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Abstract 

The optical properties of CdBr2 were studied by first principle using the density functional theory. The di-
electric functions and optical constants are calculated using the full potential-linearized augmented plane 
wave (FP-LAPW) method with the generalized gradient approximation (GGA). The theoretical calculated 
optical properties and energy Loss (EEL) spectrum yield a static refractive index of 2.1 and a plasmon ener-
gy of 13eV for hexagonal phase. The results, in comparison with the published data, are in good agreement 
with the experimental and previous theoretical results. 
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1. Introduction 

Cadmium halogenides are widely uses as radiations. The 
lattice of these complicated crystals are strongly anisotropic. 
The CdBr2 structure is of the CdCl2 type, namely, the 
rhombic lattice with 5

3dD  symmetry [1]. Cadmium 
bromide Crystallise with layer structures in which band-
ing within the layer is strong with a large ionic contribu-
tion, while bonding between the layers is weak. The ba-
sic structure of these materials is an infinite hexagonal 
sheet of Cd atoms sandwiched between two similar 
sheets of halogen atoms, the Cd atoms being Octahe-
drally coordinated. These three-sheet sandwiches (or 
layers) are then stacked to form the three-dimensional 
compound. Because of the weak binding between the 
layers, different stacking sequences represent only slight 
differences in total energy and so several such sequences 
are possible. There is relatively little information availa-
ble about the electronic and optical properties of the 
cadmium halides as a whole. Band structure calculations 
have recently been made for CdI, (McCanny et al 1977, 
Bordas et al 1978, Robertson 1979). Optical experiments 
in the main have been concerned with the strong excitons 
exhibited by all three materials [2]. Cadmium bromide is 
known as a photochromic crystal and is widely used as 
window for Infrared applications [3]. 

In the present work the optical properties of CdBr2 have 
been studied using the full potential linearized augmented 
plane wave method (FP-LAPW). The results, in compari-
son with the published data, are in good agreement with 
the experimental and previous theoretical results. 

2. Method of Calculation 

Calculation of the optical properties, of CdBr2 were car-
ried out with a self-consistent scheme by solving the 
Kohn-Sham equation using a FP-LAPW method in the 
framework of the DFT along with the GGA method [4,5] 
by WIEN2k package [6]. In the FP-LAPW method, 
space is divided into two regions, a spherical “muf-
fin-tin” around the nuclei in which radial solutions of 
Schrödinger Equation and their energy derivatives are 
used as basis functions, and an “interstitial” region be-
tween the muffin tins (MT) in which the basis set con-
sists of plane waves. There is no pseudopotential ap-
proximation and core states are calculated selfconsis-
tently in the crystal potential. Also, core states are treated 
fully relativistically while valence and semi-core states 
are treated semi-relativistically (i.e. ignoring the spin 
orbit coupling). The cut-off energy, which defines the 
separation of the core and valance states, was chosen as 
–6 Ryd. 

The complex dielectric tensor was calculated, in this 
program, according to the well-known relations [7]. 
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and the optical conductivity is given by: 



2                                            H. SALEHI  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  OPJ 

   Re Im
4π 
                (3) 

In Equation (1), ck and vk are the crystal wave funtions 
corresponding to the conduction and the valance bands 
with crystal wave vector k. In Equation (3) the conduc-
tivity tensor relating the inter band current density j in 
the direction  which flows upon application of an elec-
tric field E in direction  in which the sum in Equation 
(1) is over all valence and conduction band states labeled 
by v and c. Moreover, the complex dielectric constant of 
a solid is given as: 

     1 2i                     (4) 

Here, real and imaginary parts are related to optical 
constants n() and k() as: 
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The other optical parameters, such as energy-loss 
spectrum and oscillator strength sum rule are imme-
diately calculated in terms of the components of the 
complex dielectric function [8]. 

3. Results and Discussion 

The calculations first were carried out using the experi-
mental data for lattice constants, a = 3.954 A0, c = 18.672 
A0 in the hexagonal phase. Then by minimizing the ratio 
of the total energy of the crystal to its volume (volume 
optimizing) the theoretical lattice constants were ob-
tained = 4.039 and c = 19.328 A0. 

In order to reduce the time of the calculations we used 
the symmetries of the crystal structure and some other 
approximations for simplicity. The calculation was per-
formed with 6000 k-points in the hexagonal phase. 

The self-consistent process, for both phases, after 11 
cycles had convergence of about 0.0001 in the eigenvalues 
in which for the hexagonal phase 1612 plane waves were 
produced. Under these conditions the values of the other 
parameters were Gmax = 14, RMT(Cd) = 2.5 au, RMT(Br) = 
2.4 a.u. The iteration halted when the total charge ad-
justment was less than 0.0001 between steps. 

