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ABSTRACT 
By removing a 12C atom from the tetrahedral configuration of the diamond, replacing it by a 13C atom, and re-
peating this in a linear direction, it is possible to have a linear chain of nuclear spins one half and to build a solid 
state quantum computer. One qubit rotation, controlled-not (CNOT) and controlled-controlled-not (CCNOT) 
quantum gates are obtained immediately from this configuration. CNOT and CCNOT quantum gates are used 
to determined the design parameters of this quantum computer. 
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1. Introduction 
So far, the idea of having a working quantum computer 
with enough number of qubits (at least 1000) has faced 
two main problems: the decoherence [1-8] due the 
interaction of the environment with the quantum system, 
and technological limitations (pick up signal from NMR 
quantum computer [9,10], laser control capability in ion 
trap quantum computer [11,12], physical build up for 
more than two qubits like in photons cavities [13], atoms 
traps [14,15], Josephson’s joint ions [16], Aronov-Bhom 
devices [17], diamond NV device [18], or high field and 
high field gradients in linear chain of paramagnetic 
atoms with spin one half [19]). In particular, the linear 
chain of paramagnetic atoms of spin one half became a 
good mathematical model to make studies of quantum 
gates [20], quantum algorithms [21], and decoherence 
[22] which could be applied to other quantum computers. 
In this paper, one put together the ideas of using the 
diamond stable structure and the linear chain of spin one 
half nucleus. To do this, on the tetrahedral 12C (with 
nuclear spin zero) configuration of the diamond main 
structure, one removes a 12C element of this con- 
figuration and replace it by a 13C (with nuclear spin one 
half) atom, and one repeats this replacement along a 

linear direction of the crystal. By doing this replacement, 
one obtains a linear chain of atoms of nuclear spin one 
half which is protected from the environment by the 
crystal structure and the electrons cloud. Therefore, one 
could have a quantum computer highly tolerant to en- 
vironment interaction and maybe not so difficult to build 
it, from the technological point of view.  

2. 12C-13C Diamond and Spin-Spin  
Interaction 

The above idea is represented in Figure 1, where the 13C 
atoms are place on the position of some 12C atoms. This 
replacement could be done using the same technics used 
to construct the diamond NV structure [23], or using ion 
implantation technics [24] and neutralization of 13C in the 
diamond [25]. It is assumed in this paper that this 
configuration can be built somehow.  

Now, as one can see, the important interaction on this 
configuration is the spin-spin interaction between the 
nucleus of the 13C atoms. This interaction is well known 
[26] and is given by 

( )( )1 2 1 2
3 ,

4
oU

µ ⋅ ⋅ − ⋅
=

π
m x m x m m

x
      (1) 
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Figure 1. Diamond 12C -13C. 

 
where the magnetic moment , 1, 2i i =m  of 13C’s is 
related with the nuclear spin as  

,i iγ=m S                  (2) 

being γ  the proton gyromagnetic ratio  
( )82.675 10 rad T sγ ≈ × ⋅ . Without loosing the main 
idea, it will be assumed here that 13C magnetic moment is 
due to proton. The variable x  indicates the separation 
vector between two 13C nucleus, which has magnitude 

1010 ma −= x . Aligning the chain of 13C nucleus 
along the x-axis of the reference system and assuming 
Ising interaction between 13C nucleus, this energy can be 
written as  

1 2 ,z zJU S S=


                 (3) 

where the coupling constant J  has been defined as  
2

3 .
4

oJ
a

µ γ
=

π


                  (4) 

3. Hamiltonian of the System 
Consider a magnetic field of the form  

( ) ( ) ( ) ( )( )0, cos , sin , ,x t b t b t B xω ϕ ω ϕ= + − +B  (5) 

where b , ϕ , and ω  are the magnitude, the phase, and 
the frequency of the transverse rf-field. The z-component 
of the magnetic field has a gradient on the x-axis, 
determined by the difference on Larmore’s frequencies 
of the 13C’s nuclear magnetic moments,  

0 .
B
x x

ω
γ

∆ ∆  = ∆ ∆ 
                (6) 

The magnetic field at the location of the ith-13C atom 
is ( ) ( ),i it x t=B B , and the interaction energy of the 
magnetic moments of the 13C atoms with the magnetic 
field is  

( )
1

,
N

i i
i

U t
=

= − ⋅∑m B              (7) 

where N  is the number of 13C atoms aligned along the 
x-axis. This energy can be written as  

( )
1

1 1
e e ,

2

N N
z i i

j j k k
j k

U S S Sθ θω
−

− − +

= =

Ω
= − − +∑ ∑      (8) 

where jω  is the Larmore’s frequency of the ith-13C,  

( )0 ,j jB xω γ=               (9) 

