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ABSTRACT 
Under consideration is a nonclassical stationary problem on heat conduction in a body with the pre-set surface 
temperature and heat flow. The body contains inclusions at unknown locations and with unknown boundaries. 
The body and inclusions have different constant thermal conductivities. The author explores the possibility of 
locating inclusions. The article presents an integral criterion based on which a few statements on identification of 
inclusions in a body are proved. 
 
KEYWORDS 
Heat Conduction; Inclusions; Defect; Heterogeneous Medium; Inverse Problem 

1. Introduction 
Under analysis is a nonclassical problem on heat conduction, with the known body’s surface temperature and 
surface heat flow. It is assumed that the medium is heterogeneous and contains inclusions. Coefficients of heat 
conductivity of the medium and inclusions are assumed by constants and differ among themselves. The problem 
is formulated as the problem on finding heterogeneities (flaw detection problem) by overdetermined surface 
conditions. On the boundary surface, the condition of continuity of the temperature and heat flow is fulfilled. 
Such problems belong to the nonclassical problems of mathematical physics. 

Stationary problems of heat conduction are described by Equation 0T∆ = , where T  is the temperature of a 
body and ∆  is the Laplace operator. On an interface of two mediums conditions are satisfied  

[ ] [ ]0, 0,TT W k
n

∂ = = = ∂ 
                                (1) 

where W  is the heat flow; k  is the coefficient of the thermal conductivity. 
Hereinafter k  is the coefficient of the host medium. It follows from (1) that the normal derivative of T  

becomes discontinuous at the boundary of two surface. 
Essentially overdefined condition for the Laplace equation mean assignment of values of T  and T n∂ ∂  on 

∂Ω , or, in our case, the values of T  and W  on ∂Ω . 
For a homogeneous medium, evidently, the essentially overdetermined conditions cannot be arbitrary, i.e., T  

and ( )1T n k W∂ ∂ =  are functionally connected on ∂Ω . Let’s receive conditions of coordination for the last 
and consequences following from them. 

Consider a body with volume Ω  and surface ∂Ω . Let the functions  

( ) ( ) ( ) ( ) ( ) ( ), d , , dx xA a x R x S B b x R x n Sξ ξ ξ ξ
∂Ω ∂Ω

= = ∂ ∂∫∫ ∫∫                (2) 

be potentials of the simple layer and double layer, respectively. Here, ( ),R x ξ  is the fundamental solution of 
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the Laplace equation [1]; ( )a x  and ( )b x  are the densities of the layers, and n is a vector of external normal 
to ∂Ω . It is assumed that ∂Ω  is piecewise-smooth according to Lyapunov and ( )a x  and ( )b x  fulfill the 
Holder condition. Let ( ) ( ) ( )T A Bξ ξ ξ= − , then 

( ) ( ) ( ) ( )
( )
( )

, ,
, , d

, .x

T
a x R x b x R x n S

T

ξ ξ
ξ ξ

ξ ξ

+ +

− −
∂Ω

 ∈Ω− ∂ ∂ =    ∈Ω
∫∫               (3) 

Here, +Ω  and −Ω  are, respectively, the exterior and interior of Ω , the boundary surface not included. It is 
stated that the densities ( )a x  and ( )b x  are concordant if ( )T ξ+  is continuous in Ω  and is equal to 
( )b x  on ∂Ω . The consistency of the densities can be interpreted as correspondence of ( )a x  and ( )b x  to 

the values of a harmonic potential T  and its normal derivative on ∂Ω  in the homogeneous medium. By the 
uniqueness of the Dirichlet and Neumann problem, the use of the densities ( )b x  and ( )a x  unequivocally 
recovers the concordant ( )a x  and ( )b x , respectively. Hereinafter, the set ( ),b a  of the concordant densities 
is denoted in terms of the class ( )S ∂Ω . 

Statement 1. The densities b and a are concordant, i.e. ( ) ( ),b a S∈ ∂Ω  when and only when the equality 
below holds true  

( ) 0, ,δ ξ ξ −= ∈Ω                                       (4) 
where 

( ) ( ) ( ) ( ) ( ),
, d x

R x
a x R x b x S

n
ξ

δ ξ ξ
∂Ω

∂ 
= − ∂ 
∫ . 

