
Journal of Modern Physics, 2014, 5, 1-7 
Published Online January 2014 (http://www.scirp.org/journal/jmp) 
http://dx.doi.org/10.4236/jmp.2014.51001  

Relativistic Derivations of de Broglie and  
Planck-Einstein Equations 

Fabrizio Logiurato 
Department of Physics, Trento University, Povo, Italy 

Email: log@science.unitn.it 
 

Received October 20, 2013; revised November 23, 2013; accepted December 18, 2013 
 

Copyright © 2014 Fabrizio Logiurato. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor-
dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual 
property Fabrizio Logiurato. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. 

ABSTRACT 
Special Relativity sets tight constraints on the form of the possible relations between the four-momentum of a 
particle and the wave four-vector. In fact, we demonstrate that there is just one way, according to Special Rela-
tivity, to relate the energy and the momentum of a corpuscle with the characteristics of a plane wave, frequency 
and wave vector, if the momentum has to flow in the same direction of the wave propagation: the laws must be of 
direct proportionality like de Broglie = p k  and Planck-Einstein E ω=   equations. 
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1. Introduction 
In the autumn of 1924, the French physicist Louis de 
Broglie submitted to the judgement of Sorbonne Univer-
sity in Paris, one of the most famous PhD theses in the 
history of physics [1]. His results, as he confessed several 
decades later, gathered the fruits of many solitary medi-
tations on a conundrum of physics which had bothered 
him for a long time: the dual wave and particle nature of 
light. The dissertation brought together various notes 
already published mainly in the Comptes Rendus de 
l’Académie des Sciences [2-6]. 

In his thesis de Broglie suggests that the quanta of 
light had to be completely comparable to other known 
material particles. For instance, they had to have a rest 
mass different from zero, although very small1. Moreover, 
if the photons had to be put on the same conceptual 
framework of other particles, according to the French 
physicist, it was also possible to imagine that particles 
different from the photons could share the strange dual 

property of wave and corpuscle with the light. So the 
fundamental hypothesis of his dissertation was to con-
sider true for all the particles, not only for the quanta of 
light, the Planck-Einstein law: 

,E hν=                  (1) 

where ν  is a frequency and h is the Planck constant. 
But what was the physical origin of the frequency in the 
Planck-Einstein formula? 

De Broglie initially imagines that the source of the 
frequency is related with some periodic phenomenon 
inside the particle [3]. He considers a particle with veloc-
ity v along the x axis in an inertial frame S. Assuming 
that the combination of the Planck-Einstein Equation (1) 
for the photons and the relativistic energy of the particle, 

2
0

2

v,  1,
1

m c
E

c
β

β
= = <

−
        (2) 

holds, he writes that in the rest frame S0 of the particle 
there must be: 

2
0 0 ,h m cν =               (3) 

where 0ν  is the frequency of the supposed inner vibra-
tion. But de Broglie is immediately forced to face a 
problem. Because of the relativistic time dilation, an ob-

1The development of de Broglie’s thought, even confining our-
selves to his PhD thesis, is rather complex and not without con-
tradictory points. In this introduction we only recall some of its 
fundamental aspects, referring to the literature [7-12] for the 
necessary details. 
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server, for whom the particle is moving with velocity v, 
ascribes to the inner vibration a lower frequency iν : 

2
0 1 .iν ν β= ⋅ −             (4) 

However, comparing Equation (1) with Equation (2): 
2

0

2
,

1

m c
hν

β
=

−
             (5) 

and considering the condition (3), we easily obtain the 
relativistic formula of transformation between frequen-
cies  

0 2

1 ,
1

ν ν
β

= ⋅
−

              (6) 

which is typically linked with a wave phenomenon: ν  
is the frequency of a wave in S, while 0ν  is now the 
frequency of such a wave in the frame S0. 

In order to resolve this difficulty, de Broglie assumes 
the existence of a “fictitious” wave associated with the 
particle [3] with frequency ν  and phase velocity 

v ,p
c c
β

= >                (7) 

that is 
2v v .p c⋅ =                 (8) 

According to the French physicist, the wave was ficti-
tious because, being its speed greater than the speed of 
light, it cannot transport energy2. In order to justify the 
assumption of Equation (7), he shows that if the periodic 
inner phenomenon and the external wave with phase ve-
locity in Equation (7) are in phase at a given time, they 
will be always in phase; i.e. the particle moves within the 
wave maintaining its inner vibration in phase with the 
wave. De Broglie called that “law of the harmony of 
phases”. 

His result, according to de Broglie, suggests that “any 
moving body could be accompanied by a wave, and it is 
impossible to disjoin the motion of the body from the 
wave propagation” [6]. Therefore, he assumes that ν  is 
the frequency of a plane wave which accompanies the 
particle, and that this frequency is the same which is in 
the Planck-Einstein equation. 