Ω  is the Rabi’s frequency,  
,bγΩ =                  (10) 

jS −  and jS +  are the ascent and descent spin operators, 
x y

j j jS S iS± =  , and θ  has been defined as  
.tθ ω ϕ= +                 (11) 

Let us consider first and second neighbor interactions 
among 13C nuclear spins, and assuming equidistant 
separation between any pair of spins, the Hamiltonian of 
the system is  

( )

1

1
1 1

2

2
1 1

e e ,
2

N N
z z z

j j j j
j k

N N
z z i i
l l j j

l j

JH S S S

J S S S Sθ θ

ω
−

+
= =

−
− − +

+
= =

= − +

′ Ω
+ − +

∑ ∑

∑ ∑





 (12) 

where J  is the coupling constant of first neighbor 13C 
atoms, and J ′  is the coupling constant of second 
neighbor 13C atoms which must be about one order of 
magnitude lower than J . One can write this Hamil- 
tonian as ( )0H H W t= + , where 0H  and W  are 
defined as  

1 2

0 1 2
1 1 1

,
N N N

z z z z z
j j j j l l

j k l

J JH S S S S Sω
− −

+ +
= = =

′
= − + +∑ ∑ ∑

 

  (13) 

and  

( ) ( )
1

e e .
2

N
i i

j j
j

W t S Sθ θ− − +

=

Ω
= − +∑       (14) 

The operator 0H  is diagonal on the basis 
{ }1 0,1k

N ξ
ξ ξ ξ

=
=   of the Hilbert space of 2N  

dimensionality. Its eigenvalues defines the spectrum of 
the system,  

( ) ( )

( )

1

2

1

1 1

2

1

1 1
2 2

1
2

j k k

l l
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j
j k

N

l

JE

J

ξ ξ ξ
ξ

ξ ξ

ω +

+

−
+

= =

−
+

=


= − − + −


′ + − 



∑ ∑

∑



   (15) 

Since jJ J ω′ <   for 1, ,j N=  , this spectrum is 
not degenerated with 00 0E



 as the energy of ground 
state, and 11 1E



 as the energy of the most exited state. 
To calculate the spectrum, one has used the following 
action of z

jS  operator  

( )1 .
2

jz
jS ξξ ξ= −

            (16) 
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The Schrödinger’s equation,  

,i H
t

∂ Ψ
= Ψ

∂
               (17) 

is solved by proposing a solution of the form  

( ) ,C tξ
ξ

ξΨ = ∑              (18) 

which brings about the following system of first order 
differential equations on the interaction representation  

( ) ( ),e ,i E E ti a a W tδ ξ
δ ξ δ ξ

ξ

−= ∑



        (19) 

where aδ  and ,Wδ ξ  are defined as  

( ) ( )e iE ta t C t δ
δ δ

−=             (20) 

and  

( ) ( ), .W t W tδ ξ δ ξ=            (21) 

This is very well known procedure to solve time 
dependent Schrödinger’s equation, and the solution of 
Equation (19) brings about he unitary evolution of the 
system (given the initial condition oΨ ). 

Defining the evolution parameter τ  through the 
change of variable ot ω τ=  ( )2 MHzoω = π , the 
parameters jω , Ω , J  and J ′  are real numbers 
given in units of oω . This evolution parameter will be 
used below in the analysis of the CNOT quantum gate.  

4. Analysis of the System 
In order to get an operating quantum computer, one 
needs to show that, at least, one qubit rotation gate 
( )1N =  and two qubits CNOT gate ( )2N =  or three 
qubits controlled-controlled-not (CCNOT) gate ( )3N =  
can be constructed from this quantum system. Because 
this quantum system is homeomorphic [27] to the linear 
chain of paramagnetic atoms with spin one half system 
[28], it is clear from the point of view of mathematical 
models that the above gates can be constructed with this 
12C-13C diamond system. However, one needs to assign 
realistic workable parameters for the real design of a 
12C-13C diamond quantum computer. To do this, one 
studies in this section the behavior of a quantum CNOT 
and CCNOT gates as a function of several parameters. 
One neglect one qubit rotation ( )1, 0N J J ′= = =  
because it is obvious that one can get it through an 
arbitrary pulse on the rf-field with the frequency given by 
the Larmore's frequency of the qubit ( )1ω ω= , for a 
single 13C atom in the diamond structure. In particular, 
the NOT quantum gate is obtained using a π -pulse 
duration ( )τ = π Ω  with this frequency. Therefore, the 
study of the CNOT ( )2, 0, 0N J J ′= = =/  and CCNOT 
( )3, 0, 0N J J ′= = =/ /  quantum gates is of the most 
interest. The equations for the two and three qubits 

dynamics are shown on the appendix. CNOT quantum 
gate corresponds to the transition 10 11↔ , and 
CCNOT quantum gate corresponds to the transition 
110 111↔ . The first and second transitions are 

obtained through the resonant frequencies  

( ) ( )11 10 111 110, and .E E E Eω ω= − = −    (22) 