Proof. The necessity follows apparently from Green’s formula for harmonic functions [1]. Proving of the suf- 
ficiency uses equivalent of Sokhotsky-Plemeli’s formula  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0
1 1, ,
2 2i eT A B b T A B bξ ξ ξ ξ ξ ξ ξ ξ+ −= − + = − −             (5) 

where 0ξ ∈∂Ω , and iξ  and eξ  are the internal and external limit points relative to 0ξ , respectively. It fol- 
lows from (4) that ( ) 0eT ξ− =  from whence, considering (5), appears ( ) ( ) ( ) ( )0i e iT T T bξ ξ ξ ξ+ − +− = =  
which is to be proved. 

Statement 1 is similar to the theorem on boundary values of analytic function in the complex-variable func- 
tion theory where conditions of continuous extension of analytical function from the closed contour to a domain 
are defined. 

It is worth pointing at one property of the functions belonging to the class ( )S ∂Ω . Let ( ) ( ),b a S∈ ∂Ω  and 
1b  and 1a  be the values of densities, found from (3), at the boundary of an area on 1Ω ∈Ω ; then 
( ) ( )1 1 1,b a S∈ ∂Ω . In addition, the condition of the Neumann problem resolvability is fulfilled at ∂Ω  and 1∂Ω , 
which means that the heat flows through ∂Ω  and 1∂Ω  are zero. 

Subsequently, the potentials ( ) ( )b x T x=  and the flow ( ) ( ) ( )W x ka x k T x n= = ∂ ∂  on ∂Ω  are assumed 
known. Then, the concordance conditions (4) are written as ( )( ) ( ), 1 .T k W S∈ ∂Ω  For ( )S ∂Ω , we also use 
( ) ( ), ,T T n k S∂ ∂ ∈ ∂Ω . 

Let’s prove the statement following from the statement 1. 
Statement 2. Let on the boundary ∂Ω  of the domain Ω  with the coefficient of the thermal conductivity 

coefficient k  the temperature ( )T x  and the heat flow ( )W x  ( 0W ≠  on ∂Ω ) be assigned such that 
( )( ) ( ) ( ), 1 , , .T k W T T n k S= ∂ ∂ ∈ ∂Ω  Then ( )( ) ( )0, 1T k W S∉ ∂Ω  for any 0k k≠  it has to be executed. 

Proof. On ∂Ω  a function 0T  is introduced such that 0T T=  and 0 0k T n k T n∂ ∂ = ∂ ∂ . Assume, that 
( ) ( )0 0 0, ,T T n k S∂ ∂ ∈ ∂Ω , i.e., in accord with (4) 

( ) ( ) ( ) ( )0
0 , ,

, d 0, .x

R x T x
T x R x S

n n
ξ ξ

ξ ξ −

∂Ω

 ∂ ∂
− = ∈Ω 

∂ ∂  
∫ .                (6) 

In the same way, from the condition ( )( ) ( ) ( ), 1 , ,T k W T T n k S= ∂ ∂ ∈ ∂Ω  we have 

( ) ( ) ( ) ( ), ,
, d 0, .x

R x T x
T x R x S

n n
ξ ξ

ξ ξ −

∂Ω

∂ ∂ 
− = ∈Ω ∂ ∂ 

∫                 (7) 
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The flow condition ( ) ( )0 0W k T n k T n= ∂ ∂ = ∂ ∂  on ∂Ω  yields  

( ) ( )0

0

T x T xk
n nk

∂ ∂
=

∂ ∂
. 

Placing the expression above in (6) and, then, its deduction from (7), considering 0T T=  on ∂Ω , produces  

( ) ( ) ( )
01 , d 0, .x

T xkI R x S
nk

ξ ξ ξ −

∂Ω

∂ = − = ∈Ω  ∂  ∫
 

For the simple layer potential ( )I ξ , it appears that the external normal derivative ( ) 0I nξ∂ ∂ = . Then, ac- 
cording to [1] ( ) 0,W x =  x∈∂Ω , i.e. we come to a contradiction with a condition the statement. That is to say, 
the statement has been proved.  

