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ABSTRACT

This paper decomposes the Malmquist productivity index into several assembling components: technical change
(further break down into technical change magnitude, input bias and output bias), technical efficiency change,
scale efficiency change, and output-mix effect. A translog output distance function is chosen to represent the
production technology and each component of the Malmquist index is computed using the estimated parameters.
This parametric approach allows us to statistically test the hypothesis regarding different components of the
Malmquist index and the natural of production technology. The empirical application in Chinese agriculture
shows that the average productivity grows at 2 percent per year during 1978-2010. This growth is mostly driven

by technical change, which is found to be neutral.
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1. Introduction

Productivity change is defined as the ratio of change in
outputs to change in inputs. Reference [1] pioneered by
introducing the Malmquist index to measure productivity
through distance functions. Reference [2] showed that
the index can be directly estimated using nonparametric
techniques like Data Envelopment Analysis (DEA). They
also developed the decomposition of the Malmquist in-
dex into two mutually exclusive and exhaustive compo-
nents: technical change and efficiency change. Afterwards,
many researchers have extended this decomposition to
develop a more detailed analysis of the Malmquist index,
including several alternative approaches to understand te-
chnical change and scale efficiency ([3-6]).

The majority of Malmquist index estimation falls un-
der the nonparametric DEA approach ([7]). The DEA ap-
proach estimates the Malmgquist index and its compo-
nents through the calculation of distance functions under
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both constant and variable returns to scale technologies.
The popularity of DEA stems from its advantages of non-
parametric approach: easy to compute, applicable in cas-
es of multiple outputs, no assumptions of economic beha-
vior such as cost minimization and profit maximization,
no need for price information, neither any particular
functional form for estimation nor a large number of ob-
servations. These features are very attractive in cases
where price data is unavailable or cannot be constructed
in detail, sample is too small or there is insufficient un-
derstanding of firm behavior. However, the nonparame-
tric approach cannot provide a way to directly test statis-
tical significance or hypotheses regarding the signific-
ance of the assembling components or model specifica-
tion. It cannot separate measurement errors and random
noise from technical inefficiency, either.

The parametric approach provides a solution to address
the shortcomings of nonparametric techniques and has
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been adopted by some recent studies in the estimation of
the Malmquist index ([4,8,9]). In the parametric ap-
proach, the Malmquist index is not directly obtained
through the estimation of distance functions under differ-
rent returns to scale technologies. Instead the Malmquist
index and its components are calculated based on the
fitted distance function with globally variable returns to
scale, evaluated at adjacent time periods’ input and out-
put quantity, as implemented by [4,8-10]. In addition to
statistical testing, the parametric approach has the advan-
tages of accommodating random errors and enabling dif-
ferent interactions between outputs and inputs if a flexi-
ble functional form is chosen to closely approximate the
underlying production technology.

This paper extends the methodology of [3,4] to decom-
pose the Malmquist index into different components while
taking into account of technology bias and scale effi-
ciency change simultaneously. We test some hypotheses
regarding the production technology, functional specifi-
cation, and returns to scale by imposing parametric re-
strictions in the estimation. The hypotheses include 1) no
technical inefficiency; 2) no heterogeneous inefficiency
effect; 3) no technical change; 4) production technology
exhibits input Hicks neutral (no input bias); 5) output
Hicks neutral (no output bias); 6) input and output Hicks
neutral; 7) input-output separability; 8) Cobb-Douglas
functional form; and 9) constant returns to scale. The test
of each hypothesis examines the corresponding compo-
nents of the Malmquist index. If technical efficiency term
is statistically not different from zero, there will be no
efficiency change and the contribution of efficiency
change to productivity growth will be zero. If technical
change or its components are insignificant, no productiv-
ity growth comes from improvement in production fron-
tier. If the functional form can be simplified to Cobb-
Douglas function, the production technology becomes
time invariant and separable. Finally, if the hypothesis of
constant returns to scale is not rejected, scale effect term
disappears from the Malmquist index.

By answering these questions, the paper adds value to
the existing literature in several ways. First, it decom-
poses the Malmquist productivity index into different
components using an output distance function. Unlike [9]
the decomposition of this paper is based on the geometric
mean of two adjacent Malmquist index, filling a gap in
the existing literature of productivity analysis. Second, it
demonstrates the advantages of the parametric output dis-
tance function approach to characterizing the agricultural
technology and productivity decomposition. The empirical
model is a four output, four input stochastic output dis-
tance function in 31 Chinese provinces over the period of
1979-2010. This technique is appropriate for the issue at
hand because it requires only quantity data on inputs and
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outputs, which are well recorded and easily accessible. It
does not require price information, which is hard to col-
lect and construct. Third, the parametric approach ad-
dresses common methodological issues in TFP estima-
tion like testing hypothesis regarding the production
technology, which has been lacking in the empirical lite-
rature. For example, the hypothesis of input-output sepa-
rability is rejected, suggesting results from a stochastic
production function can be misleading. This technique
can also be applied to other economic investigations of
productivity in various setting to produce credible and
relevant results. Finally, this paper updates productivity
performance of the whole agricultural sector in China
with the latest data, adding evidence in designing agri-
cultural development strategy in the developing country
context. We found TFP grows at 2 percent annually in
China, which is consistent with other studies in the coun-
try. The results have important policy implications in
policy design to promote productivity growth.

The paper is organized as follows. Section 2 presents
the theoretical framework of decomposition of the
Malmquist index based on an output-oriented distance
function. Assuming a translog output distance function,
parametric calculation of different components of the
Malmquist index is derived in Section 3. The data and
empirical results are discussed in Sections 4 and 5. Sec-
tion 6 concludes with major finding and policy implica-
tions derived from this study.

2. Theoretical Framework

The production technology is defined as the set of all
feasible input-output combinations. The production tech-
nology T in period t is:

T'=(x,y' ) t=1--T. @)

where x' is a K-dimensional vector of non-negative
inputs X' E(x;,u-,xL)eSRf, and y' is a M-dimen-
sional vector of non-negative outputs
Yy =(¥1. v )eRY, T is the production possibil-
ity set for all feasible input-output combination in period
t.

The output distance function D) (x‘ , y‘) is measured
as the distance of a vector of inputs and outputs in period

t with respect to the technical frontier in period t:
D} (X', y')=min{0>0:(x,y'/0) T},
t=1,--T.

where subscript o refers to output orientation. The output

distance function satisfies the inequality D (x',y')<1.

D; (x‘, yt) =1 indicates that the production unit Is on

the frontier of the production set and hence is technically
efficient.

@
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The Malmquist index measures the total factor prod-
uctivity (TFP) change between two adjacent periods by
calculating the ratio of the distance of each data point
relative to a common technological frontier. Following
[2], the Malmquist index between period t and t + 1
based on the period t technology is given by

D(t) (Xt+l, yt+1)
D(l’ (Xl, y[) .
The Malmquist index can be greater, equal to or less

than 1 if productivity grows, is stagnant or declines be-

tween the two periods.