Let us recall the relativistic momentum of the particle: 

0

2

v
.

1

m
p

β
=

−
             (9) 

By comparing Equation (9) with Equation (5) and as-
suming that this holds in any frame, we can write the 

momentum in terms of the wave frequency: 

2 v.hp
c
ν

=                (10) 

But from Equation (8) we know that 2v v pc= , and 
remember that for a monochromatic wave the wave-
length is v pλ ν= , from Equation (10) we have the 
formula that made de Broglie famous: 

.p h λ=                (11) 

Equation (11) connects the module of the momentum 
p of a particle with the wavelength λ  of the associated 
plane wave through the Planck constant h. (For historical 
precision, we have to say that de Broglie expressly writes 
Equation (11) only in the last chapter of his PhD thesis, 
in the form h pλ = . In all his preceding works, includ-
ing the treatment of the Bohr atom, he always reasons in 
terms of frequency.) 

De Broglie’s prediction on the wave nature of the 
electron, the reason for his Nobel Prize, will be con-
firmed a few years later in the experiments of Davisson, 
Germer [14] and Thomson [15] on the diffraction of 
electrons by crystals. (For an introduction of the Thom-
son’s experiment and its optical analogy, see [16].) 

Today just a few introductory textbooks to quantum 
theory describe the original way of de Broglie’s thinking. 
Some books contain simplified versions [17,18] or the 
successive de Broglie’s derivation with wave packets 
[19]; most of them simply cite Equation (11) as a post-
ulate, and its application in the deduction of the energy 
quantization in Bohr’s atom [20,21]. 

Perhaps, from the present perspective, many of de 
Broglie’s initial suppositions appear strange (but see 
[22]). However, rejecting entirely the reasoning of the 
French physicist, and ignoring completely the history of 
his formula, mean also missing the relativistic argument, 
which underlines from the beginning how quantum me-
chanics is related to Special Relativity (without having to 
wait for the Dirac equation, with his description of spin 
and prediction of antimatter). This is a pity, as the power 
to unify different descriptions of the phenomena is one of 
the more interesting sides of the physics. 

In the next section we report an alternative deduction 
of the de Broglie relation obtained directly from the Lo-
rentz transformations and the Planck-Einstein equation. 
In Section 3, following de Broglie and other authors 
[23-25], we show how Special Relativity puts constraints 
on the possible formulas that may connect energy and 
momentum of a particle with wavelength, frequency and 
wave amplitude. In particular we demonstrate that equa-
tions like de Broglie’s and Planck-Einstein’s are the only 
relations allowed by Special Relativity, once we assume 
that momentum and wave vector have the same direc-
tion. 

2For that reason, in a successive derivation of his equation, de Broglie 
regarded the velocity of the particle as the group velocity of a wave 
packet, this being always lower than the speed of light [1]. We shall 
devote to wave packets, Relativity and de Broglie’s relation a next 
paper [13]. 
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2. De Broglie Relation from Special  
Relativity and Planck-Einstein Relation 

For particles without rest mass ( )0 0m =  such as pho-
tons, deducing the de Broglie relation from the Planck- 
Einstein equation is straightforward. In fact, following 
Einstein [26-28], it is enough to consider the relativistic 
equation between momentum and energy: 

.p E c=                 (12) 

Putting E hν=  in Equation (12) and recalling that 
,cλ ν=  we quickly obtain Equation (11). 

An elegant way to derive the de Broglie relation, for 
any massive or massless particle, can be achieved using 
directly the Lorentz transformations3. We put forward the 
following assumptions: 

1.a: Each particle is associated with a wave pheno-
menon. 

2.a: In every inertial frame the relation E ω=   holds, 
where E is the energy of the particle, π2ω ν=  is the 
angular frequency of the associated wave in that frame 
and π2h=  is a relativistically invariant constant. 

We want to show that: 
Theorem a: According to Special Relativity and 

1.a-2.a, between momentum and wave vector there is 
necessarily the relation = p k . 

Let S and S’ be two inertial frames in relative motion. 
According to 2.a, we assume that in both frames the 
Planck-Einstein relation applies to any particle:  

, .E Eω ω′′= =            (13) 

We introduce, for the particle and the wave, the four- 
momentum P and the wave four-vector K, respectively: 

( ) ( ), , , ,E c cω= =P p K k      (14) 

where the wave vector k has modulus 2πk λ= . We 
assume, for simplicity, that the frames S and S’ have pa-
rallel axes to each other and that at time 0t t′= =  the 
origins O and O’ of the spatial coordinates coincide. 

Moreover, we suppose S’ to move with respect to S 
with speed V c<  along the direction of the x axis, and 
the direction of the wave propagation to be along such 
axis (Figure 1). 

