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ABSTRACT 

Epilepsy is a chronic neurological disorder which is 
identified by successive unexpected seizures. Elec-
troencephalogram (EEG) is the electrical signal of 
brain which contains valuable information about its 
normal or epileptic activity. In this work EEG and its 
frequency sub-bands have been analysed to detect 
epileptic seizures. A discrete wavelet transform (DWT) 
has been applied to decompose the EEG into its 
sub-bands. Applying histogram and Spectral entropy 
approaches to the EEG sub-bands, normal and ab-
normal states of brain can be distinguished with 
more than 99% probability. 

Keywords: Electroencephalogram (EEG); EEG  
Sub- Bands; Epileptic Seizures; Discrete Wavelet  
Transform (DWT); Histogram; Spectral Entropy (SEN) 

1. INTRODUCTION 

Physiological rhythms are important indicators of health. 
Diseases which cause some irregularities in these rhythms 
may lead to death. Epilepsy is a common disorder of this 
type. About 1% of the Americans are affected by epi-
lepsy [1]. 

Epilepsy is characterized by abnormal irregular firing 
of neurons due to synchronous or excessive neuronal 
activity in the brain. Due to high complexity of brain we 
should apply several linear and non-linear signal proc-
essing methods to analyse Electroencephalogram (EEG) 
signal truly. EEG signals extracted from the brain show 
a non-stationary behaviour. 

Duke and Pritchard studied about the chaos of brain. 
They proved that, because of non-stationary behaviour 
and complex dynamic of the brain, chaotic methods are 
appropriate for EEG signal analysis [2]. Since the neu-
ronal activities in ictal, interictal, and healthy states sig-
nificantly differ from each other, chaotic methods such 
as entropies can be applied to distinguish between these 
three states [3]. 

It is helpful to use discrete wavelet transform (DWT) 
because of its advantages such as time-frequency local-
ization, multi-rate filtering, and scale-space analysis [3]. 
EEG sub-bands have more accurate information about 
neuronal activity compared to the original full spectrum 
EEG. Also, DWT is a powerful transform to analyse 
non-stationary signals, because it has a good localization 
in both time and frequency domains [4,5]. Fast events 
and changes in neuronal activities like spikes that are not 
obvious in full spectrum EEG, can be recognized in 
sub-bands. Thus to detect epileptic seizures accurately, 
each sub-band should be analysed separately [3]. 

Recently, chaotic methods like correlation dimension, 
largest Lyapunov exponent and entropies have been ap-
plied to EEG sub-bands acquired from preprocessing 
analysis based on DWT [3]. Iasemidis and Sackellares 
were the first researchers who studied the nonlinear be-
haviour of EEG and epilepsy [6]. They applied largest 
lyapunov exponent as a chaotic parameter to show the 
reduction of chaos in preictal phase [7,8]. Elger and 
Lehnertz similarly concluded that complexity of neu-
ronal activities is reduced in preictal phase. They used 
correlation dimension and moving-window dimension 
analysis for patients with temporal lobe epilepsy [9,10]. 
Tayaranian et al. using three features; Detrended Fluc-
tuation Analysis (DFA), Bis-pectral Analysis (BIS), and 
Standard Deviation (SD), for EEG analysis [11]. They 
also apply a fuzzy classifier to separate the three groups. 

Kumar et al. applied entropy method based on Shan-
non and spectral entropy and concluded that the Shannon 
entropy value in ictal seizure activity is low compared to 
healthy and interictal states. Also they reported that the 
spectral entropy (SEN) value in normal and interictal 
states is low compared to ictal state [12]. We previously 
developed a method for distinguishing ictal state from 
healthy one by calculating the SEN values for wavelet 
coefficients of EEG and its sub-bands [13]. 

In this study the EEG signal has been decomposed 
into five sub-bands by discrete wavelet transform (DWT). 
Then histogram and Wavelet-spectral entropy have been 
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presented to analyse EEG sub-bands for epileptic sei-
zures detection. To validate the results statistical analysis 
has been applied at the end of each process. The block 
diagram of the procedure is depicted in Figure 1. 