Similarly, the Malmquist index between period t and
t+1 based on the period t + 1 technology is

D(t)+l (XHI, yl+1)
D(t)+1(xt,yt) ’
Measures of the productivity change between period t

and t + 1 generally changes if reference technology is

different. To avoid the arbitrary choice of reference te-

chnology, [2] suggested a geometric mean of the two
Malmgquist indexes:

TFPt,Hl(Xt yt Xt+1 yt+l)
2
. D! (Xt+1’ yt+1) D;+l(xt+l, yt+1) t (5)
D(t)(xt’yt) D;+1(Xt,yt) '
Reference [4] showed that the Malmquist index can be
decomposed into four components: primal technical change

(TC), technical efficiency change (EC), scale efficiency
change (SEC) and output-mix effect (OME):

TFPOt (Xt, yt ’ Xt+1’ yt+l) — (3)

TRR (x, y X, y‘”) = 4)

TFP =TC x EC x SEC x OME. (6)
D(t) XHl,yHl Dzl) Xl,yt V2
where TCZI:DHl((XHl,yHl)) Dt+1((xt,yt))] ! (7)
t+1 t+1 t+1
EC:M, ®)
D;(x‘,y‘)
r tt+l gt 1 [yt o) T2
sec <| 255 (XY OSE [ ) )
] OSE(<Xt,yl) OSEHl(Xt,yHl) |
i tf el el (ot el TV
OME - | 2 (<7, OSE (¥, y™) (10)
i OSEt(XHl’yt) OSEHl(Xt,yt) |

The first term TC refers to technical change, whose
magnitude in general depends on the particular input-
output combination. There is technical progress when
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TC is greater than one and technical regress when it is
less than one. If TC(x”l,y”l):TC(x‘,y‘), the tech-

nical change is output neutral.
The technical efficiency, TE = D(‘)(x‘,y‘), measures

the distance of the firm’s position inperiod t relative to
the period t frontier of the technology, or how far the
observed production is from maximum potential produc-
tion. By definition TE <1, and the production unit is ef-
ficient if and only if TE =1. The second term EC meas-
ures technical efficiency change between period t and
t+1. If EC is greater than one, the production unit moves
closer to the frontier—in other words, that the production
unit is catching up to the production frontier by improv-
ing efficiency. A value of less than one indicates effi-
ciency regress.

The third term SEC refers to scale efficiency change
between two periods, which measures how the output-
oriented scale efficiency changes over time conditional
on a certain output mix. It is the ratio of output orientated
measure of scale efficiency OSE in period t

Iﬁé (xt, yt)
D! (xt, yt)
Iﬁ(‘) (x‘,y‘) is the output distance function based on the
cone technology

and t + 1, where OSE' (X', y') = and

To={(ax,ay ) (. y') eTh 2 >0}

If OSE = 1, the frontier point that can be reached by
proportionally expanding y' is a point of technically
optimal scale. At that point the technology exhibits con-
stant return to scale (CRS) and scale elasticity equals to
one e (x',y')=1. If SEC is greater than one, the output
bundle at period t + 1 lies closer to the point of technical
optimal than the output bundle at period t and thus scale
efficiency improves. If SEC is less than one, the scale
efficiency deteriorates.

The fourth term is labeled as output-mix effect (OME)
by [4], which measures how the distance of the frontier
point to the frontier of the cone technology changes when
the output-mix changes, that is, the change in the output-
oriented scale efficiency from a change in output mix
when inputs remain constant. When output mix changes
the scale efficiency increases if OME values greater than
one, and scale efficiency declines if OME is less than one.
In the case of single-output OME = 1. Under global CRS
technology, both SEC and OME are identically equal to
one.

Reference [3] suggested the technical change compo-
nent can be further decomposed to allow determining the
contribution that technical change neutrality in produc-
tivity change.
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c _I: Dé (XHl, yl+1) D; (Xl, y‘ ))TZ

- D;+l (XHI, yt+l) D(l’+1 (XI , yt

) D;(Xt,yt) B D;(XHl,yHl) D(t)-v—l(xt,yt) Y2
- D;+1(Xt,yt)_D;+l( t+l7yt+1) D;(Xt,yt)
) D;(thyt) B D;(XHl,yHl) Dt+l(xt+l,yl) Y2
- D;+1(Xt,yt)_D;+l( t+1,y ) (Xt+l yl)

t t+1 |t t+1 t t V2
[ae et

(11)

D(t)+l( t+1,y) D(t)(xt,yt)
=TCM xOB x IB.

D; (xt, yt) 12
D;H(Xt, yt> !

D; Xt+l, yt+l Dt+1 t+l, y
OB = |: Dt+1(( t+1’ yt+l)) (( Hl’ y ))] ! (13)

( t+11y ) D:rl(xt’yt) Y2
IB=
D(t)+1( t+1’y ) Dct)(xt,yt)

TCM is the index of technical change magnitude. It is
greater than one if the input requirement set expands
along a ray through period t data, and less than one if the
input requirement set shrinks. OB is referred as a period t
+ 1 output bias index. It compares the magnitude of te-
chnical change along a ray through y'** with the mag-
nitude of technical change along a ray through y' while
holding the input vector constant at x'*'. The period t
input bias index IB compares the magnitude of technical
change along a ray through x"* with the magnitude of
technical change along a ray through x', holding the
output vector constant at y'. The bias indexes OB and
IB are greater than one if the magnitude of technical
change measured along a ray through period t + 1 data
exceeds the magnitude of technical change measured
along a ray through period t data, and vice versa. Refer-
ence [3] proved that OB (IB) equal to one if the technol-
ogy is said to exhibit implicit Hicks output-neutral (in-
put-neutral) technical change. In other words, the output
(input) set shifts in or out by the same proportion along a
ray through period t + 1 data as it does along the ray
through period t data. OB equals to one in the case of
single output and IB equals to one in the case of single

input.

where TCM =

(14)

3. Parametric Estimation of the Malmquist
Index

Unlike nonparametric DEA approach, the parametric
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approach requires pre-defined functional form of dis-
tance function for estimation. According to [11] this spe-
cification fulfills a set of desirable characteristics: flexi-
ble, easy to derive and allowing the impaosition of homo-
geneity. The flexible form of translog has been widely
used to estimate distance functions as it meets all the
required characteristics ([4,6,9,10,12]). This paper will
also adopt translog functional form.

