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ABSTRACT 
Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs be-
cause of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings 
concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, 
pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing 
these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and 
multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is 
applicable for various borehole conditions using some critical parameters associated with foam velocity, foam 
quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute 
percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, 
and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE 
values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic 
model respectively. The results show high ability of ANN in prediction with respect to statistical methods. 
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1. Introduction 
Underbalanced drilling (UBD) is increasingly used in the 
development of oil and gas fields because of minimizing 
the damage caused by invasion of drilling fluids into the 
formation, minimizing lost circulation, decreasing pres-
sure differential sticking, increasing penetration rate, 
increasing production and extending bit life. UBD tech-
niques are classified into gas, foam, gasified-liquid and 
liquid underbalanced drilling. The choice of drilling fluid 
type is determined by the formation pressure and forma-
tion properties. Foam is gaining increasing applications 
in the petroleum industry including drilling, cementing, 
fracturing and oil displacement. In drilling operations, 
foam can be used for both UBD and Managed Pressure 
Drilling (MPD). Foam fluids generally include 5% - 25% 
liquid phase and 75% - 95% gaseous phase. The liquid 
phase could be fresh water or brines. The gaseous phase  

is usually an inert gas. A surfactant is often used as a 
stabilizer and it comprises about 5% of the fluid system. 
The fluid system can be weighted up using heavy brines 
or barites. It has higher cuttings transport ability com-
pared to air drilling fluids. Foam drilling system is rec-
ommended for many naturally fractured reservoirs where 
lost circulation is a main concern. With the ever increas-
ing gas prices, foam will be an excellent candidate for 
drilling unconventional gas wells, for example, coal-bed 
methane drilling. Foam is a compressible and homoge-
neous mixture in comparison with the conventional and 
aerated drilling fluids. This makes foam a unique fluid 
for drilling through formations with continuously chang-
ing pressure gradients [1,2]. Hole cleaning (Cuttings 
transport) is one of the main factors influencing cost, 
time, and quality of directional, horizontal, extended 
reach and multilateral oil/gas wells. Inadequate hole 
cleaning can result in costly drilling problems such as  
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pipe sticking, premature bit wear, slow drilling, forma-
tion fracturing and high torque and drag. Cuttings trans-
port is mainly controlled by many variables, such as the 
well inclination angle, hole and drillpipe diameters, drill-
pipe rotation, drillpipe eccentricity, rate of penetration, 
cuttings characteristics (size, porosity of bed), flow rate, 
fluid velocity, flow regime, mud type and complex non- 
Newtonian mud rheology. An outstanding review of the 
cuttings transport discussion was given by Nazari et al. 
[3]. Many researchers have been carried out on cuttings 
transport with conventional drilling fluids in horizontal 
and directional wells. In addition, some empirical and 
mechanistic models have been developed in cuttings 
transport [4-6]. Foams can have extremely high viscosity, 
in all instances in which their viscosity is greater than 
that of both the liquid and the gas that they contain. At 
the same time, their densities are usually less than one- 
half of water. They are stable at high temperatures and 
pressures. Hence, if foam is applied as drilling fluid, high 
viscosity of the foam permits efficient cuttings transport. 
In addition, its low density allows underbalanced condi-
tions to be established, and formation damage to be 
minimized. Furthermore, compression requirement is 
decreased. Efficient cuttings removal is of critical signi-
ficance according to multiphase flow and foam drilling 
hydraulic, for wells are drilled with foams [7-9]. The 
majority of publications of cuttings transport with foam 
describe operators’ experiences, field practices, 1D nu-
merical simulation of cutting transport and equipment 
used [10-16]. Artificial neural networks (ANNs) are sim-
ple and more reliable predictive tools inspired by studies 
on the human nerve and brain system that can be used to 
model and investigate various highly complex and 
nonlinear phenomena [17-19]. ANN has been applied in 
the multiphase flow fields and acceptable results were 
achieved compared with the conventional methods in-
corporating correlations and mechanistic models [20-27]. 
The aim of this study is to determine the hole cleaning 
efficiency of foam fluid flow through a horizontal annuli 
using back propagation neural network (BPNN) from 
affecting parameters on cuttings transport. The BPNN 
model was verified by experimental data obtained from 
the literature. The results show that adequate accuracy 
was obtained by the model to predict hole cleaning effi-
ciency.  