We applied our method to three different groups [14]: 
1) Healthy subjects that contain state one and two, 

corresponding eyes open and closed, respectively. 
2) Interictal subjects (seizure-free intervals) that con-

tain two different sets: focal interictal activity and 
non-focal interictal activity. 

3) Ictal subjects (epileptic activity). 

2. MATERIALS AND METHODS 

2.1. Description of the EEG Database 

Our EEG data, acquired from university of Bonn, con-
tains three different cases: 1) healthy, 2) epileptic sub-
jects during seizure-free interval (interictal), 3) epileptic 
subjects during seizure interval (ictal) [14]. 

Each case has five datasets named: O, Z, F, N, and S. 
Sets O and Z are obtained from healthy subjects under 
condition of eyes open and closed; respectively by ex-
ternal surface electrodes. Sets F and N are attained from 
interictal subjects. 

Set F taken from epileptogenic zone of the brain 
shows focal interictal activity; set N obtained from hip-
pocampal formation of the opposite hemisphere of the 
brain indicates non-focal interictal activity, and set S is 
got from an ictal subject.  

Each set contains 100 single channel EEG segments 
of 23.6 sec duration. Sampling frequency is 173.61 Hz, 
so each segment contains N = 4096 samples [14]. All these 
EEG segments are recorded with the same 128- channel 
amplifier that converts by 12 A/D convertor with bit rate 
of 12, and then were sampled on 173.61 Hz [14]. 

Since the sampling frequency of EEG records is 
173.61 Hz, according to Nyquist sampling theorem, 
maximum frequency of EEG applied should be in the 
range 0-86.81 Hz. based on the physiological researches, 
frequencies above 60 Hz in EEG signal are considered 
as noise and can be neglected [3]. Thus we have elimi-
nated these frequencies using a low-pass FIR filter. 

2.2. Wavelet Decomposition 

DWT is a proper transform to analyse signals in both 
time and frequency domains. Using the multi-scale 
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Figure 1. Block diagram of proposed method. 

form of DWT, signal can be decomposed into separate 
frequency bands which each band represents a spe-
cific roughness. Wavelet transform uses a variable 
window size over the length of the signal, which al-
lows the wavelet to be stretched or compressed de-
pending on the signal frequency [3]. 

In this study fifth-order Daubechies (DB5) DWT has 
been applied to the band-limited EEG (0-60 Hz). After 
the first level of decomposition, the band-limited EEG 
has been decomposed into its high resolution frequency 
band, D1 (30-60 Hz), and low resolution frequency band, 
A1 (0-30 Hz), which should be decomposed in next level. 
In the second level of decomposition, A1 has been de-
composed into its high, D2 (15-30), and low, A2 (0-15 
Hz) resolution bands. This process has been repeated 
four times. After full decomposition five sub-bands have 
been attained: high frequency sub-bands (details) of lev-
els 1 to 4 (D1 (30-60 Hz), D2 (15-30 Hz), D3 (8-15 Hz), 
D4 (4-8 Hz)) as well as the low frequency sub-band (ap-
proximate) of the last level (A4 (0-4 Hz)). Figure 2 il-
lustrates this multi-level decomposition process sche-
matically. 

These five frequency sub-bands are almost corre-
sponding to five physiological EEG bands, delta (0-4 
Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30), and 
gamma (30-60 Hz). 

2.3. Statistical Analysis of Histograms 

Histogram is a visual feature for indicating the disper-
sion of EEG data. Each rectangle in the histograms 
shows the population of samples falls into several bins 
corresponding to different amplitudes in EEG sequence. 
Plots of Figure 3 show outstanding differences in dis-
persion of data in histograms for epileptic patients in 
conniption time from healthy and epileptic patients in 
seizure-free interval. This led us to consider the histogram 

 

 

Figure 2. Schematic of multi-level decomposition. 
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Figure 3. EEG histograms for five typical subjects. 
 
as a criterion to assess epileptic seizures. To quantify the 
discrepancies of the data distributions, mean and stan-
dard deviation (STD) have been calculated for each his-
togram. This has been repeated for all EEG sub-bands 
and the results are reported in Table 1. 