Larmore’s frequencies are denoted by 1ω  and 2ω , 
and 3ω  is parametrized as  

( ) ( )2 1 3 11 , 1 2f fω ω ω ω= + = +        (23) 

where f  measures the relative change of the 
frequencies of qubits. The separation of the 13C nucleus, 
a , is parametrized as  

1010 m.a ξ −= ⋅               (24) 

For the CNOT quantum gate, one has the initial 
conditions ( ) ( ) ( )00 01 110 0 0 0C C C= = =  and  

( )10 0 1C = . The time is allowed to last a π -pulse 
( )τ = π Ω , and one takes the coupling constant as a 
fixed paramenter,  

0.12, 1.J ξ= =              (25) 

Figure 2 shows the fidelity parameter,  
2

ideal real ,F = Ψ Ψ            (26) 

at the end of the π -pulse, as a function of the Rabi's 
frequency, where realΨ  is the state obtained with the 
simulation, and idealΨ  is the expected state ( )11 . 
The simulation was done for two different weak 
magnetic fields and for 0.01f =  (1), 0.05f =  (2), 

0.1f =  (3), and 0.2f =  (4). The oscillations seen on 
this picture are due to the low and high contribution of 
the non resonant states ( 00  and 01 ) to the dynamics 
of the system, which depends on Rabi’s frequency and 
they are explained by the 2 kπ -method [19]. As one can 
see from this picture , the CNOT gate is very well 
produced either with 01 0.1 TB =  and 0.2f =  or with 

01 0.5 TB =  and 0.05f = . 
Figure 3 shows the gradient of magnetic field along 

the x-axis, the coupling constant J , and the fidelity F  
of the CNOT quantum gate as a function of the two 
qubits separation (characterized by the parameter ξ , 
Equation (24)), having 0.05f = . As one can see, the 
fidelity is not sensitive for relatively wide variation of ξ , 
meanwhile the gradient and coupling constant have the 
strong variation deduce from Equation (6) and Equation 
(4). Considering the separation of the two 13C atoms 
about the the length of the diamond unit cell, one can 
select 3ξ = , corresponding to a coupling constant of 

0.00445J = , and a magnetic field gradient of 
6

0 0.83 10 T mB a∆ ≈ × .  
One needs to mention that in the case the alignment of 

the 13C atoms be along the z-axis (the same direction of  
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Figure 2. Fidelity at the end of the π-pulse for CNOT. 

 

 
Figure 3. Effect of 13C-13C separation. 

 
the longitudinal magnetic field), the coupling constant 
deduced from Equation (1) would be given by 2J− , 
with J  given by Equation (4), and basically the results 
are the same as the presented here.  

According to these results, one has now an idea of the 
value of the parameters for the design of a quantum 
computer with the 12C - 13C diamond quantum system: (a) 
Separation between 13C atoms is 103 10 ma −= ×  which 
can be aligned along the x-axis, (b) coupling constant is 

( )0.00445 2  MHzJ = π , (c) longitudinal magnetic field 
is 01 0.05 TB = , (d) gradient of this longitudinal 
magnetic field along the x-axis is  

6
0 0.83 10 T mB a∆ = × , and (e) magnitude of the 

rf-magnetic field on the plane x-y is 0.00608 Tb =  
(Rabi's frequency ( )0.259 2  MhzΩ = π ).  

For the CCNOT quantum gate, one has the initial 
conditions ( )0 0kjiC =  for 1k j= ≠  and ( )110 0 1C = . 
The time is allowed to last a π -pulse ( )τ = π Ω . The 
coupling parameter J  is taken as before, and second 
neighbor coupling parameter 10J J′ = . Figure 4 shows 
the fidelity parameter as a function of Rabi’s frequency 
for magnetic field intensities (1) 0.01 ToB = , (2)  

 
Figure 4. Fidelity at the end of the π-pulse for CCNOT. 

 
0.05 ToB = , (3) 0.1 ToB = , and (4) 0.2 ToB = , for 

0.05f =  (a), and for 0.1f =  (b). As one can see fro 
these plots, a good CCNOT quantum gate can be 
obtained by choosing 0.1f =  (implying and encresing 
of the gradient of the magnetic field by a factor of two), 
and with the other parameters given as defined with the 
CNOT quantum gate.  

