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ABSTRACT 
Wave-particle duality is a familiar concept in the theories of the fundamental processes. We have, for example, 
electromagnetic waves with the photon as the corresponding particle, gravitational waves with the graviton as 
the corresponding particle, and Dirac waves with the electron as the corresponding particle. All these theories 
are stand-alone theories having nothing in common. The outstanding problem is a unified theory of particles and 
fields. In this paper, we discuss a unified geometrical theory of fields and particles. 
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1. Introduction 
We have today a unified particle theory of fermions and a unified particle theory of force particles (bosons), i.e. 
a synthesis of gravitation, electromagnetism, weak and strong nuclear interactions into a single electro-gravi- 
nuclear force [1]. It is therefore natural to seek for a unified theory of particles and fields. 

A fundamental entity in the geometrical theory of science is the 4-tensor space of rank one, a pseudoeucli-
dean space. The only physical resident in this space (an observable) outside the nuclear realm is characterized 
geometrically by the fact that its temporal displacement (cdt) between any two points of the space is equal to its  

euclidean distance ( )2 2 2d dx dy dz= + + . Thus, the only known resident in this space is the photon, a par- 

ticle whose state is characterized by a pair of 4-operators (pµ, Aµ) [1]. This space has no known material resi- 
dent. 

The most important fact is that this 4-tensor space is reducible. In the quantum domain, it is reducible to a 
pair of irreducible 2-dimensional subspaces whose residents are fermions. In fact, a 4-tensor space of arbitrary 
order (n) is reducible to a number of 2-dimensional subspaces [1]. Here the corresponding state is again charac-
terized by a pair of 4-operators (pµ, γµ) [2]. 

In the classical domain, the 4-tensor space of rank one is reducible to a pair of irreducible subspaces of 1 and 
3 dimensions. The subspace of 3-dimenstion is the familiar euclidean space whose residents are well-known as 
3-dimensional material objects. The subspace of dimension one has the graviton, an antiparticle, as its only res-
ident. Being an antiparticle, a force particle, the graviton is absolutely separated (remote) from us; hence its ve-
locity relative to us must be vanished! Thus, its state is again characterized by (pµ, Aµ) subject to the constraint 

0=p . 

2. The Algebra of 4-Operators 
The admissible 4-operators are either null, time-like or space-like 4-operators. Examples of 4-operators include 
space-time, 4-momentum, 4-angular momentum, 4-wave, and 4-spin 4-operators. 4-operators do not have the 
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usual algebraic properties as ordinary linear operators of analysis: 4-operators can be multiplied by real numbers 
and two 4-operators of the same type can be added together to give 4-operators of the same type, thus the mul-
tiplicative axiom of ordinary algebra is not valid. By repeated application of the process of adding 4-operators 
one can form sums of more than two of them, and one can proceed to build up an algebra with them. In this al-
gebra all the axioms of ordinary algebra, with the exception of the multiplicative axiom, are valid. 4-operators, 
however, have the additional property that 4-invariants (Einstein products) can be constructed with any two of 
them. 

3. The Coordinate Representation 
The fundamental dynamical variables are the 4-coordinates, qµ = (x0, x1, x2, x3), where x0 = ct is the temporal 
displacement, and pµ = (p0, p1, p2, p2), where p0 = E/c. These observables satisfy the generalized fundamental 
quantum conditions. 

, , 0, ,q q p p q p i gµ ν µ ν µ ν µν     = = = −       .                     (1) 

Here µ, ν take the values 0, 1, 2, 3 and gµν is the metric tensor ( )( )diag 1, 1, 1, 1g µν = − − − . Equation (1) dif-
fers from the conventional quantum conditions of quantum mechanics in that it treats x0 and p0 on equal footing 
with the space coordinates. Equation (1) constitutes the basic equations of the new theory.  