2.4. Statistical Analysis of Entropies 

In this section we have applied the spectral entropy 
method to differentiate between the mentioned cases. 
After development of information theory scientists in-
troduced the concept of entropy [15]. Entropy expressed 
first by Shannon in 1940s [15]. To calculate the spectral 
entropy of a signal it is necessary to have the power 
spectrum values. The square of the Fourier transform 

  2
F   is called power spectrum, which indicates the 

distribution of signal energy in frequency domain [16]. It 
should be noted that, the power spectrum is defined for 
 
Table 1. Mean and standard deviations (in parenthesis) of his-
tograms. 

 
O 
n = 100 

Z 
n = 100 

F 
n = 100 

N 
n = 100 

S 
n = 100 

EEG 
(0-60 Hz) 

–12.476 
(61.012) 

–6.223 
(40.641) 

–6.175 
(65.503) 

–8.8518 
(50.746) 

–4.8647
(305.91)

A4 (delta) 
(0-4 Hz) 

–12.481 
(29.63) 

–6.2259 
(28.904) 

–6.1735 
(56.911) 

–8.8561 
(44.738) 

–4.8409
(184.61)

D4 (theta) 
(4-8 Hz) 

0.0044 
(34.555) 

0.0042 
(18.188) 

–0.0001 
(26.058) 

0.0045 
(19.136) 

–0.0309
(170.16)

D3 (alpha) 
(8-15 Hz) 

0.0014 
(36.658) 

–0.0008 
(18.813) 

–0.0011 
(15.333) 

–0.0001 
(11.667) 

0.0016 
(144.53)

D2 (beta) 
(15-30 Hz) 

–0.0007 
(13.055) 

–0.0005 
(9.909) 

–0.0003 
(6.4223) 

–0.0002 
(5.4961) 

0.0056 
(57.906)

D1(gamma) 
(30-60 Hz) 

0.0001 
(3.3764) 

–0.0001 
(2.3939) 

0 
(1.643) 

0 
(1.5903) 

0 
(9.4568)

stochastic and stationary processes, while the EEG sig-
nal is a stochastic and non-stationary sequence. Hence, 
to assess the stationarity condition entire series have 
been divided into 32 sub-segment (epoch). Each of these 
sub-segments contains 128 samples with 0.74 second 
duration. The value of spectral entropy for each epoch 
has been calculated in the following steps: 

Step 1: the power spectrum,  p f  of the signal, 
 f t  has been calculated as: 

      2
dp f f t ex j t t            (1) 

where, equation    exp df t j t t  is continuous-time 
Fourier transform. 

Then, it has been normalized to its summation: 

   
   (0 1)

f

p f
Q f Q f

p f
  


       (2) 

Step 2: The Shannon function,    log 1f x x x  has 
been applied to the normalized power spectrum compo-
nents  Q f : 

      log 1H f Q f Q f           (3) 

Step 3: Normalized entropy, SEN, has been calculated 
as: 

 
    0 1

log
f
H f

SEN SEN
N f

  


        (4) 

where,  N f  is the total number of frequency com-
ponents. Normalized entropy is a measure of regularity. 
SEN value equal to one shows the maximum irregularity, 
and equal to zero shows the complete regularity. For 
each 128 samples of power spectrum an entropy value 
has been calculated. We have assigned the average value 
of 32 entropies to each data-segment. This has been re-
peated for all 100 data-segments. Then, mean and STD 
of these SEN values have been estimated for each band 
limited EEG and its sub-bands. The results are collected 
in Table 2. 
 
Table 2. Mean and standard deviations (in parenthesis) of SEN 
values. 