Although the gradient of the magnetic field might be a 
concern, the magnitude of the longitudinal magnetic field 
is low enough to think that this gradient can be achieved. 
The scalability of the system is clear, the read out system 
could be based on single spin measurement technics [29], 
and studies on decoherence remains to be done on this 
system. This quantum computer resembles a solid state 
NMR system [30].  

5. Conclusion and Discussion 
It was shown that by removing a 12C atom, replacing it 
by a 13C atom in the tetrahedral configuration of the 
diamond, and doing this process periodically in a linear 
direction, one could get a linear chain of nuclear spins 
one half which can work as a quantum computer. The 
interaction between 13C atoms is governed by the 
magnetic dipole-dipole interaction, and the parameters of 
a possible quantum computer design were determined by 
studying the quantum CNOT and CCNOT gates with two 
and three qubits respectively. Although there might be a 
concern about the gradient of the magnetic field along 
the lines of 13C atoms, it must not be so difficult to get 
this gradient since the magnitude of this magnetic field is 
relatively low (0.5 T). In principle, it is possible to 
replace a 12C atom by any other spin one half atom. 
However, an unclose configuration of electrons in the 
lattice makes necessarily to take into account the 
interaction of electrons with this atom (as it is the case of 
diamond NV configuration) which makes the analysis 
and the quantum computer much more complicated and 
sensitive to environment interaction. The misplacement 
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of the 13C atom along the x-axis produces different 
coupling constant in the interaction, but according to 
Figure 4, the fidelity of the CNOT quantum gate does 
not change, and one would expect the same result for 
quantum algorithms. The displacement of 13C atoms off 
x-axis changes the coupling constant and the interaction 
itself, which has to be studied. In addition, it still remains 
to study the decoherence on this system. Finally, one 
recalls that the carbon isotopesatoms 12C, 13C and 14C 
occur naturally on Earth with a percent of about 99%, 1% 
and 10−4%, 14C being a radioactive isotope with a half 
life of about 5730 years and having spin zero. Therefore, 
14C is not an important composition at all in the diamond 
structure. 
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Appendix 
Two qubits dynamics is obtained from Equations (13), 
(14), and (19), resulting the equations  

( )( ) ( )( )( )1 0 2 0
00 01 10e e

2
i t E E t i t E E tia a aω ϕ ω ϕ− + + − − + + −Ω

= − +

  (27) 

( )( ) ( )( )( )1 0 3 1
01 00 11e e

2
i t E E t i t E E tia a aω ϕ ω ϕ+ + + − − + + −Ω

= − +

  (28) 

( )( ) ( )( )( )2 0 3 2
10 00 11e e

2
i t E E t i t E E tia a aω ϕ ω ϕ+ + + − − + + −Ω

= − +

  (29) 

( )( ) ( )( )( )1 3 3 2
11 01 10e e

2
i t E E t i t E E tia a aω ϕ ω ϕ+ + + − + + + −Ω

= − +

  (30) 

where the complex variables ija  for , 0,1i j =  co- 
rrespond to the amplitude of probability to find the  
system on the states 00 , 01 , 10  and 11 , and one  

has ( ) ( )0 0ij ija C=  and ( ) ( )2 2
ij ija t C t= . Decimal  

notation on the energies i  corresponds to its binary 
elements i iβ α  for 0,1, 2,3i = .  

As before, three qubits dynamics is described by the 
equations  

( )01 02 04
000 001 010 100e e e

2
i i iia a a aφ φ φΩ

= − + +     (31) 

( )10 13 15
001 000 011 101e e e

2
i i iia a a aφ φ φΩ

= − + +     (32) 

( )23 2521
010 011 001 101e e e

2
i iiia a a aφ φφΩ

= − + +     (33) 

( )32 31 37
011 010 001 111e e e

2
i i iia a a aφ φ φΩ

= − + +     (34) 

( )45 46 43
100 101 110 011e e e

2
i i iia a a aφ φ φΩ

= − + +     (35) 

( )54 57 51
101 100 111 001e e e

2
i i iia a a aφ φ φΩ

= − + +     (36) 

( )67 64 62
110 111 100 010e e e

2
i i iia a a aφ φ φΩ

= − + +     (37) 

( )76 75 73
111 011 101 011e e e

2
i i iia a a aφ φ φΩ

= − + +     (38) 

with ( ) ( )0 0ijk ijka C=  and ( ) ( )2 2
ijk ijka t C t= , 

, , 0,1i j k = . The phases ijφ  are defined as  

( )ij i jt E E tφ ω ϕ= ± + + −  , where decimal i  corres- 
ponds to its binary elements i i iγ β α  for 0, ,7i =  . 

For both cases, the energies iE  are deduced from 
Equation (15). 
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