2. Cuttings Concentration Prediction  
Using BPNN 

The feed-forward neural networks with back propagation 
(BP) learning algorithm are very powerful in function 
optimization modelling [28,29]. BPNNs are recognised 
for their prediction capabilities and ability to generalise 
well on a wide variety of problems. Automated Bayesian 
Regularization (ABR) method can be applied to avoid 

over fitting problem in BPNN [27]. In this study, 77 cut-
ting transport experimental datasets at Tulsa University 
obtained from the literature [8,9] were used to create 
BPNN model. Table 1 gives test matrix of experiments. 
Input parameters of BPNN include foam velocity (V), 
foam quality (Γ ), eccentricity of annulus  

( ( )o ie E R R= − ), 

where E is offset distance between the centers of the in-
ner tube, Ri, and the outer tube, Ro, of annulus), subsur-
face condition (pressure, P, and temperature, T), and pipe 
rotation (RPM). Other parameters in Table 1 are constant. 
The output of network is cutting concentration (CC%) in 
annulus.  

Table 2 outlines the correlation matrix between cut-
tings concentration (CC) and independent variables that 
effect on cuttings transport using SPSS software. Ac-
cording to this table, foam quality (Γ ), foam velocity (V) 
and pipe rotation (RPM) are more effective on cuttings 
transport phenomenon. 

Considering the requirements of the ANN computation 
algorithm (better identification of parameters), both input 
and output data were normalised to an interval by a sim-
ple transformation process. In this study, normalization 
of data was carried out within the range of [ ]1,1−  using 
Equation (1) [17], 

min

max min

2 1n
p pp

p p
−

= −
−

           (1) 

where, pn is the normalised parameter, p denotes the ac-
tual parameter, pmin represents a minimum of the actual 
parameters and pmax stands for a maximum of the actual 
parameters. About 70% of the total data sets (60 out of 
77 of the data) were selected for training and the rest for 
testing purposes. Several architectures comprising varied 
numbers of neurons in hidden layer with ABR algorithm 
were tried to predict cutting concentration using BPNN.  
 
Table 1. Test matrix of cuttings transport using aqueous 
foam [8,9]. 

Value Testing parameter 

5.76’’ by 3.5’’ Annular size 

0, 40, 80, 120 Pipe rotation (rpm) 

2, 3, 4, 5, 6 Foam velocity (ft/s) 

60, 70, 80, 90 Foam quality (%) 

0, 0.78 Eccentricity (-) 

80, 120, 160, 170 Temperature (F) 

100, 200, 250, 400 Pressure (psi) 

3 Cuttings size (mm) 

2610 Cuttings density (kg/m3) 

50  ROP (ft/hr) 
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Table 2. Correlation matrix between cuttings concentration and independent variables. 

 P T V RPM Γ  e CC 

P 1       

T 0.071 1      

V −0.12 0.059 1     

RPM −0.121 −0.145 −0.223 1    

Γ  0.026 0.183 0.404 −0.115 1   

e −0.266 −0.245 −0.298 0.613 −0.144 1  

CC −0.046 0.14 −0.57 −0.256 −0.679 0.053 1 

 
Two criteria were employed in order to assess the effec- 
tiveness of each network and its ability to make accurate 
predictions; they are: average absolute percent relative 
error (AAPE) and the correlation coefficient (R) [31].  

The AAPE concept gives an idea of absolute relative 
deviation of estimated from the measured data. It can be 
calculated from the following equation: 

( )
1

ˆ1100
N

i i

i i

y y
AAPE

N y=

−
= × ∑          (2) 

where, iy  is the measured value, ˆiy  denotes the pre-
dicted value, and N stands for the number of samples. 
The lowest AAPE values, the more accurate the predic-
tion is. 