Equations (1) show that the q’s and p’s separately form a complete commuting set of observables. Each set by 
itself constitutes a geometrical basis for a representation. The last equation of (1) shows that in the classical limit 
( → 0), the q’s commute with the p’s, so that all eight dynamical variables are needed for the determination of 
the state of a classical system. This is, however, not the case in the quantum domain. That representation in 
which the q’s take simultaneous values and the p’s are given by 

p i g
q

µ µν
ν

∂
=

∂
                                            (2) 

is called the coordinate representation. A symmetrical representation, called the momentum representation, is 
that for which pµ → pµ and qµ is given by 

p i g
q

µ µν
ν

∂
= −

∂
                                            (3) 

Thus, the momentum representation is that in which the p’s take simultaneous values and the q’s are 
represented by differential operators. In this paper we work entirely in the coordinate representation so that the 
coordinates, qµ = (x0, x1, x2, x3), span the space of observation, called space-time (E4). It follows that the set of 
kets { }qµ′  constitutes a basis of space-time; consequently we must have at each point of space-time, 

( ) ( )0 0 0 0 3, ,x x x xδ δ′ ′′ ′ ′′′ ′′ ′ ′′= − −x x x x ,                         (4) 

called the orthonormality condition, and 
3 01 , d d ,o oi x x x′ ′ ′′ ′ ′= − ∫ x x x ,                               (5) 

called the closure relation. 

4. Invariant Operator Theorem 
Let α denote the complete set of eight commuting observables of the system under study so that the state ket is 
given by α′  (the state may also be represented by a bra) α′  [1]. We obtain the expansion of the state ket 
α′  in terms of the basic kets of E4 by multiplying (5) from the right by α′ , 

( )0 0 3 0, d d ,i x x xαα ψ′ ′ ′
′′ ′ ′ ′= − ∫ x x x                               (6) 

where ( )0 ,xαψ ′
′ ′x  is the state (wave) function at the point ( )0 ,x ′ ′x  of 4 ;E  ( )0 0, ,x xαψ α′ ′

′ ′ ′ ′=x x  is the  

component of the state ket α′  at this point of 4 .E  ( )xµ
αψ ′
′  is physically the probability amplitude for a 

particular result of observation at the point xµ′ of E4, while its square gives the probability density for the partic-
ular result. The amplitude at another point xµ″ of E4 is obtained by multiplying equation 6) from the left by the 
bra xµ′′ , 
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( )0 0 0 0 3, , , d dx i x x x xµ
αα ψ′′ ′′ ′ ′ ′
′′′ ′ ′′ ′ ′= − ∫x x x x                   (7) 

where 0 0, ,x x′′ ′′′ ′x x  is the well known Feynman’s transformation function that connects the two sets of basis 
kets. 

Equation (7) is fundamental in that it poses the crucial question: Suppose that we know the amplitude at the 
point xµ′ of E4 what is the amplitude at any other point xµ″ of E4. R.P. Feynman gave a solution to this problem in 
his space-time approach to quantum mechanics based on path integrals [3]. We note that Equation (7) is consis-
tent in that the temporal coordinate x0 appears explicitly in the theory unlike the original equations of Feynman. 

In this paper we give another solution to this problem. It is desired to find the equation of motion that deter-
mines ( )xµ

αψ ′′
′  once ( )xµ

αψ ′
′  is known. The key point here is the observation that the state ket α′  re-

mains the same at all points of E4, as is obvious from Equation (7). In other words the state ket α′  remains 
unchanged during the motion of the system, while the state function depends on the space-time point in question. 
We infer that there exists an invariant (Killing) operator F, which is in general a function of the q’s, p’s and any 
other distinct dynamical variable, λ say, that may be required for the complete characterization of the dynamical 
system, such that the equation, 

( ), ; 0F q pµ µ λ α ′ = ,                                       (8) 

is satisfied. The determination of the probability amplitude at any point xµ′ of E4 is then reduced to the problem 
of finding the representatives of Equation (8) in the coordinate representation, and solving the differential equa-
tions that arise there from. In other words ( )xµ

αψ ′
′  is determined by the differential equation 

( ) ( ), ; 0F q i g xα
µ µν µλ ψ ′
′ ′ = .                                 (9) 

Equation (9) is the embodiment of a new physical theory. As we shall see Equation (9) gives all the well 
known wave theories of theoretical physics excluding the non-relativistic Schrodinger’s equation. This theory, 
called the invariant operator theory, thus gives the unified field and particle theory of the fundamental 
processes. Consequently the problem of finding the equation of motion of a dynamical system (classical or 
quantum) is reduced to the problem of determining the 4-invariant operators F(qµ, pµ; λ) appropriate for the sys-
tem under study. This in turn implies the determination of the 4-operators that determine the states of the system 
under study. This is the content of the 4-operator theorem of theoretical physics. 