Statement 3 (The theoremof the coefficient problem uniqueness). Let T  and W  be assigned on ∂Ω  
( 0W ≠  on ∂Ω ). Then k  of the medium is uniquely found from the condition ( )( ) ( ), 1T k W S∈ ∂Ω . 

Proof. Inasmuch as W k T n= ∂ ∂ , the uniform medium concordance condition (4) can be written as 

( ) ( ) ( ) ( )
, 1 , d 0, .x

R x
T x R x W x S

n k
ξ

ξ ξ −

∂Ω

∂ 
− = ∈Ω ∂ 

∫                (8) 

Let there exist 0k k≠  for which the condition (8) holds true, too. Rewrite (8) for 0k  and diminish then (8) 
by  

( )
( )

( ) ( )
0

1 0 , d 0, .x

k k
I R x W x S

kk
ξ ξ ξ −

∂Ω

−
= = ∈Ω∫  

For the simple layer potential ( )1I ξ , it appears that the external normal derivative ( )1 0I nξ∂ ∂ = . Then, 
according to [1], ( ) 0,W x =  x∈∂Ω , i.e. we come to a contradiction with a condition the statement. That is to 
say, the statement has been proved.  

Consequence 1. If T  and W  ( )0W ≠  are assigned on ∂Ω  and ( )( ) ( ), 1T k W S∈ ∂Ω  and 
( )( ) ( )0, 1T k W S∉ ∂Ω  hold true, then 0k k= . 

The condition (8) produces the formula for the coefficient of the thermal conductivity coefficient  

( ) ( )

( ) ( )

, d

,

xR x W x S
k

R x
T x

n

ξ

ξ
∂Ω

∂Ω

=
∂

∂

∫

∫
. 

Let's notice that in [3] conditions for determination of the thermal conductivity coefficient for a non-stationary 
problem of heat conductivity are received. 

Based on the introduced definitions and statements, there are a few inferences for a heterogeneous medium. A 
heterogeneous medium is understood to be the medium containing inclusions (defects), with the conjugacy con- 
dition (1) satisfied at their boundaries. Solving the problem on an extent from ∂Ω  to an inclusion boundary 

1∂Ω  defines T and T n∂ ∂  on. 1∂Ω . The problem on the extent from ∂Ω  belongs to the known problems on 
the harmonic extension, i.e., Cauchy problem for the Laplace equation [2]. These problems belong to condition- 
ally correct problems of mathematical physics and have the unique solution. Geophysics has many methods of 
solving such problems. One of methods is offered in [3-6]. 

It is assumed that the condition ( )( ) ( )0
1, 1T k W S∈ ∂Ω  is fulfilled on the boundary 1∂Ω  of the inclusion 

with 0k . This condition is assumed to be the condition for the inclusion, which means continuity of the solution 
inside the inclusion, i.e., the inclusion is considered as a homogenous medium. Let us prove the following state- 
ment. 

Statement 4 (condition of existence of defect in a body). Let ( )T x  and ( )W x  be assigned on ∂Ω  
( )x∈∂Ω . If the body contains an inclusion 1Ω  with the thermal conductivity coefficient 0k k≠  ( k  is the 
coefficient of the thermal conductivity coefficient of the host medium), then ( )( ) ( ), 1T k W S∉ ∂Ω . 

Proof. Assume ( )( ) ( ), 1T k W S∈ ∂Ω . Continuing the decision from ∂Ω  to Ω  on 1∂Ω  we will find T, 
T n∂ ∂  and, consequently, W . According to the above mentioned property of ( )S ∂Ω  on 1∂Ω , the condition 
( ) ( )1, ,T T n k S∂ ∂ ∈ ∂Ω  or, which is the same kind of thing, ( )( ) ( )1, 1T k W S∈ ∂Ω  is to be fulfilled. On the 
other hand, the solution in the inclusion is continuous, i.e. ( )( ) ( )0

1, 1T k W S∈ ∂Ω . Thus, we have that 
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( )( ) ( )1, 1T k W S∈ ∂Ω  and ( )( ) ( )0
1, 1T k W S∈ ∂Ω  on 1∂Ω . Under consequence 1, this is only possible 

when 0k k= , which is a contradiction a statement condition. So, the statement has been proved.  
As follows from Statement 4, an inclusion as though initiates features of a field T ; this means that in con- 

struction of the solution in Ω  via the extent from ∂Ω , the potential is not expressed in terms of finite func- 
tions.  

