretic force can be defined on the basis of 
Newton’s third law of motion, i.e. under the conditions 
of dynamic equilibrium  

тф pF γυ= ,                (16) 

where υp is found from Equation (14) and the drag coef-
ficient γ was reported in [6,7]: 

( )
( ) [ ]22 , 10,100

3 5L

Kn
L mN Kn

Kn Kn
γ λυ

+
= π ∈

+
  (17) 

Here υ is the velocity of thermal molecular motion, λ is 
the free lath length of a molecule, Kn is the Knudsen 
number, NL is the Loschmidt number under standard 
condition and m is the molecular mass. 

8. Calculation Results 
The radius of the tube can be estimated in terms of the  

Knudsen number: 
P

Kn
r
λ

= . The lengths of the tubes  

included in calculations are given in Figure 5: L = 0.5λ 
(the fine dashed line), L = λ (the dashed line), L = 2λ (the 
dot-and-dash line), L = 6λ (the full line). 

Thus in case L > 0.5λ, we discover that neither the 
lengths of carboxylic tubes nor their diameters influence 
σ, and consequently, the thermophoresis velocity. It is 
found that within the calculation range the changes of 
parameters are σ = 0.455, which corresponds to the value 
of the dimensionless thermophoresis velocity of carbox-
ylic tubes: f = 0.485. 

9. Summary 
The present paper shows that the thermophoresis velocity 
 

  

 
Figure 5. Distributions of geometrical parameter σ for the 
tubes oriented along the temperature gradient field (a) and 
perpendicularly to it (b). 
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of carboxylic tubes does not depend on the sizes of tubes 
( )10 100Kn< <  but is solely determined by the number 
of atoms in molecules of a gas medium and the tempera-
ture gradient in it, and the thermophoretic force acting on 
a particle being dependent on each of the above men-
tioned parameters. The calculations define that in cases 
of carboxylic tubes oriented along the temperature gra-
dient field, the dimensionless coefficient in terms of li-
near relationship between the thermophoresis velocity 
and the temperature logarithm gradient is f = 0.485. 
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