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ABSTRACT 
In this article, we have effectively used the Numerical Inversion of Laplace transform to study the time-depen- 
dent thin film flow of a second grade fluid flowing down an inclined plane through a porous medium. The solu-
tion to the governing equation is obtained by using the standard Laplace transform. However, to transform the 
obtained solutions from Laplace space back to the original space, we have used the Numerical Inversion of Lap-
lace transform. Graphical results have been presented to show the effects of different parameters involved and to 
show how the fluid flow evolves with time. 
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1. Introduction 
Laplace transform is a very useful tool for solving the 
differential equations. However, to analytically compute 
the inverse Laplace transform of the solutions obtained 
by the use of Laplace transform is a very important but 
complicated step. To overcome this issue, several algo-
rithms for numerical inversion of Laplace transform have 
been proposed in literature [1-4]. Here we implement the 
idea of numerical inversion of Laplace transform pre-
sented by Weeks [1] and the one by Juraj and Lubomir 
[2]. 

The inverse Laplace transform ( )G s  of a function 
( )g t  is given by the following contour integral 
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Here is σ ω= +  and σ  is greater than the real part 
of any singularity in the transformed function G(s). 
Weeks method [1] for numerical inversion of Laplce 
transform is based on the use of the Laguerre functions 
and is given as 
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Whereas, the method of Juraj and Lumboir [2] is based 
on the use of infinite series for ( )cosh z  and ( )sinh z  
along with the application of residue theorems to com-
pute the contour integral given in (1). It gives us the fol-
lowing expression, which is also implemented here, for 
the numerical inversion of Laplace transform 
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Non-Newtonian fluids have been a famous topic of 
research because of their diverse use in many industrial 
processes. Various complex fluids such as oils, polymer *Corresponding author. 

OPEN ACCESS                                                                                         JMP 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2014.53017
mailto:mawais@uvic.ca


M. ALI, M. AWAIS 104 

melts, different types of drilling muds and clay coatings 
and many emulsions are included in the category of 
non-Newtonian fluids. One of the very important models 
suggested for non-Newtonian fluids is called the second- 
grade fluid. Flows of second grade fluid have been stu-
dies by many [5-9]. Also, the flow of thin films has vast 
applications in industry. Such flows have applications in 
microchip productions, in biology, in chemistry and 
many other fields. Very often, thin film flows are ex-
amined by using steady flows. Some investigators have 
recently obtained some results for thin film flows of non- 
Newtonian fluids [10-14]. An investigation of thin film 
flow of a second order fluid is made by Huang and Li 
[15]. Miladinova et al. [11] studied the thin film flow of 
a power law fluid falling down an inclined plane and 
found a numerical solution. Analysis of lubrication flow 
of an upper-convected Maxwell fluid was carried out by 
Zhang and Li [12]. The field equation of micropolar flu-
ids has been studied by Gan and Ji [16]. Siddiqui et al. 
[13,14] investigated thin film flow of non-Newtonian 
fluids by using the homotopy perturbation method. Li-
near and nonlinear stability analysis of the thin micropo-
lar film flowing down a rotating cylinder was made by 
Chen [17]. M. Awais and S. Nadeem [18-20] investi-
gated solutions for thin film flow of non-Newtonian flu-
ids using a homotopy analysis method. However, study-
ing unsteady thin film flow problems has always been a 
difficult and challenging task. Here, we solve an unstea-
dy thin film flow problem of a second grade fluid by us-
ing the Laplace transform and then implement the me-
thods of numerical inversion of Laplace transform de-
scribed earlier to obtain the solutions in the original 
space and to find the effects of different fluid parameters. 
It also helps us to better understand the evolution of the 
flow with time. 

2. Basic Equations 
The momentum balance equation in the presence of a 
body force B  and the equation of conservation of mass 
are respectively given as 

( ) ,D div B
Dt

ρ ρ= +
v τ           (2) 

0,∇ ⋅ =v                     (3) 

with ρ  being the density, v  the velocity, τ  the stress  

tensor and D
Dt t

∂
= + ⋅
∂

v ∇  represents the material deri-  

vative. The stress tensor τ  in Equation (2) for a second 
grade fluid has form 

2
1 1 2 2 1 ,pI A A Aµ α α= − + + +τ          (4) 

where I  is the identity tensor, p  is the pressure, µ  
is the dynamic viscosity, 1α  is the elastic coefficient 

and 2α  is the transverse viscosity coefficient and 1A  
and 2A  represent the Rivlin-Ericksen tensors. The ten-
sors 1A  and 2A  are defined by the following expres-
sions 

( ) ( )T
1 ,A = ∇ + ∇v v                 (5) 

( ) ( )T1
2 1 1.