 
O 

n = 100
Z 

n = 100 
F 

n = 100 
N 

n = 100
S 

n = 100
EEG 

(0-60 Hz) 
0.629 

(0.073)
0.634 

(0.085) 
0.538 

(0.093) 
0.539 

(0.091)
0.653 

(0.069)
A4 (delta)
(0-4 Hz) 

0.375 
(0.09) 

0.393 
(0.097) 

0.419 
(0.096) 

0.425 
(0.097)

0.484 
(0.095)

D4 (theta)
(4-8 Hz) 

0.563 
(0.074)

0.58 
(0.063) 

0.567 
(0.071) 

0.565 
(0.067)

0.553 
(0.074)

D3 (alpha)
(8-15 Hz) 

0.641 
(0.086)

0.69 
(0.061) 

0.684 
(0.062) 

0.685 
(0.057)

0.667 
(0.064)

D2 (beta) 
(15-30 Hz)

0.762 
(0.055)

0.761 
(0.055) 

0.79 
(0.053) 

0.794 
(0.05) 

0.759 
(0.054)

D1(gamma)
(30-60 Hz)

0.786 
(0.051)

0.81 
(0.05) 

0.821 
(0.054) 

0.822 
(0.045)

0.871 
(0.041)
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3. Results 

We have pointed to widespread shape of pure epileptic 
histogram versus histograms of seizure-free and normal 
intervals in section 2.3. Figure 4 depict this notion in 

detail. Figures 4(a), (c), (e) show the EEG data recorded 
from a typical healthy, interictal, and ictal subject, re-
spectively, and Figures 4(b), (d), (f) display the corre-
sponding histograms. Comparison between these histo-
grams shows that, in ictal state EEG samples spread  

 

    
(a)                                                  (b) 

    
(c)                                                   (d) 

    
(e)                                                   (f) 

Figure 4. Band limited EEG data recorded from a typical healthy (a), interictal (c), and ictal (e) subject, respec-
tively, these corresponding histograms in (b), (d), and (f) respectively.  
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more than EEG samples obtained from healthy and in-
terictal cases. This uniformity in histogram of seizure 
interval demonstrates the existence of high amplitude 
samples as well as low amplitude ones. Table 1 shows 
the means and standard deviations (STD) for all cases. 
As we expected from histograms, the STD of the 
band-limited EEG and its sub-bands in ictal state are 
high compared to healthy and interictal states. This 
shows the low frequency and high amplitude activity of 
neurons in conniption time, while, in other cases the 
brain has only a low amplitude activity. As we men-
tioned in section 2.4, SEN is an appropriate parameter to 
separate normal and epileptic EEGs. 

It is clear from Table 2 that for the band-limited EEG, 
in ictal state the SEN value is high compared to normal 
and interictal states. This result is similar to the result of 
Kumar et al.’s work [12] and contravenes the physio-
logical aspects. Because according to physiological as-
pects the regularity should be increased on conniption 
times. As mentioned above when regularity is increased 
the entropy values tending to zero. Thus we conclude 
that the SEN values in ictal state should be less com-
pared to interictal and healthy states. This result is not 
satisfied in Kumar et al.’s work and in our study in 
band-limited EEG. Thus we applied DWT to decompose 
the band-limited EEG and evaluate its sub-bands but 
Kumar et al. evaluate just band-limited EEG. This result 
is repeated for delta (low frequencies) and gamma (high 
frequencies) sub-bands. But, for middle sub-bands, theta, 
alpha, and beta, SEN values of ictal state are low com-
pared to healthy and interictal states. These SEN values 
of middle sub-bands satisfy the physiological aspect. It 
can be seen that three middle sub-bands have the same 
results as the results obtained from histogram analysis. 
This implies that the regularity of EEG signal in its mid-
dle sub-bands increases in conniption time.  

Comparison of three middle sub-bands shows that 
unlike the beta sub-band in alpha and theta sub-bands 
the disparity of the SEN values of the healthy and inter-
ictal subjects is negligible. Hence if the beta sub-band is 
considered to be a representation of brain dynamics by 
itself, the regularity becomes low in epileptic patients 
during seizure-free interval. 