3.1. Dielectric Function 

We calculated optical properties of CdBr2 in the hex-
agonal phase, but here we only present the optical prop-
erties. The real and the imaginary parts of the dielectric 
functions are shown in Figure 1 for CdBr2 in the hex-
agonal phase. The value of the main peak of 1() curve 
is 8.6 at energy of 5.5 eV and for 2() is 8.2 at the 
energy equal 7.6 eV. 

The real and the imaginary parts of optical conductivity 
are shown in Figure 1 for CdBr2 in hexagonal phase. 

In Figure 2 the optical constant n() and Extinction 
coefficient k() is shown for CdBr2 in hexagonal phase. 
The static refractive index value for CdBr2in the hex-
agonal phase calculated in this work, and the values ob-
tained by other methods are summarized in Table 1. 

Referring to Table 1, it can be seen that the calculated 
refractive index in this work is equal with the values 
measured experimentally. 

3.2. Electron Energy Loss Spectroscopy 

EELS is a valuable tool for investigating various aspects 
of materials [8]. It has the advantage of covering the 
complete energy range including non-scattered and elas- 
tically scattered electrons (Zero Loss).At intermediate 
energies (typically 1 to 50 eV) the energy losses are due 
primarily to a complicated mixture of single electron 
excitations and collective excitations (plasmons). The 
positions of the single electron excitation peaks are re-
lated to the joint density of states between the conduction 
and valence bands, whereas the energy required for the 

 

 

Figure 1. Real and imaginary part of the dielectric function 
for CdBr2 in hexagonal phase. 
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Figure 2. The optical constant n () and k () is CdBr2 in 
hexagonal phase. 

excitation of bulk plasmons depends mainly on the elec-
tron density in the solid. Here electrons,which excite the 
atoms electrons of the outer shell is called Valence Loss 
or valence interaband transitions (Figure 3). At higher 
energies, typically a few hundred eV, edges can be seen 
in the spectrum, indicating the onset of excitations from 
the various inner atomic shells to the conduction band. In 
this case the fast electrons excite the inner shell electrons 
(Core Loss) or induce core level excitation of Near Edge 
Structure (ELNES) and XANES. The edges are charac-
teristic of particular elements and their energy and height 
can be used for elemental analysis. 

Table 1. The CdBr2 static refractive index in hexagonal 
phase calculated by various methods. 

Method 
FP-LAPW 
(GGA96) 

Experimental Theoretical

n 5.5 5.17,5.68[1] - 

Difference with 
experimental (%) 

6,-3.27 - - 

ε (0) 4.2 4.1[1],4[2] - 

Difference with 
experimental (%) 

2.38 - - 

 

In the case of interband transitions, which consist mostly 
of plasmon excitations, the scattering probability for vo-
lume losses is directly connected to the energy loss func-
tion. One can then calculate the EEL spectrum from the 
following relations. 
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In Figure 3 the energy loss function is plotted for 

CdBr2 in hexagonal phase. These peaks can, however, 
have different origins such as charge carrier plasmons 
and interband or intraband excitations. The energy of the 
maximum peak of Im [--1(E)] at 13 eV is assigned to the 
energy of the volume plasmon p . The first peak at 8 
eV and second peak at 10 eV originates from orbitals d 
atom Br. The value of p  obtained in this work and 
for free electron is given in Table 2. 

For free electrons the plasmon energy is calculated 
according to the following model: 
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Figure 3. Electron energy loss spectrum Im[--1(E)] for 
CdBr2 in hexagonal phase. 

Table 2. The CdBr2 plasmon energy p  of the energy 
loss function in hexagonal phase calculated by this method 
and free electron. 

Methods Plasmon energy p  (eV) 

FP-LAPW (GGA96) (this work) 13 

Free electron (ignoring Cd-4p 
andBr-3d states) 18.7 

Free electron 15.8 
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If we use this model, then what should be the number 
of valance electrons per CdBr2 molecule,N,used to cal-
culate the density of valance electrons, n, and thus the 
plasmon energy in Equation (7). 

4. Conclusions 

We have calculated the optical properties of (PT) in hex- 
agonal and tetragonal phases using the full poten-
tial-linearized augmented plane wave (FP-LAPW) method 
with the generalized gradient approximation (GGA). The 
calculations show a static refractive index of 2.1 and an 
EEL spectrum of 13eV for the hexagonal phase. 
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