The period t technology is represented by a translog
output distance function

InD; (x',y")
K M
=aq, +Zak Inx; +Zﬁm Iny:
1

K K

%zzam Inx. Inx.

k=1k'=1

M M
ZZ mm’ In ym In ym +zzykm In Xk In ym

k=1m=1

l\)

~

+Y 5 Inxt+ ZTmn Iny.t+6t+= t9nt2
k=1 m=1
xe R yeRM.
(15)

The parameters must satisfy a set of restrictions. First
the conditions for linear homogeneity in outputs is im-
posed to obtain an output oriented radial distance func-
tion,

M M M K
Zﬁm :11 Z:Bmm’ = 0' Zrmt = O' Zykm = 0 .
m=1 m'=1 m=1 m=1

Second, symmetry is applied as
Oy = akk*ﬂmm’ = ﬁm’m :

The output distance function (15) is expressed as
InD} :TL(xt : yt,t;ﬂ) for notational convenience,

where TL denotes the translog function specification and
7 =(a,pB,7,6,7,0) is the vector of the parameters to be
estimated. The parameters of the distance function can be
estimated only if linear homogeneity in outputs is im-
posed. Following [11], all output quantities in the right
hand side of Equation (15) is divided by the quantity of
an arbitrary output, say the first output, as the numeraire.
Lets’ denote Yy, =V, /Y,, the translog function is re-
written as

t
InD‘( L] TL( Y tin and hence

[
1 1

=In(y;)=TL(X', yp.tiz)=InD}(X',y').  (16)
since InDj(x',y') is unobservable, setting

u'=-In D;(xt,y‘) and adding a stochastic term v,
one obtain the familiar production stochastic frontier
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—Iny} =TL(X,y ) +u +v!
K M
=a, +Zak Inx, + Zﬂm Iny;’

+= ZZakk Inx Inx, += ZZﬂmm Iny “Iny.”

klkl mZm

+227ka Inx Iny "+ 5kt In Xt + met Iny.”

k=1m=2 k=1 m=2
+6?tt+%¢9nt2 +U'
(17)

where u represents the stochastic shortfall of the pro-
duction unit’s output from the production frontier due to
technical inefficiency, u is a random non-negative er-
ror term and v is a symmetric and normally distributed
error term of N (0,7

Both error terms are independently distributed. Identi-
fication of the inefficiency stochastic term requires some
structure to be placed on the heterogeneous and temporal
pattern of technical efficiency. Following [13] the sto-
chastic term u, is defined as a normally distributed
variable N (z;07) truncated at zero.

Hig = . (18)

where z, is a vector of observable explanatory vari-
ablesand ¢ isa vector of parameters to be estimated.

The predicted value of the output distance function can
be estimated as a conditional expectation

e -
o(o,gee) 09
= 1—(1)(;(gt/0A) exp(;(g +GA/2).
where gtzut+vt,0'2=05+0'v2!lza_uz'
o

O, :1/;((1—;()02 and @ represents a standard nor-

mal the distribution function.

Once the parameters of Equation (17) are estimated,
the assembling parts of the Malmquist productivity index
and its components can be calculated ([4,8]).

The technical change magnitude TCM

= exp[TL(x‘,y:n*,t;ﬁ)—TL(x‘,y:n*,t+1;;%)]

K . M A~ -~
=exp {(—l)x {Zékt Inx + > 7, Inyy +6, +6, (t +%H}
k=1 m=2
(20)
Output bias index OB
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OB

:exp{%x[TL<x‘”, Yyt A)—TL(x”l,yr‘n*l* t+1; fz)}}
xexp{%x[TL(x‘“,ym A+1 ﬂ') TL(x”l,y};,t;i)J}

= ex 1>< if (In —In ”l*)
- p 2 ~ mt ym y

(21)
Input bias index 1B
IB

= exp{%x[TL(x‘“, yr'n*,t;ﬁ)—TL(x‘*l, y,‘n*,t+1;7%)]}

xexp{%x[TL(x yh ,t+17r) TL(X‘,yr‘n*,t;;%)J}

= exp {Ex {25“ (Inx, ~In x”l)}}

(22)
Efficiency change EC

EC = exp{TL(x”l, yor, t+1;7%)—TL(x‘, y,‘n*,t;ﬁ)}.(23)

Reference [4] showed that the SEC and OME can be
computed by using estimates of the output-oriented scale
efficiency without estimating the output distance func-
tion under CRS, as required in the nonparametric ap-
proach. For any arbitrary pair (7 7) the output oriented
measure of scale efficiency of a translog distance func-
tion is:

INOSE' (X,y) =- 24
where the scale elasticity
_ .\ ¥0InD(%,Y)
X =
%(%.7) é olnx,
Z{ak + Zakk Inx, + Zykm Iny." + Sktt}.
k=1 k'=1 m=2 k=1
(25)

K K
And o' =>">a,. .
k=1k'=1
Since local scale efficiency can never exceed the op-
timal scale efficiency, or OSE'(X,y¥)<1, which re-
quires that «' > 0. Equation (25) indicates that the out-
put oriented scale efficiency of a particular input-output
combination can be obtained from the output distance
function based measure of local scale elasticity ¢ per-
taining to this combination, and ¢ can be evaluated at
any data points from the parameter estimates of the out-
put distance function.
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Scale efficiency change SEC

[ [aten)a] [abey)]

SEC =exp<{—
p 2><

24! 2a'
2 2]
xXexp %X _|:6; l(Xt ; ytt l)_1:| + |:6; 1(Xtéytt l)_1:|
o 24

Output-mix effect OME

2 2
[q’[)(xt Lyt 1)_1:| +|:6[t)(xt 1’yt)_1:|

2a' 2a'

OME =exp %x -

[6‘?1 (Xl’ y1+1) _1:|2 |:6c1)+1 (th vt ) _1]

xexp 1>< —
2

(27)

Thus, all the assembling components of Malmquist
index can be computed from evaluation of the translog
output distance function.

4. Data

A panel of provincial level data is collected for the 32
provinces, municipal cities and autonomous regions from
China Statistical Yearbook ([14]). There are four sub-
sectors within agriculture: crop, livestock, fishery and
forestry. The sub-sector outputs are valued at constant
2010 billion Yuan. Four major agricultural inputs are in-
cluded: area, labor, machinery and fertilizer. Area is de-
fined as total sown area in 1000 hectares, labor measures
rural employment in 10,000 persons, machinery meas-
ures agricultural machinery in 10,000 kilowatts, fertilizer
is the consumption of chemical fertilizer in 10,000 tons.
Although infrastructure and market structure does not
directly contribute to output growth, they can affect pro-
duction through improvement in productivity and its
components. Rural infrastructure is proxied by share of
irrigated area in crop sown area. Agricultural policies in-
clude market openness and taxation. Market openness is
calculated as the value share of agricultural products
whose prices are not directly managed or stipulated by
the government. Taxation is the average rate of net agri-
cultural tax (agricultural tax minus subsidies) per hectare
of crop sown area. Dummies are introduced to capture
unique biophysical conditions in the province.