Figure 5 shows the values of normalized SEN for the 
typical band-limited EEGs and their beta sub-bands. 

By means of T-Student distribution test1 we have 
emphasized that in beta sub-band, healthy subjects can 
be distinguished from epileptic patients during sei-
zure-free interval with more than 99% probability [17]. 
The probabilities of distinguishing between interictal 
state and two other states in beta sub-band are shown in 
Table 3. 

In fact in this study we focus on comparison between 
interictal state and healthy and ictal states, because it is 
clear that for prevention treatments we should evaluate 
the interictal activities to help prevent the seizure. Table 
4 shows the comparison of our result and kumar et al. 
result based on Spectral entropy. Their results are for 
band limited EEG that do not satisfy physiological as-
pect totally but our results are for beta sub-band that 
satisfy physiological aspect and achieve better results. 

As we see from Table 4 that we compare the focal and 
non-focal interictal with ictal, separately. 

4. Conclusion 

Two methodologies based on statistics and chaos theory 
in time-frequency domain have been presented for anal-
ysis of EEGs and its delta, theta, alpha, beta, and gamma 
sub-bands for detection of epilepsy. Since the EEG is an 
overall representation of brain dynamics, the observed 
changes in the band-limited EEG are actually the result 
of the total activity of neurons which performs a sub-
stantial role in forming the shape of the EEG signal. One 
method of studying these underlying activities are to 
study the component physiological sub-bands of the 
EEG which can be assumed to represent the neurological 
activities at a finer level. It has been shown that the sta-
tistical analysis of histograms of EEGs and their sub- 
bands can reveal the differences between frequencies 
dependent amplitudes of EEG signal in ictal state from 
healthy and interictal states. It has been observed that the 
spectral entropy of the band-limited EEG can distinguish 
between the three groups of subjects. The decomposition 
of the original EEG into its five constituent sub-bands 
alters the results obtained from original signal. However, 
when the statistical analysis is performed on the EEG 
sub-bands, it can be seen that the SEN used within cer-
tain physiological sub-bands may also be employed to 
distinguish between all three groups. Therefore, it has 
been emphasized that changes in the dynamics are not 
spread out equally across the spectrum of the EEG, but 
instead, are limited to certain frequency bands. 
 
Table 3. Probability of differentiation between a typical inter-
ictal case and two other cases in healthy and ictal state. 

 F – O F – Z F – S N – O N – Z N – S 

beta 99.9% 99.9% 99.93% 99.94% 99.94% 99.95%

 
Table 4. Comparison of our work and Kumar et al. 

Comparison between F, N, and S states 
Kumar et al. 

94.6% 

Comparison between F 
and S 

Comparison between N 
and S Our work 

99.93% 99.95% 
 1For more information refer to Appendix. 
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(a)                                                                       (b) 

    
(c)                                                                       (d) 

    
(e)                                                                       (f) 

Figure 5. Comparison of normalized SEN values of typical EEGs and their beta sub-bands between healthy and interictal (a), (b), 
healthy and ictal (c), (d), and ictal and interictal (e), (f) states.   
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APPENDIX 

1. Two- Sample t Test 

T-Student is applied to two independent samples to esti-
mate the probability (p-value) of distinguishing between 
two populations means. 

1 2

2 2
1 2

1 2

X X
t

s s

n n






               (A.1) 

t  is the T-student test and 2
1s  and 2

2s  are samples 
variances. 1X  and 2X  are means of samples. 1n  and 

2n  are sample intervals that are equal 1 2 100n n  . To  

obtain the p-value, T-Student degrees of freedom, df  
should be calculated as: 

22 2
1 2

1 2

2 22 2
1 2

1 2

1 2

d

1 1

s s

n n
f

s s

n n

n n

 
 

 
   
   
   

 

          (A.2) 

We can read p-value from the T-Student table (A.1) 
that is arranged according to t  and df  parameters 
calculated by above equations. 

 