The introduced definitions and proved statements allow stating the uniqueness of finding the inclusion boun- 
dary and the heat conductivity coefficient under fulfillment of the conjugacy condition (1). 

Statement 5 (Theorem of the unique definition of inclusion boundary). Let in the medium Ω  with k , T  
and W  on ∂Ω  be known ( 0W ≠  on ∂Ω ) and let Ω  contain an inclusion 1Ω  with 0k  ( )0k k≠ . Let the 
solution of the problem on the extent from ∂Ω  to 1∂Ω , i.e. define T  and W  ( )0W ≠  on 1∂Ω . Then the 
condition ( )( ) ( )0

1, 1T k W S∈ ∂Ω  uniquely defines the boundary of the inclusion 1Ω .  
Proof. We extent the solution from ∂Ω  in Ω . Let there be two surfaces 1∂Ω  and 1′∂Ω  in Ω , and 
( )( ) ( )0

1, 1T k W S∈ ∂Ω  and ( )( ) ( )0
1, 1T k W S ′∈ ∂Ω  hold true at these surfaces. Below we consider three 

cases.  
1) Let 1 1′Ω ⊂ Ω , Figure 1. Assign an arbitrary function υ  on 1∂Ω  and 1′∂Ω . Use the value of υ  on 

1∂Ω  to plot a harmonic function in 1Ω  and find nυ∂ ∂  on 1∂Ω  for this function. Likewise, assign υ  at 
1′∂Ω  and find nυ∂ ∂  at 1′∂Ω . 

For the harmonic υ  and T we will write down Green’s formula  

1

0

1 d 0.W T S
nk
υυ

∂Ω

∂ − = ∂ ∫                                  (9) 

Likewise, write Green’s function for 1′∂Ω  

1

0

1 d 0.W T S
nk
υυ

′∂Ω

∂ − = ∂ ∫                              (10) 

Summing up (9) and (10) yields a Green formula for the domain 1 1′Ω −Ω  

( )1 11

0

1 d 0.W T S
nk
υυ

′∂ Ω −Ω

∂ − = ∂ ∫                            (11) 

On the other hand, once the solution is continuously extendable from ∂Ω  in the domain 1 1′Ω −Ω , i.e. 
( )( ) ( )( )1 1, 1T k W S ′∈ ∂ Ω −Ω , then this solution has its Green’s formula, too  

( )1 11

1 d 0.W T S
k n

υυ
′∂ Ω −Ω

∂ − = ∂ ∫                           (12) 

Diminution of (12) by (11) produces  

( )1 11

0

1 1 d 0.W S
k k

υ
′∂ Ω −Ω

 − =   ∫                           (13) 

The integral (13) equals zero for the arbitrary function υ  whence it follows that ( ) 0W x =  and therefore 
0T n∂ ∂ =  on ( )1 1x ′∈∂ Ω −Ω , then constT =  in the domain. It follow from the harmonicity of T  in 

1′Ω Ω  that 0T n∂ ∂ =  on ∂Ω , i.e. 0W =  on ∂Ω . Thus and so, we arrive at contradiction with the condi-
tion of our statement. 

2) Let 1 1′Ω ⊄ Ω , 1 1′Ω ⊄ Ω  and 1 1′Ω Ω ≠ Ο/ , Figure 2. It can readily be understood that 
( )( ) ( )( )( )1 1, 1T k W S ′∈ ∂ Ω− Ω Ω . Then, inasmuch as ( )( ) ( )( ), 1T k W S∉ ∂ Ω , it is evident that 
( )( ) ( )( )1 1, 1T k W S ′∉ ∂ Ω Ω , i.e., there is an inclusion inside 1 1′Ω Ω . Let this domain be denoted as 1′′Ω . 