Reference [15] provides a comprehensive review of
policy reform in China from 1978 to 2010, breaking into
6 stages. In the first reform stage of decentralization
(1978-83), the government procurement quotas were re-
duced and some commodities were phased out the pro-
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curement programs to be traded in markets. Agricultural
output grew sharply in this period after the establishment
of household responsibility system. In the second stage
of marketing system liberalization (1984-1989), although
more products were liberalized the government main-
tained control over strategic products (grain, cotton and
oilcrops). Rapid increase in input prices dampened far-
mers’ investment in agriculture and resulting in lower
output growth. In the third stage of 1989-1993, reform in
grain marketing system further cut the number of com-
modities subject to state procurement programs, but re-
gional markets remained segmented due to various price
and quantity controls for strategic crops. The fourth stage
(1994-99) is characterized by increased procurement
prices, which brings in a fast expansion in agricultural
output. In the fifth stage (1998-2003), the grain procure-
ment quota was abolished and a free grain market was
applied to the majority of China. The government shifted
its focus from taxing agriculture to supporting producers
in the sixth stage (2003-2010), with policies including
input subsidies, direct payment and agricultural tax re-
form.

Despite fluctuations and shift of focus in policy, agri-
cultural production has exhibited an impressive growth
since reform. The output of agricultural sector has in-
creased exponentially after the reform in China as aver-
age annual growth rate reaches nearly 6 percent during
1978-2010 (Table 1). Although crop production rises at
4.3 percent annually, it is dwarfed by the surge of high
value and nutritional animal products in livestock and
fishery sector, which grows at 8.6 and 13 percent, re-
spectively. The structure of input usage also shifted sub-
stantially with modern inputs including machinery and
fertilizer growing at a faster pace than traditional inputs
like land and labor. Given land scarcity, rapid urbaniza-
tion and economic transformation in the country, it is not
surprising that land barely expanded while labor engaged
in rural activities increases by less than 2 percent per
year. On the other hand, input intensification is widely
observed since new machines serving agricultural pro-
duction grow by 6.3 percent and total fertilizer consump-
tion increases by nearly 5 times within three decades.

In terms of regional distribution, highest agricultural
output growth is observed in Xinjiang in the northwest,
followed by Hainan, Inner Mongolia and Henan, all dri-
ven by rapidly developing crop and other sectors. We
observe increased modern inputs in these provinces, as
well as land expansion in the relatively low population
density regions. On the other hand, low agricultural
growth occurred in highly urbanized municipalities (Bei-
jing and Shanghai) or provinces face adverse biophysical
conditions (Xizang and Qinghai). Slow growth in input
use is widespread in these provinces as well.
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Table 1. Descriptive statistics.

Mean Std. Annual growth rate (%)
Err. 1978-83  1984-89  1990-93  1994-97  1998-03  2004-10 1978-10

Output (billion 2009 Yuan)
Crop 99.5 64.1 9.0 -0.2 0.5 5.0 1.6 9.1 45
Livestock 60.8 457 124 10.9 38 6.1 6.1 7.1 8.5
Forestry 6.1 37 131 -1.8 3.9 1.3 6.6 9.3 4.8
Fishery 17.8 19.8 15.1 19.1 17.2 10.8 55 6.6 12.7

Input

Area (1000 hectare) 7105 3246 -0.9 0.3 -0.2 1.3 -0.4 0.6 0.3
Labor (10,000 person) 2323 1210 2.7 2.6 1.8 11 1.1 1.1 1.7
Machinery (10,000 kwh) 3005 2714 8.3 7.7 3.4 7.9 59 6.4 6.3
Fertilizer (10,000 ton) 214 136 12.3 6.2 6.5 5.9 1.6 3.2 5.3
Infrastructure and policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Electricity (kwh per hectare) 307.5  520.7 3.3 11.7 14.2 10.6 11.0 8.9 10.2
Irrigation (% of crop land) 36.6 12.7 -0.2 0.2 1.0 18 0.4 1.8 1.0
Market openness (% of ag. value) 86.7 20.2 13.9 16.3 20.8 0.6 26 -0.1 8.6
Tax rate (Yuan per hectare) 0.23 3.19 0.3 -0.3 0.0 2.8 6.6 -31.0 -2.6

Source: Authors’ calculation based on data from China Statistical Yearbook (various years).

5. Empirical Results and Discussion

Before reporting the estimated productivity growth, we
need to check whether the translog functional form is sui-
table for the study.

5.1. Curvature Condition

We first check whether the curvature condition is satis-
fied. Reference [16] provides the general regularity pro-
perties for output distance functions: monotonicity (non-
decreasing in outputs and non-increasing in inputs), ho-
mogeneity of degree 1 in outputs, convex in output and
quasi-convexity in inputs.

Monotonicity and curvature conditions involve con-
straints on functions of the partial derivatives of the dis-
tance function. The elasticity of distance with respect to
input k and output m is

a (%)
_2InD;(x,y)
- 6Inxk

=q, +Z:05kk In . +Z;/km Iny:" + 5ktt k=1---,K.

'=1 m=2 k=1
(28)
& (%)
_0ln D, (x,Y)
_W (29)

Mo M
Zﬁ ANy + > P Inx Iny T+ 7t
=2 m=2

=2, M.

OPEN ACCESS

For output distance function to be non-increasing in
input k

D, (x,y) _0InDy(xy) D5 (% y)
O, olnx, X,
EALS)

Xy

fi =

= (XY <0< g (X, y)<0for k=1-K.
(30)
because distance functions are positive by definition and
input quantities are positive.
For output distance function to be non-decreasing in
output m

h _oD!(x,y) oInD.(xy)Di(x )
"oy, ey, v,

t Dé(x'y) t
:em(X.y)—*20<:>em(x,y)20,for m=2,---,M

31)
Evaluated at sample mean, the elasticities of the output
distance function with respect to input quantities are
—0.12 for land, —0.44 for labor, —0.07 for machinery and
—0.34 for fertilizer. This reflects the relative importance
of labor and fertilizer in the production process. Moreo-
ver, the elasticities with respect to outputs indicates the
share of each product on production improvement: lives-
tock has the highest impact (0.26) compared with fishery
(=0.03) or forestry (0.07). The negative values of input
elasticities indicate that the estimated output distance
function is decreasing in all four inputs. Similarly, the
distance function is found to be increasing in three out of
four outputs based on their elasticities.
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Output distance function is quasi-convexity in inputs if
and only if the bordered Hessian matrix is negative defi-
nite. Hessian matrix of inputs is

0 f f
f, f f
Hiou 1 :11 K|
fK flK fKK
where
__oD _oh _o(aD/x)
KT axoxe O, X, @)
= (G + 660 — Eaei) & :
X, X

And &, =1 if k=k’ and 0 otherwise.
Output distance function is convex in output if and
only if the Hessian matrix of outputs is positive definite.
h21 hZM
Houlput =l : )
hZM hMM

where
D _ oh  0(e,D/yy)

*

hmm’ = * P *
aym aym’ aym’ aym’

S

mJm’

(33)

And & =1 if m=m’" and 0 otherwise.