5. Applications 
As our first application, we consider a dynamical system consisting of an isolated material particle. Such a sys-
tem does not have internal degrees of freedom, hence its associated 4-operator is the 4-momentum pµ = (p0, p1,  

p2, p3), and the corresponding 4-invariant operator is just ( ) ( )
2 20 2 2F p m c= − −p , where m is the mass of the  

particle. Equation (9) gives the wave equation for the wave function in the form, 

( ) ( )2
px xαψ µ ψ′ ′′ ′� = ,                                      (10) 

where 
2

2
2 2

1
c t

∂
�= ∇ −

∂
 is the d’ Alembertian operator, µ = mc/, x′ = xµ′, and p′ = pµ′. Equation (10) is the well-  

known Klein-Gordon (KG) equation [4]. 
The energy E′ and velocity v′ of the KG – particle are given by E′ = c(m2c2 + p′2) and v′ = c2p′/E′ respectively. 

The frequency and wavelength of the associated KG – wave are given by ν = E′/h and λ = h/p′ respectively, so 
that the velocity of the KG-wave is given by λν = E′/p′ = c2/v′, which is greater than c. Thus, the KG – wave 
cannot represent a physical state in agreement with the dimensionality theorem [1]. 

As our second example, we consider the free electromagnetic field. The state of the system is defined by a 
pair of 4-vectors (pµ, Aµ), and hence is represented by the ket , .p Aµ µ  The associated invariant operators are 
pµpµ, pµAµ, AµAµ. The first invariant operator, pµpµ, gives, on using Equation (9) the usual wave equation for 

( )p xψ ′ ′  and ( )A xψ ′ ′  which are KG-equations with µ = 0. On putting ( ),Aµ ψ= A  and ( )0 ,p pµ = p , we 
find that the second invariant operator, 0 0 ,p A pµ

µ ψ= − ⋅ =p A  which in the coordinate representation be-
comes 0 0 xψ∂ ∂ +∇ ⋅ =A . This is the well-known Lorentz condition of electromagnetism. Thus, the Lorentz 
condition is seen to arise naturally as a constraint on ψ  and A  and not merely imposed as an arbitrary sub-
sidiary condition. Finally the third invariant operator, 0,A Aµ

µ =  gives a new constraint on the potentials ψ  
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and A . 
Further, we consider the problem of a charged material particle of 4-momentum ( ),p h cµ = p  in a fixed 

external electromagnetic field of 4-potential ( ),Aµ ψ= A . The combined system can be considered as a single  

dynamical system, a particle, having 4-momentum eP p A
c

µ µ µ= + , which is simply the sum of pµ and Aµ, with  

e/c a constant required by dimensional considerations. Thus, a charged particle interacting with an external elec-
tromagnetic field is analogous to a free particle of 4-momentum ( ),P H cµ = P , where H c h c e cψ= + ,  

and e c= +P p A . On putting h = mγc2, mγ=p v  where ( ) 1 221λ β
−

= −  and β = ν/c, we find that 

2,  e eH m c
c c

γ ψ= + = +P p A .                                (11) 

From the hamiltonian H one can find the lagrangian (L) of the particle from the general formula  
( )H L L= ⋅ ∂ ∂ −v v , 

2mc eL e
c

ψ
γ

= − + ⋅ −A v .                                      (12) 

With the Lagrangian known one can proceed to obtain the equations of motion of a charged particle in a field 
[5]. Our solution is more natural than the conventional method which uses variational method. 

The conclusion to be drawn from our two examples of a free material particle and a charged material particle 
interacting with a fixed electromagnetic field is that such physical systems have only particle states, and no 
wave states, because they are described by a single 4-operator. The situation is completely different when one 
considers the Dirac electron described by a pair of 4-operators (pµ, γµ) and Dirac electron in an external electro-
magnetic field described by a pair of 4-operators (Pµ, γµ). Our approach gives elegant and simple solutions to 
these problems in contradistinction to the conventional methods [2]. 