For the inclusion 1′′Ω  we have 1 1′′Ω ⊂ Ω  and 1 1′′ ′Ω ⊂ Ω . Then, ( )( ) ( )0
1, 1T k W S∈ ∂Ω , on the one hand, and 

( )( ) ( )0
1, 1T k W S ′′∈ ∂Ω , on the other hand; besides, 1 1′′Ω ⊂ Ω , which agrees with the conditions of paragraph 1 

of Statement 5. Thus we come to a contradiction. 
3) Let 1 1′Ω Ω = Ο/ , Figure 3. The domain Ω  is conditionally divided into two subdomains, one contain- 

ing 1Ω , the other containing 1′Ω . The domains are denoted by 1Ω  and 2Ω , respectively. Let an inclusion be 
inside 1Ω . Then ( )( ) ( )( )1, 1T k W S∈ ∂ Ω−Ω . In this case, ( )1 1′Ω ⊂ Ω−Ω . Whereupon ( )( ) ( )1, 1T k W S ′∈ ∂Ω  
is to be fulfilled alongside with ( )( ) ( )0

1, 1T k W S ′∈ ∂Ω  on 1′∂Ω , which contradicts consequence 1. In case 
that the inclusion is inside 2Ω , the relevant considerations will result in the same contradiction. 
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Figure 1. Conditions when one inclusion contains in other. 

 

 
Figure 2. Conditions when two inclusions have the general area, i.e. are crossed. 

 

 
Figure 3. Conditions when inclusions aren’t crossed. 

 
With the known thermal conductivity coefficient of the host medium, it is possible to find the thermal con- 

ductivity coefficient of the inclusion.  
Statement 6 (Theory of the unique definition of the thermal conductivity coefficient of inclusion). Let ( )T x  

and ( )W x  be pre-set on ∂Ω  ( ( ) 0W x ≠  at ∂Ω ). Let the medium Ω  with the thermal conductivity coefficient  

k  contain an inclusion 1Ω  with the thermal conductivity coefficient 1k  and ( ) ( ) ( )( )1
1,T x W x S
k

 ∈ ∂ Ω−Ω 
 

 

( ( ) 0W x ≠  on 1∂Ω ). Then the condition ( ) ( ) ( )1
1

1,T x W x S
k

 
∈ ∂Ω 

 
 uniquely defines 1k  for the inclusion.  

Proof. Assume that Ω  contains two surfaces 1∂Ω  and 2∂Ω  where the settings of the theorem are ful- 

filled and ( ) ( ) ( )1
1

1,T x W x S
k

 
∈ ∂Ω 

 
, ( ) ( ) ( )2

2

1,T x W x S
k

 
∈ ∂Ω 

 
, 1 2k k k≠ ≠ . Likewise Statement 5, a 

few cases are considered below.  
1) Let 1 2∂Ω = ∂Ω  and 1 2k k≠ . But if the settings are fulfilled on 1∂Ω  and 2∂Ω , then, according to con- 
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sequence 1, it must be that 1 2k k= . We have arrived at the contradiction.  
2) Let 1 2∂Ω ∂Ω = Ο/  Figure 3. The domain Ω  is conditionally divided into two subdomains, one con- 

taining 1Ω , the other containing 2Ω . The domains are denoted by 1Ω  and 2Ω , respectively. Let an inclusion be inside  
1Ω . Accordingly, the domain 2Ω  belongs to 1Ω−Ω . Under the theorem settings, ( ) ( ) ( )( )1

1,T x W x S
k

 ∈ ∂ Ω−Ω 
 

, 

then, since ( )2 1Ω ⊂ Ω−Ω , we have that ( ) ( )2
1,T W x S
k

 ∈ ∂Ω 
 

. On the other hand, the condition 

( )2
2

1,T W S
k

 
∈ ∂Ω 

 
 holds true at 2Ω , too. Then, in pursuance to consequence 1, we get 2k k= , which is the  

contradiction. In case that the inclusion is inside 2Ω , the relevant considerations will reach to the same contra- 
diction.  