The Hessian matrix of inputs is found to be negative
semi-definite, and two out of three eigenvalues of output
Hessian matrix are positive. These results confirm the
quasi-convexity in inputs of the estimated function is
satisfied, but convexity in outputs is only partially satis-
fied.

5.2. Parameter Estimates and Hypothesis Tests

Parameter estimates of the translog output distance func-
tion from the maximum likelihood procedure are pre-
sented in Appendix Table 1. The variance parameters
are statistically significant at 1 percent level and the ratio
of &’ in total variance is estimated at 0.687.

The parametric approach permits formal testing of the
statistical significance of various sources of productivity
changes. Alternative model specifications can be eva-
luated using likelihood ration tests, which compare the
likelihood functions under the null and alternative hypo-
thesis based on the translog output distance function de-
fined above.

First we compare the frontier with the mean output
distance function, estimated by considering the ineffi-
ciency term u as non-stochastic and equals to zero.
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Any deviation from the production frontier is interpreted
as random errors and the distance function can be esti-
mated using ordinary least squares (OLS). This assump-
tion translates into the parameter restriction of

X=H=P = Poumy =P =P, =3 =0.  (34)

The technical inefficiency exists because null hypo-
thesis is rejected at 1 percent level (Table 2). This is
confirmed by the significantly large value of parameter
y (0.687) that indicates more than two-thirds of the out-
put variability can be explained by technical inefficiency,
rather than random shocks.

In addition, we want to test whether the variables in-
troduced as inefficiency effects improve the explanatory
power of the model. The null hypothesis is reduced as

DPoummy =P = P2 =Pz = 0. (35)

The null hypothesis is firmly rejected at 1 percent, in-
dicating that the distribution of inefficiencies is not iden-
tical across individual observations but depend on the
variables capturing local natural endowment and policies.
This test supports the heterogeneity of inefficiency term.

The second set of hypotheses is about the technology
bias and technical change by checking the parameters
used for OB, IB and TCM calculation.

For the production technology to be implicit Hickneu-
tralin inputs and makes no contribution to productivity
growth, input bias index IB = 1, InIB = 0. That means to
test parameters

0y =0,forallk =1,---, K. (36)

Similarly, the test for implicit Hicksneutral in outputs
OB=1o0rInOB=0is

7, =0, forallm=1..-, M. (37)

Similarly, the test for implicit Hicksneutral in outputs
OB=1orInOB=0is

7, =0,forallm=1,.-, M. (38)

Table 2. Results of hypothesis test.

LR

Hypothesis statistic P-value
Mean distance function 388.0 0.000
No heterogeneous technical inefficiency 388.0 0.000
Input Hicks neutral 9.4 0.024
Output Hicks neutral 13.7 0.056
Input and output Hicks neutral 159.7 0.000
No technical change 2.9 0.567
Input-output separability 104.8 0.000
Cobb-Douglas functional form 429.3 0.000
Constant returns to scale 128.2 0.000

Source: Authors’ calculation.
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No technology bias is a combination of the two tests
above.

If there is no change in the technical change magnitude,
TCM = 1 or INTCM = 0 requires us to jointly test the
parameters

Of =Ty =6,=6,=0,f
ork=1---,Kandm=1,---,M.

Hence, no technical change, or TC = 1, is the equiva-
lent of joint test of the significance of Equations (36), (37)
and (38).

The hypothesis of input Hicks neutral cannot be re-
jected output Hicks neutral is rejected at 5 percent level,
resulting in a marginal rejection of technology bias. The
joint test result implies that the technical change is pre-
sent.

Separability of outputs is an important property of pro-
duction. It implies that marginal rates of substitution be-
tween pair of outputs in the separated group are indepen-
dent of the levels of outputs outside the group, hence out-
puts can be aggregated in the analysis.

The hypothesis of separability is defined as all interac-
tion terms between outputs and inputs to be zero,

Vim =0, fork=1--- Kandm=1.--,M. (40)

These restrictions on parameters are strongly rejected,
which shows that it is not possible to aggregate the four
outputs consistently into a single index. This again de-
monstrates the strength of distance function compared
with a traditional stochastic frontier production function,
which requires aggregation of outputs prior to model
estimation, as revealed by [17].

Then we test whether the true output distance function
can be simplified and represented by the Cobb-Douglas
functional form instead of the translog form. The para-
meter restrictions are

Qe =ﬁmm’ = Ykm =5kt =Tt =0|
fork=1---,Kandm=1---,M.

The null is rejected, suggesting that the Cobb-Douglas
form is inappropriate for this study.

The last hypothesis is the constant returns to scale,
which requires the output distance function to be homo-
genous of degree -1 in input quantities ([11]), or the fol-
lowing restrictions should hold:

K K K K

Zak =-1 zakk’ = OaZVkm = O'Zékt =0, (42)
k=1 k'=1 k=1 k=1
fork=1---,Kandm=1---,M.

The hypothesis of constant returns to scale is rejected
as well, suggesting that the component of scale ineffici-
ency should be considered in measuring productivity
change.

Following [18], returns to scale can be computed from
the output distance function as follows

(39)

(41)
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Kk 0InD} (X', y'
s(y)=- kz:; 6In(xﬁ |

The expression in brackets is the proportional increase
in all outputs caused by an increase in all inputs in the
same proportion. Therefore, increasing (decreasing) re-
turns to scale are indicated by a value of returns to scale
greater (less) than one.

The mean returns to scale is 0.967. The null hypothesis
of constant returns to scale against alternative hypothesis
of decreasing returns to scale is strongly rejected, sug-
gesting a decreasing return to scale is appropriate to de-
scribe the production technology.

5.3. TFP Growth and Its Components

First we look at technical efficiency. Average technical
efficiency is 0.884 despite more efficient production in
mid-1990s to early 2000s. In terms of regional distribu-
tion, north and central regions report the highest effi-
ciency score, where agricultural production is encour-
aged by favorable biophysical condition and policy sup-
port (Table 3). Technical efficiency is the lowest in nor-
theast region, with an average TE index of 0.76. The low
efficiency score means that with the same amount of in-
puts the low performing provinces can increase the level
of outputs by about 50 percent (Appendix Table 2). The
sharp drop in technical efficiency since 2004 is especial-
ly alarming, which is caused by several weather shocks
and the outbreak of animal diseases in northeast and
south China where pork production is concentrated.

We expect rural infrastructure, market openness and
agricultural support should improve technical efficiency.
The coefficients of market openness and real agricultural
support are both of the expected sign but only the latter is
statistically significant (Table 2). Combined with the sig-
nificant constant term in technical inefficiency variables,
we not only confirm the existence of technical ineffici-
ency, but the positive role of agricultural policy in im-
proving technical efficiency.