As our final example, we consider gravitation, an influence mediated by the graviton, a force particle. This in-
fluence is only along the temporal axis, and its existence is only manifested by its interaction with massive ob-
jects. In other words the graviton is an antiparticle of dimension 1 , and because it is not an object one can see, 
its velocity relative to us is zero. Since it is now known that the graviton has rest mass (m) [6], we infer that its 
momentum 0=p . Unlike electromagnetism gravitation is not known to exhibit such effects as polarization, 
interference, etc. Consequently gravitation is characterized by a pair of 4-operators (pµ, Aµ), where 

( ),p E cµ = p , and ( ),0Aµ ψ= ; with associated invariants, pµpµ = m2c2, pµAµ = m2c2, AµAµ = m2c2. The last 
two invariants are mere constraints on ψ, implying that ψ is time-independent and has the dimension of energy 
per unit mass. pµpµ = m2c2 on the other hand gives the invariant operator F = pµpµ – m2c2 = 0, so that the equa-
tion of motion is given by 0F ψ = . On multiplying this equation from the left by the bra ix ′ , i = 1, 2, 3, we 
obtain in the coordinate representation the important equations. 

( )2 2,     0E mc xψ ′= ∇ = ,                                     (13) 

where ( )x xψ ψ′ ′= , and 1 2 3, ,x x x x′ ′ ′ ′= . The second of (13) is the familiar Newton’s equation of gravita-
tion, and E is the rest mass energy. We associate the potential ψ with gravitational field intensity ψ= −∇g , 
then g  satisfies the field equations 

0,  0∇⋅ = ∇× =g g .                                         (14) 

Thus, the gravitational field equations of Newton are derivable from the invariant operator theory. 

6. Conclusions 
An important development arising from our considerations is the geometrical definition of the photon and gra- 
viton, the two fundamental particles without corresponding antiparticle and particle respectively. The photon is a 
particle whose temporal displacement (cdt) is equal to its euclidean distance. Its speed is thus seen to be the 
speed of light. It follows that for the photon and hence other relativistic material particles, the quantity dt/γ, 
where γ = (1 – β2)–1/2, β = v/c, not dt, is an invariant quantity, and that dt/γ is zero, positive, or negative for 
light-like, time-like, or space-like processes respectively. The graviton, on the other hand, is a physical entity 
whose temporal and Euclidean displacements vanish. Consequently, a relativistic theory of gravitation is mea- 
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ningless. 
The invariant operator theory is a powerful physical theory. As we have seen, the theory reduces the problem 

of finding the equations of motion for a physical system to that of finding invariant operators, F(qµ, pµ; λ), ap- 
propriate for the system. An important consequence of this assertion is the invariant operator theorem: A neces- 
sary and sufficient condition for the realization of a physical theory of a given dynamical system (classical or 
quantum) is that the system is endowed with 4-operators. If the system is endowed with a single 4-operator, only 
a particle theory in which the space-time background (xµ) plays a dynamical role is possible. If, however, the 
system is endowed with a pair of 4-operators, only a wave theory is possible, in which case the space-time 
background plays a passive role serving only as the observation points. This conclusion is in complete agree- 
ment with the dimensionality theorem [1]. 

In the limit of low speed, H = mγc2 → mc2 + (mv2/2), and m mγ= →p v v , where the term mc2 in H is irrele- 
vant because it is impotent in the derivation of the equations of motion. Thus, in the Newtonian limit, the 
4-momentum pµ goes over into a decoupled form ( ),H p , and via the equation ( )H L L= ⋅ ∂ ∂ −v v , one ob- 
tains the lagrangian L of the system and hence the equations of motion. Integration of Lagrange’s equations of 
motion gives the states of the system in the familiar form (t, xi; H, pi). 

Finally, Erwin Schrodinger (1926) obtained a “wave theory” of the hydrogen atom electron, which is called 
Schrodinger’s equation. This theory treats the electron of atomic hydrogen as a bare particle having no internal 
degrees of freedom. This treatment is deficient and hence is inconsistent with the invariant operator theory. 
P.A.M. Dirac’s treatment of the same system is more realistic and is in excellent agreement with the invariant 
operator theory.  

Our present work is concerned with the problem of the determination of the states of a single particle system 
in interaction or free. We have seen that the invariant operator theory solves this problem with pristine beauty. 
The outstanding problems relate to the determination of the states of multiparticle systems. This problem has al-
ready been solved for a system of fermions (atoms, nuclei, and molecules) [7], and also for a system of bosons 
using the arsenal of discrete geometry [1]. The remaining problem is the determination of the states of fer-
mion-boson systems, which is the theory of weak and strong nuclear interactions. The theory of weak and strong 
nuclear interactions is the subject of our next paper. 
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