3) Let 1 2Ω ⊂ Ω  or ( )2 1Ω ⊂ Ω  Figure 1. Then ( ) ( )1
1

1,T W x S
k

 
∈ ∂Ω 

 
 and ( ) ( )2

2

1,T W x S
k

 
∈ ∂Ω 

 
. In 

other words, we consider the domain 1Ω  with the inclusion 2Ω  and 1 2k k≠ . According to the statement 4 
we come to a contradiction.  

4) Let 1 2Ω ⊄ Ω , 1 1′Ω ⊄ Ω  and 1 2Ω Ω ≠ Ο/ , Figure 2. Continuing the decision with the ∂Ω  on 
( )( )1 2∂ Ω− Ω Ω  we have ( )( ) ( )( )( )1 2, 1T k W S∈ ∂ Ω− Ω Ω . Then according to the statement 4 inclusion 

is in 1 2Ω Ω . Denoted this domain by 0Ω . The domain 0Ω  belongs to 1Ω  and 2Ω . It follows whereof  

that ( )0
1

1,T W S
k

 
∈ ∂Ω 

 
 and ( )0

2

1,T W S
k

 
∈ ∂Ω 

 
. According to consequence 1, we arrive at 1 2k k= , which  

is the contradiction. The statement has been proved. 
The credibility of the criterion ( )S ∂Ω  was tested in the two-dimensional calculations. At the side of a unit 

square [ ], 0,1x y∈ , the values of T  and W  in a medium enclosing a circular inclusion were pre-set. The 
field of the inclusion was modeled by the potentials in the form of 1

1 1 2sin sinT C R C Rθ θ−= +  and 
1

2 1 2cosT C R C Rcosθ θ−= + . The field inside the inclusion was described by 1 3 sinT C R θ=  or 2 3 cosT C R θ= ,  

where ( ) ( )( )0.52 2
0 0R x x y y= − + − , ( )0 0,x y  are coordinates of the inclusion; θ  is angle between the vector 

R  and axis 0X . The constant 3С  were found from the conjugacy condition (1). The calculations used  

1 0.0025С = − , 2 52С = , 2 1 10k k = , 0 0.007R = , where 1k  and 2k  were the thermal conductivity coeffi-
cients of the host medium and inclusion, respectively, and 0R  was the inclusion radius. In a Figure 4 calcula-
tions for inclusion in the field 1T  and in a Figure 5 in the field 2T  are presented. 

  

 
Figure 4. The curves ( )δ ξ  for ( )= xξ ξ ;0.015 , [ ],x y0,1 0∈ =  in the field T1 . at the distances H 0.02=  and 

H 0.15= . 
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Figure 5. The curves ( )δ ξ  for ( )= xξ ξ ;0.015 , [ ],x y0,1 0∈ =  in the field T2  at the distances H 0.02=  and 

H 0.15= . 
 

Figures 4 and 5 show the curves ( )δ ξ  for ( );0.015xξ ξ= , [ ]0,1 , 0x y∈ = , i.e. the point ξ  moves over 
the square side 0y =  at distance 0.015. Curves 1 and 2 correspond to the values of ( )δ ξ  at the distances 

0.02H =  and 0.15H = . Values H corresponds to a defect depth under the square side 0y = . 
As the calculations by the criterion ( )S ∂Ω  showed, the inclusion at the occurrence depth 0.2H =  was not 

revealed; whereas at 0 0.12R H< <  the inclusion was located at high reliability. 

2. Conclusions 
1) The criterion ( )S ∂Ω  allows locating inclusions in a body upon the conjugacy condition (1) at the boun- 

dary surface.  
2) Based on the criterion ( )S ∂Ω , both the boundary of the inclusion and its thermal conductivity are uni- 

quely defined.  
3) The criterion ( )S ∂Ω  is reliable for near-surface inclusions. 
The study was supported by the Russian Foundation for Basic Research, Project No. 11-01-00522. 
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