The parametric estimation of the Malmquist index and
its components are summarized in Table 4 and the an-
nual TFP growth of the country is reported in Figure 1.
It is clear that the development of productivity matches
the six stages of reform as described in data. With the
exception of some years at the early stages of reform, an-
nual TFP growth index is above unity, suggesting prod-
uctivity improvement over time. During the period of
1978-2010, average agricultural productivity growth rate
is about 2 percent per year. After the first stage of reform
in 1978-83, agricultural TFP maintains a steady growth
rate of above 2 percent per year (Appendix Table 3).
This growth rate is similar to the finding of [19] but low-
er than that of [15].
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Table 3. Technical efficiency in China.
Region 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-10
North 0.948 0.898 0.896 0.921 0.947 0.954 0.938
Northeast 0.808 0.784 0.822 0.796 0.772 0.714 0.757
Central 0.901 0.893 0.94 0.94 0.957 0.920 0.928
South 0.859 0.848 0.881 0.918 0.924 0.862 0.882
Southwest 0.897 0.877 0.891 0.902 0.896 0.781 0.850
West 0.898 0.824 0.823 0.816 0.859 0.842 0.842
China 0.884 0.865 0.894 0.906 0.916 0.863 0.884
Source: Authors’ calculation.
Table 4. Decomposition of Malmquist productivity index.
Period 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-04
Productivity (TFP) 0.999 1.021 1.023 1.023 1.022 1.022 1.020
Technical efficiency change (EC) 0.991 1.010 1.007 1.004 0.998 0.989 0.997
Technical change (TC) 1.008 1.011 1.015 1.018 1.025 1.032 1.023
Technical change magnitude (TCM) 1.009 1.012 1.015 1.018 1.025 1.033 1.024
Output bias (OB) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Input bias (IB) 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Scale efficiency change (SEC) 1.000 1.000 1.001 1.001 1.000 1.001 1.001
Output-mix effect (OME) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Source: Authors’ calculation.
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Figure 1. Evolution of TFP over time. Source: Authors’ calculation.

The overall TFP development can be explained by the
components of the Malmquist index, namely, technical
change and bias, technical efficiency change, scale effi-
ciency change and output-mix effect. The technical effi-
ciency change is below one for the whole period, imply-
ing deteriorated technical efficiency. However, technical
efficiency rises from 1984-97, and declines afterwards.
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This decline is most pronounced after 2004, further hig-
hlighting the urgent need for efficiency improvement.
Technical change is the main driving force of produc-
tivity growth in China, with technical change growing at
2.3 percent per year. In addition, technical change exhi-
bits an accelerated pattern over time: average technical
change rate increases from 0.8 percent per annum in
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1978-83 to 3.2 percent in 2004-10. Table 4 also shows
the decomposition of the technical change component
into the production of technical change along a ray
through the data of each period (TCM) and the bias ef-
fect. Although statistically significant, the impact of out-
put bias on productivity is very small. Since both input
and output bias indexes are close to one, neither an input
bias effect nor an output bias effect is occurred during
the period of study and we conclude that the technical
change is Hicks neutral. In other words, there is globally
neutral shift in the production frontier and technical
change does not have much influence in the relative con-
tribution of each output or input to the production pro-
cess. Therefore, productivity gain cannot be obtained by
change the mix of outputs or the mix of inputs, and cur-
rent technology does not favor output and input mix from
different periods. This results in a wide distribution of in-
put and output combination in Chinese agriculture.

Scale efficiency boosts Malmquist index by a small
margin (average SEC is 1.001), which implies that the
output mix moves closer to technical optimal and scale
efficiency improves over time. Together with the output
bias, we observe the mix of output is closer to optimal
mix of output under the technology as SEC averages
1.001. In relatively land abundant northern China, scare
efficiency improves because the output mix is moving
closer to the optimal production technology. There is lit-
tle change in the output-oriented scale efficiency from a
change in output mix and hence the output-mix effect
(OME) does not contribute to productivity growth.

The spatial distribution of agricultural productivity is
presented in Figure 2 and Table 5. The highest TFP

growth is observed in north and northwest border prov-
inces of Xinjiang and Inner Mongolia at above 5 percent
per annum, partly due to the rapid growth of crop and
livestock sector. Northern provinces (Heilongjiang and
Jilin) follow the suit by reporting impressive TFP growth
rate between 4 - 5 percent. Gansu and Ningxia, two in-
land provinces located in north China, also benefit from
the boom in agricultural sectors in the neighborhood. On
the other hand, the provinces exhibit low productivity
growth include Sichuan, Liaoning and Hunan, mainly
caused by efficiency deterioration with efficiency scores
dropped at more than 1 percent per year.

It is important to examine the distribution of technical
change and efficiency change given its key role as the
engine of TFP growth. Similar to the pattern of TFP
growth, the northern provinces move closer to production
frontier represented by provinces reporting TE = 1 (He-
bei, Shanxi, Heilongjiang, Henan and Guizhou). Low TC
growth occurs in more urbanized municipalities and
coastal provinces of Jiangsu and Zhejiang where agri-
culture becomes a small player in local economy. Effi-
ciency improves in the northern provinces along with
Hubei while efficiency declines in provinces scored low
TFP growth like Liaoning, Hunan and Sichuan.

Low and sharply declined efficiency scores are more
pronounced in Liaoning, Hainan and Sichuan, where
output only reach less than 70 percent of full potential,
and annual TE indexes fall at an alarming rate of
2-4percent per year. This is especially noticeable in Si-
chuan province, which is a major producer of agricultural
commodities and contributes to 6 percent of national
agricultural production in 2010. Among top five major

Figure 2. Map of annual productivity growth. Source: Authors’ calculation.
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Table 5. Decomposition of Malmquist productivity index by region.
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Region Indexes 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-10
TC 1.014 1.017 1.020 1.021 1.027 1.034 1.026
EC 0.990 0.999 1.000 1.012 0.998 1.006 1.003
North SEC 1.001 0.998 1.000 1.001 1.000 1.002 1.001
TFP 1.005 1.015 1.020 1.034 1.025 1.042 1.030
TC 1.025 1.025 1.026 1.029 1.034 1.042 1.034
Northeast EC 0.978 1.031 1.002 0.989 0.999 0.985 0.994
SEC 1.006 1.001 1.003 0.999 1.001 1.002 1.002
TFP 1.007 1.056 1.031 1.016 1.033 1.029 1.029
TC 1.004 1.008 1.012 1.016 1.024 1.031 1.021
EC 0.997 1.011 1.002 1.005 1.000 0.991 0.999
Central SEC 0.999 0.999 1.001 1.001 1.000 1.001 1.000
TFP 1.000 1.019 1.015 1.022 1.024 1.023 1.020
TC 1.008 1.010 1.013 1.016 1.022 1.028 1.020
EC 0.993 1.012 1.018 1.004 0.997 0.983 0.996
South SEC 1.000 1.000 1.001 1.001 1.000 1.001 1.000
TFP 1.000 1.022 1.032 1.021 1.018 1.011 1.016
TC 1.000 1.004 1.009 1.013 1.021 1.029 1.017
Southwest EC 0.984 1.008 1.009 1.000 0.987 0.986 0.993
SEC 0.999 0.999 0.999 1.000 1.000 1.000 1.000
TFP 0.983 1.012 1.017 1.013 1.008 1.014 1.010
TC 1.018 1.022 1.024 1.026 1.033 1.040 1.031
EC 0.987 0.994 1.004 1.017 1.007 0.990 0.999
west SEC 1.002 1.002 1.004 1.004 1.000 1.004 1.003
TFP 1.006 1.016 1.032 1.048 1.041 1.035 1.033