The last measure, known as the efficiency criterion, R 
represents the percentage of the initial uncertainty ex-
plained by the model. It is given by: 
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            (3) 

The best fitting between predicted and measured val-
ues, which is unlikely to occur, would have RMS = 0 or 
R = 1. The optimal network of this study is a feed for-
ward multilayer perceptron [28,29]. This network com-
prises one input layer with 6 inputs (P, T, V, RPM, e, Γ ) 
and one hidden layer with 10 neurons. Fletcher and Goss 
[30] suggested that the appropriate number of nodes in a 
hidden layer varies between ( 2 n  + m) and (2n + 1), 
where n is the number of input nodes and m represents 
the number of output nodes. Each neuron has a bias and 
is fully connected to all inputs and employs a log-sig- 
moid activation function. The output layer has one neu-
ron (CC%) with a linear activation function (purelin) 
without bias. Training function of this network is ABR 
algorithm (trainbr). In this study, (n = 6) and (m = 1) and 
thus the appropriate number of hidden layer neurons was 
chosen as 10 (6-10-1). Figure 1 shows the BPNN archi-
tecture constructed in this work. 

3. Cuttings Concentration Prediction  
Using MLR 

Multiple linear regression (MLR) is an extension of the 
regression analysis that incorporates additional indepen-
dent variables in the predictive equation. Here, the model 
to be fitted is: 

1 2 2 n ny B B x B x e= + + + +        (4) 

where, y is the dependent variable, xis are the indepen-
dent random variables and e is a random error (or resi-
dual) which is the amount of variation in y not accounted 
for by the linear relationship. The parameters Bis, stand 
for the regression coefficients, are unknown and are to be 
estimated. However, there is usually substantial variation 
of the observed points around the fitted regression line. 
The deviation of a particular point from the regression 
line (its predicted value) is called the residual value. The 
smaller the variability of the residual values around the 
regression line, the better is model prediction. In this 
study, regression analysis was performed using the train 
and test data employed in neural network data. The cut-
tings concentration considered as the dependent variable 
and V, Γ , P, T, RPM and e were considered as the in-
dependent variables. A computer-based package called 
SPSS (Statistical Package for the Social Sciences) was 
used to carry out the regression analysis.  

4. Results and Discussion 
4.1. BPNN Results 
Using the BPNN approach described above, all necessary 
computations were implemented by supplying extra 
codes in MATLAB software. The matrix of inputs in 
training step is a n × N vector, where n is the number of 
network inputs and N is the number of samples used in 
training step. In this paper, six input variables (V, Γ , P, 
T, RPM, e) and 60 samples were used to train the net-
work; therefore n × N = 6 × 60. The matrix of outputs in 
training step, is a m × N vector, where m is the number of 
outputs. In this study, there is only one output so, m × N 
= 1 × 60. In the same manner, the matrices of inputs and  
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Figure 1. BPNN architecture (6-10-1). 

 
output for testing phase, were n × N = 6 × 17 and m × N 
= 1 × 17 respectively. The correlation coefficient (R) and 
AAPE were used for comparison of the ANN model pre-
dictions with experimental data [8,9] and the results of 
mechanistic model [9,16]. Figure 2 compares the pre-
dicted cuttings volumetric concentration (%) and the ex-
perimental values for the training data set. The correla-
tion coefficient (R) to the linear fit (y = ax) is 0.993 with 
the AAPE value of 2.38%; describing almost a perfect fit. 
This indicates the fact that the training stage was done 
very well. 

For testing stage, those data sets which were not em-
ployed by the ANN model during training process were 
used. A comparison of the cutting concentrations pre-
dicted by the network and the measured values for the 
test data set is shown in Figure 3. A correlation coeffi-
cient (R) of 0.914 together with an AAPE of 5.93% de-
scribes a very satisfactory model performance. These 
results verified the success of neural networks which 
recognize the implicit relationships between input and 
output variables. 

A comparison of the network predictions and the 
measured values for the all data sets used in this study 
with a population of 77 is shown in Figure 4. The corre-
lation coefficient (R) is 0.984 with an AAPE of 3.18%; 
indicating a very satisfactory model performance. These 
results verified the success of neural networks which 
recognise the implicit relationships between input and 
output variables. 

4.2. MLR Results 
Using MLR approach in SPSS software, the estimated 
regression relationship for cuttings concentration (CC) is 
given as below: 

( )CC % =74.21 0.009 0.048 3.105
0.079 49.248

P T V
RPM

− ∗ + ∗ − ∗

− ∗ − ∗Γ
  (5) 

The statistical results of the model are given in Table 
3. 