DAA A A
Dt

= + ∇ + ∇v v        (6) 

The material constants µ , 1α  and 2α  also satisfy 

1 1 20, 0, 0,µ α α α≥ ≥ + =         (7) 

due to Clausius-Duhem inequality and the condition that 
the Helmholtz free energy is minimum when the fluid is 
at rest [21]. 

3. Governing Equations 
We consider an unsteady gravity driven thin film flow of 
a second grade fluid of uniform film thickness δ  flow-
ing over a semi-infinite plate, inclined at an angle θ  
with the horizontal, through a porous medium, with sta-
tionary ambient air and negligible surface tension. The  
velocity field thus becomes ( ) ( )( ), , ,0,0y t u y t=v . Us-  

ing such a velocity field in Equations (2)-(7) yields the 
following governing equation 

2 3

12 2 sin .u u u ug
t ky y t
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= + + −

∂ ∂ ∂ ∂
     (8) 

Symbols φ  and k , respectively, represent the poros-
ity and permeability of the porous space. The associated 
boundary conditions are 

( ), 0 at 0,

0 at .

u y t y
u y
y
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           (9) 

Here we would like to point out the presence of 1α  in 
Equation (8). For time independent velocity field, the 
presence of the fluid parameter 1α  is completely wiped 
out from the governing equation. The first boundary 
condition in Equation (9) is due to the no-slip assumption 
at the boundary 0y = . Now considering the following 
nondimensional variables 

2
*

2, , , with .y tf u t T
Tg

ν δη
δ νδ

= = = =    (10) 

This gives us the following 
2 3

* 2 2 * sin ,f f f f
t t

α θ φ
η η

∂ ∂ ∂ ′= + + −
∂ ∂ ∂ ∂

     (11) 

where 1
2

α
α

ρδ
=  and 

2

k
φδφ
ν ρ

′ = . The boundary condi-  
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( )*, 0 at 0,

0 at 1.
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Taking the Laplace transform of Equations (11)-(12), 
we get, after rearranging 
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Equations (13)-(14) have the following solution in the 
Laplace space 

( ) ( )
( ) ( )1 1ˆ2 , e e .

e e
f s β η β η

β β

γ γη
ββ

− − −

−
 = + − +

 (15) 

Now we use the method of numerical inversion of the 
Laplace transform [1,2] for the solution given in Equa-
tion (15) to give us the following plots. 

4. Results and Discussion 
The dimensionless velocity field for an unsteady thin 
film flow of a second grade fluid is plotted in Figure 1. 
The values of different parameters used are 0.1α =  and 

0.1.φ =  It is evident from these graphical results that the 
fluid velocity increases as the time progresses. Figure 2 
provides us with the behaviour of the velocity profile due 
to changing α . The values of different parameters in-
volved are * 0.1t =  and 0.1φ = . A drop in the value of 
velocity is observed due to an increase of α . 

Figure 3, which depicts the change in velocity profile, 
* 0.1t =  and 0.1α = , due to changing porosity also 

shows a decrease in velocity for an increase in φ . 

5. Conclusion 
We have shown an efficient application of the numerical 
inverse Laplace algorithms [1,2] to study an unsteady 
thin film flow problem of a second grade fluid which is 
flowing through a porous medium along an inclined 
plane. This shows that the numerical inversion of the 
Laplace transform is a very effective and useful tech-
nique. Many unsteady problems of fluid flows, which are 
very hard to solve otherwise, can be dealt easily by the 
use of the Laplace transform. To accurately convert the 
solutions back to the original space, we can make use of  
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Figure 1. Plots for dimensionless velocity for different values 
of t∗ . 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
-1 

0 

1 

2 

3 

4 

5 

6 

7 

η 

f(t
* ,η

) 

α = 0.01 
α = 4.00 
α = 6.50 
α = 9.50 
α = 11.5 

 
Figure 2. Plots for dimensionless velocity for different values 
of α . 
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Figure 3. Plots for dimensionless velocity for different values 
of φ . 
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these efficient algorithms [1,2] available for the numeri-
cal inversion of the Laplace transform. 
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