Source: Authors’ calculation.

agricultural producing provinces, Sichuan is the only one
experienced negative TFP growth in 1978-2010, which
can be partly due to the lack of rural infrastructure and
unfavorable agricultural policies. Only 25 percent of crop
sown area is irrigated in Sichuan, far below the average
of 40 percent. Sichuan also has a long history of high
agricultural tax discouraging investment in agricultural
sector.

6. Conclusions

This paper extends the decomposition of the Malmquist
productivity index suggested by [3,4] by using an output-
oriented parametric approach. The Malmquist index is
decomposed into several assembling components, which
allows us to examine the ray expansion of technology,
input- and output-induced shifts of technology frontier,
technical change, scale efficiency change and the change
of productivity caused by output-mix. A translog output
distance function is chosen to represent the production
technology. Computable form of each component of the
Malmaquist index is expressed as a function of parameters
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estimable in the output distance function, and the Malm-
quist index is derived from these components.

The advantage of the parametric approach is the flex-
ibility to statistically test the hypothesis regarding differ-
rent components of the Malmquist index, the natural and
bias of production technology, returns to scale and func-
tional form by imposing restrictions on parameters. In
addition, this paper differs from other studies by express-
ing results in a discrete changes format, instead of deriv-
atives. This is very useful in empirical studies because
most economic variables are not presented as continuous,
and the estimated productivity growth index using first
order derivative can lead to incorrect results ([9,20]).

This paper presents an empirical study of total factor
productivity change in Chinese agriculture during the
post-reform period of 1978-2010. The level of technical
efficiency averages 0.884, with low efficiency score in
the north. The recent drop of technical efficiency is a rea-
son of concern, suggesting insufficient rural infrastruc-
ture and lack of supportive policies. On average, produc-
tivity grows at 2 percent per year, which is mostly driven
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by technical change. Additionally, the result of the de-
composition of the technical change indicates that the
technical change is neutral despite that the output mix
moves closer to technical optimal. Scale efficiency mar-
ginally contributes to productivity growth whereas there
is less output-mix effect. The findings have clear policy
implications regarding improving agricultural performance
in China. For example, past agricultural policies have
failed to address the huge efficiency gap to decrease
wasteful use of agricultural inputs and cut down envi-
ronmental cost. Whether productivity can be improved
through a shift in current technology is another relevant
issue worth exploring. Additionally, given the considera-
ble spatial variation, agricultural development policies
need to be tailored to local conditions during planning
and implementation. Another important issue not dis-
cussed in this paper is future sources of productivity
growth, including investment in agricultural research,
rural education and water.
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Appendix Table 1. Parameter estimates of the translog output distance function.
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Parameter Estimate Std. Err. Parameter Estimate Std. Err.
B -0.575 (0.437) Y -0.026 (0.027)
B, -0.617 (0.150)™ Vs 0.016 (0.036)
B, 0.798 (0.163)™ Yo 0.061 (0.052)
2, 0.862 (0.629) Yo -0.021 (0.016)
a, -3.242 (0.352)™ Vs 0.091 (0.031)™
a, 0.079 (0.422) Ya -0.228 (0.067)™
a, 1.293 (0.535)” Ve -0.002 (0.026)
B 0.061 (0.089) Vs 0.148 (0.034)™
B 0.082 (0.015)™" 7, 0.008 (0.005)"
B 0.010 (0.030) T, -0.001 (0.002)
B, -0.030 (0.008)™" 7, —0.004 (0.003)"
B -0.032 (0.012)™" Sy -0.019 (0.009)”
B, 0.042 (0.020)" Sy 0.015 (0.006)™
o, -0.425 (0.181)" Oy -0.002 (0.005)
a, 0.497 (0.106)™ S, 0.008 (0.007)
a, -0.094 (0.105) 0, 0.029 (0.038)
a, -0.018 (0.108) 6, —-0.002 (0.002)™
a, -0.314 (0.095)™ a, 4.313 (1.802)"
a, 0.205 (0.081)"

a, -0.212 0.077)™ o, 0.011 (0.017)
a, -0.098 (0.077) ?, -0.007 (0.005)
a, 0.037 (0.072) o, -0.188 (0.051)™
o -0.050 (0.091) o, —-3.725 (0.750)™
a 0.304 (0.086)™"

T 0.099 (0.032)™ Ino; ~4.247 (0.074)™
Y -0.241 (0.043)™ X 0.687

Vo -0.132 (0.061)™ log likelihood 493.9

Note: For outputs, 1 stands for livestock, 2 for fishery and 3 for forestry. For inputs, 1 stands for area, 2 for labor, 3 for machinery and 4 for fertilizer. For inef-
ficiency terms, 1 stands for share of irrigation, 2 stands for market openness and 3 stands for agricultural tax. ~ p <0.01, p <0.05, p <0.1. Source: Authors’

calculation.
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Appendix Table 2. Malmquist productivity index and its components by province.

Region Province TC TCM OB 1B TE EC SEC OME TFP
Beijing 1.016 1.017 1.000 1.000 0.638 1.022 1.003 1.001 1.044

Hebei 1.021 1.022 1.000 1.000 1.000 1.000 1.000 1.000 1.021

North Inner Mongolia 1.042 1.043 1.000 1.000 0.830 1.005 1.003 1.000 1.051
Shanxi 1.029 1.030 1.000 1.000 1.000 1.000 1.000 1.000 1.029

Tianjin 1.023 1.024 1.000 1.000 1.000 1.000 0.994 1.001 1.018

Heilongjiang 1.047 1.048 1.000 1.000 1.000 1.000 1.003 0.999 1.049

Northeast Jilin 1.032 1.033 1.000 1.000 0.678 1.007 1.003 0.999 1.041
Liaoning 1.025 1.026 1.000 1.000 0.608 0.982 1.000 1.000 1.006