 
Figure 2. ANN prediction versus measured cutting concen-
tration [8,9] for the training data. 
 

 
Figure 3. ANN prediction versus measured cutting concen-
tration [8,9] for the test data. 
 

Cuttings concentration was estimated according to the 
Equations 5. Figures 5 and 6 compare the MLR cuttings 
concentration (%) versus the experimental values for the 
training and test data set respectively. The correlation 
coefficient (R) and AAPE for train data are 0.916 and 6.5% 
and for test data, they are 0.84 and 7%. 

A comparison of the ANN, MLR and mechanistic 
model [9,16] predictions with the measured values for 
the all data sets used in this study with a population of 77 
is shown in Figure 7. The correlation coefficient (R) is  
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Table 3. Statistical characteristics of the multiple regression models. 

Model Method Independent 
variables Coefficient Standard 

error 
Standard error 

of estimate t-value F-ratio Sig. level Determination 
Coefficient (R2) 

Equation 5 Enter 

Constant 74.210 4.105 

2.98 

18.078 

45.98 

0.000 

0.8388 

P −0.009 0.004 −2.019 0.049 

T 0.048 0.013 3.635 0.001 

V −3.105 0.494 −6.280 0.000 

RPM −0.079 0.010 −7.665 0.000 

Γ  −49.248 5.225 −9.426 0.000 

 

 
Figure 4. ANN prediction versus measured cutting concen-
tration (%) for the all data [8,9]. 
 

 
Figure 5. MLR prediction versus measured cutting concen-
tration [8,9] for the train data. 

 
Figure 6. MLR prediction versus measured cutting concen-
tration [8,9] for the test data. 
 

 
Figure 7. Comparison of measured all datasets versus ANN, 
MLR and mechanistic model predictions. 
 
0.984, 0.909 and 0.8568 for ANN, MLR and mechanistic 
model respectively. The AAPE values are 3.2%, 8.5% 
and 10.3% for ANN, MLR and mechanistic model re-
spectively. 

Table 4 compares the results of ANN, MLR and me-
chanistic models for measured data from Duan [9] and 
from Chen [8]. It is well illustrated in Table 4 that the  
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Table 4. The comparison of the results of three methods. 

AAPE Method 

Chen data (8) Duan data [9]  

3.3% 3.1% ANN model 

7% 9.8% MLR model 

9.4% 11.2% Mechanistic model 

 
ANN method has high capability in prediction respect to 
statistical and mechanistic models. 

5. Conclusion 
In this study, cuttings concentration within the foam 
drilling in horizontal annular geometries was estimated 
using ANN and MLR models. The ANN presented here 
has three layers, namely, input layer, hidden layer and 
output layer. Input layer has six neurons including foam 
velocity, foam quality, eccentricity of annulus, subsur-
face condition (pressure and temperature) and pipe rota-
tion. Hidden layer has ten neurons with a log-sigmoid 
activation function in all neurons. Output layer has one 
neuron (cutting concentration, CC%) with a purelin acti-
vation function. The correlation coefficients between 
measured and prediction values in training and testing 
data are 0.994 and 0.914 respectively. The AAPE values 
of training and testing data in ANN model are 2.38% and 
5.93% respectively. A comparison of the ANN, MLR 
and mechanistic model was done. The results obtained 
from this study reveal that ANN could accurately predict 
the hole cleaning efficiency using foam drilling with re-
spect to MLR and mechanistic models. 
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Nomenclature 
AAN: Artificial neural network 
AAPE: Average absolute percent relative error (%) 
BPNN: Back Propagation neural network 
E: Offset distance between the centers of the inner tube and outer tube 
e: Eccentricity of annulus (-)  
MLR: Multiple linear regression 
P: Pressure (psi)  
R: Correlation coefficient (-) 
Ri: tube radius (in)  
ROP: Rate of penetration (ft/hr) 
RPM: Pipe rotation (rpm) 
T: Temperature ( F° )  
V: Foam velocity (ft/s) 

Greek Letters 
Γ : Foam quality (%) 

SI Metric Conversion Factors 
ft × 0.3048 E + 00 = m 
in × 25.4 E − 03 = m 
psi 6.8948 E − 03 = MPa 

( )32 1.8 CF F° ° − =  
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