Anhui 1.024 1.025 1.000 1.000 0.915 1.004 1.000 1.000 1.027

Fujian 1.024 1.025 1.000 1.000 0.933 0.995 1.000 1.000 1.019

Jiangsu 1.017 1.018 1.000 1.000 0.914 1.001 1.000 1.000 1.017

Central Jiangxi 1.030 1.032 1.000 1.000 0.920 0.991 1.000 1.001 1.022
Shandong 1.020 1.021 1.000 1.000 0.936 0.999 1.000 1.000 1.019

Shanghai 1.010 1.011 1.000 1.000 1.000 1.000 1.001 1.001 1.012

Zhejiang 1.019 1.020 1.000 1.000 0.937 1.000 1.001 1.001 1.021

Guangdong 1.014 1.015 1.000 1.000 0.869 0.998 1.000 1.000 1.012

Guangxi 1.022 1.024 1.000 1.000 0.916 0.995 0.999 1.000 1.016

Hainan 1.038 1.039 1.000 1.000 0.600 0.985 1.000 1.000 1.022

South Henan 1.019 1.020 1.000 1.000 1.000 1.000 1.002 1.000 1.021
Hubei 1.023 1.025 1.000 1.000 0.859 1.005 1.000 1.000 1.029

Hunan 1.022 1.023 1.000 1.000 0.778 0.982 1.000 1.000 1.003

Chongging 1.017 1.018 1.000 1.000 0.983 1.000 0.999 1.000 1.017

Guizhou 1.020 1.021 1.000 1.000 1.000 1.000 1.000 1.000 1.020

Southwest Sichuan 1.013 1.015 1.000 1.000 0.763 0.986 1.000 1.000 0.999
Xizang 1.018 1.019 1.000 1.000 1.000 1.000 0.994 0.999 1.011

Yunnan 1.025 1.027 1.000 1.000 0.870 0.999 0.999 1.000 1.024

Gansu 1.029 1.031 1.000 1.000 0.972 1.000 1.000 1.001 1.030

Ningxia 1.038 1.039 1.000 1.000 1.000 1.000 1.000 1.000 1.038

West Qinghai 1.022 1.023 1.000 1.000 0.916 0.999 1.000 0.998 1.018
Shaanxi 1.024 1.025 1.000 1.000 0.930 0.987 1.002 1.000 1.013

Xinjiang 1.041 1.042 1.000 1.000 0.629 1.009 1.007 1.000 1.057

North 1.026 1.028 1.000 1.000 0.938 1.003 1.001 1.000 1.030
Northeast 1.034 1.035 1.000 1.000 0.757 0.994 1.002 0.999 1.029
Central 1.021 1.022 1.000 1.000 0.928 0.999 1.000 1.000 1.020
South 1.020 1.022 1.000 1.000 0.882 0.996 1.000 1.000 1.016
Southwest 1.017 1.019 1.000 1.000 0.850 0.993 1.000 1.000 1.010
West 1.031 1.033 1.000 1.000 0.842 0.999 1.003 1.000 1.033
China 1.023 1.024 1.000 1.000 0.884 0.997 1.001 1.000 1.020

Source: Authors’ calculation.
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Appendix Table 3. Malmquist productivity index and its components by year.
year TC TCM OB 1B TE EC SEC OME TFP
1978 1.008 1.009 1.000 0.999 0.892 0.989 0.998 1.000 0.995
1979 1.007 1.008 1.000 0.999 0.882 1.033 1.000 1.000 1.040
1980 1.008 1.008 1.000 1.000 0.904 0.987 1.002 1.000 0.996
1981 1.008 1.009 1.000 0.999 0.890 0.987 0.999 0.999 0.994
1982 1.009 1.009 1.000 0.999 0.877 0.988 1.001 1.001 0.998
1983 1.010 1.010 1.000 1.000 0.866 0.970 1.002 0.999 0.981
1984 1.011 1.011 0.999 1.000 0.841 1.026 1.000 0.999 1.036
1985 1.011 1.011 1.000 1.000 0.859 1.009 0.999 1.000 1.019
1986 1.012 1.012 1.000 1.000 0.864 0.994 0.999 1.000 1.006
1987 1.011 1.013 0.999 1.000 0.859 1.008 0.999 1.000 1.018
1988 1.011 1.012 1.000 1.000 0.863 1.051 1.000 1.000 1.062
1989 1.012 1.012 1.000 1.000 0.901 0.973 1.001 1.000 0.985
1990 1.013 1.014 1.000 1.000 0.874 1.021 1.001 1.000 1.035
1991 1.014 1.015 1.000 1.000 0.890 1.015 1.001 1.000 1.031
1992 1.015 1.016 1.000 1.000 0.902 1.009 1.002 1.000 1.027
1993 1.015 1.016 0.999 1.000 0.910 0.985 1.001 1.001 1.002
1994 1.016 1.016 1.000 1.000 0.896 1.008 1.001 1.000 1.026
1995 1.017 1.017 1.000 1.000 0.904 1.006 1.001 1.000 1.025
1996 1.019 1.019 1.000 1.000 0.908 1.007 1.001 0.999 1.026
1997 1.020 1.020 1.000 1.000 0.914 0.996 1.000 1.000 1.016
1998 1.022 1.022 1.000 1.000 0.909 1.008 0.999 1.000 1.028
1999 1.023 1.023 1.000 1.000 0.913 1.009 1.000 1.000 1.032
2000 1.024 1.024 1.000 1.000 0.920 1.000 1.001 1.000 1.024
2001 1.025 1.025 1.000 1.000 0.919 1.000 1.001 1.000 1.026
2002 1.026 1.027 1.000 1.000 0.919 0.998 1.001 1.001 1.026
2003 1.027 1.028 0.999 1.000 0.916 0.974 1.001 1.000 1.001
2004 1.028 1.028 1.000 1.000 0.894 0.991 1.001 1.000 1.020
2005 1.030 1.029 1.000 1.000 0.886 0.999 1.001 1.000 1.030
2006 1.031 1.032 1.000 1.000 0.885 0.975 1.002 0.999 1.006
2007 1.032 1.032 1.000 1.000 0.862 0.978 1.001 1.000 1.010
2008 1.034 1.033 1.001 1.000 0.844 1.006 1.001 1.000 1.041
2009 1.036 1.036 1.000 1.000 0.851 0.984 1.001 1.001 1.022
1978-83 1.008 1.009 1.000 0.999 0.884 0.991 1.000 1.000 0.999
1984-89 1.011 1.012 1.000 1.000 0.865 1.010 1.000 1.000 1.021
1990-93 1.015 1.015 1.000 1.000 0.894 1.007 1.001 1.000 1.023
1994-97 1.018 1.018 1.000 1.000 0.906 1.004 1.001 1.000 1.023
1998-03 1.025 1.025 1.000 1.000 0.916 0.998 1.000 1.000 1.022
2004-10 1.032 1.033 1.000 1.000 0.863 0.989 1.001 1.000 1.022
1978-10 1.023 1.024 1.000 1.000 0.884 0.997 1.001 1.000 1.020
Source: Authors’ calculation.
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