The Lorentz transformations for the four-momentum 
and the wave four-vector are 

( )
( )

( )
( )

,

x x

x x x x

y y y y

z z z z

E c E c p c c k

p p E c k k c
p p k k

p p k k

β ω ω β

β βω

γ γ

γ γ

′

= =

= =

′ = − = −
 

′ ′− − 
 

′ ′ 
 ′ ′ = =

  (15) 

where 

 
Figure 1. Given a plane wave with wave vector k, we choose 
our inertial frame S with x axis coinciding with the direc-
tion of the wave vector, so that ( ),0,0xk=k . The figure 
schematically shows some fronts of the plane wave. S’ is the 
inertial frame travelling with velocity V in comparison with 
S. 
 

2

2, 1 .V V
c c

β γ= = −           (16) 

Then we have 

( )
( ).

x

x

E c E c p

c c k

β

ω ω β

γ

γ′

′ = −


= −
          (17) 

By multiplying the second of Equations (17) by the 
Planck constant  : 

( )
( ) ,

x

x

E c E c p

c c k

β

ω ω β

γ

γ′

′ = −


= −  

        (18) 

and by subtracting side by side the two Equations (18): 

( ) ,x xE c c E c c p kω ω β βγ′′ − = − − +     (19) 

from which, because of Equation (13), we get 

( ) 0.x xp kβγ − =             (20) 

If we exclude the trivial condition in which the relative 
velocity V of the frames is zero (in such a case the factor 
βγ  is also zero and the two systems S and S’ coincide), 

Equation (20) is only satisfied with 
,x xp k=                 (21) 

equivalent to the de Broglie equation for the x component 
of the momentum. 

We point out as the just given demonstration, with the 
assumption 2.a, holds for particles of any mass, while de 
Broglie’s demonstration, starting from the relation (9), 
only holds for particles with nonzero rest mass. 

Equation (21) can be easily generalized to other com-
ponents of momentum and wave vector. In fact, consider 
a general orientation of the wave vector k with respect to 
the S frame ( )0, 0, 0yx zk k k≠ ≠ ≠ . We may use inertial 
frames S’y and S’z travelling with velocities along y and z 
with respect to S. Applying the correspondent relations 
(17) for S’y and S’z for the pairs of components 

3For other proofs one can look at the cited Wichmann’s, French and 
Taylor’s books [17,18], and especially L. de Broglie’s [29]. 
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( ),  yE c p , ( ), yc kω  and ( ),  zE c p , ( ), zc kω  we 
get at once y yp k=   and z zp k=  . 

3. De Broglie and Planck-Einstein Relations 
Together from Special Relativity 

As already remarked by Einstein in one of his fundamen-
tal works of 1905, the energy of an electromagnetic radia-
tion contained in a closed surface, and the frequency of 
the same radiation, change under the Lorentz transforma-
tions in the same way [30]. And as pointed out by Ashby 
and Miller [23], even the energy of a massless particle 
and the frequency of an electromagnetic wave change 
under the Lorentz transformations in the same way. Ac-
cording to Ashby and Miller that gives strong constraints 
on the possible forms that a relation between the energy 
of a photon and the frequency of a wave may have. In fact, 
these authors assume, ab absurdo, nE Cω= , where n is 
in general different from 1 and C is an invariant constant. 
They show that the Planck-Einstein relation, which is 
obtained with 1n = , is the only kind of dependence be-
tween energy and frequency which is relativistically inva-
riant. 

Therefore it would seem, from the developed reasoning 
in Section 2 and from the Ashby and Miller result, that, at 
least for the photons, both Planck-Einstein and de Broglie 
equations may follow from Special Relativity. Moreover 
it is also natural to wonder if a general constraint exists, 
which is valid for particles with any mass, for which the 
condition of relativistic invariance imposes the form of 
both Planck-Einstein and de Broglie relations. 

As a matter of fact, here we intend to show that be-
tween the determinate four-momentum of a particle and 
the wave four-vector of a monochromatic wave there 
must be a condition of direct proportionality, if the veloc-
ity of the particle has the same direction of the associated 
wave propagation. 

We assume from experience that every particle is in re-
lation with a wave [31]. We make no assumptions about 
the specific nature of this wave, (still a controversial issue 
after almost a century [32]) or on the type of differential 
equation it may have: the d’Alembert wave equation, or 
Schrödinger’s, or Klein-Gordon’s, or Dirac’s, or more. 
We suppose only that a perturbation of an unclear kind, 
describable as a plane wave with definite wave number 
and frequency, is associated with the finite energy and 
momentum of a corpuscle.  

We recall that in classical mechanics a plane wave 
possesses infinite total momentum and infinite total ener-
gy, and then we can only define for it a flux and a density 
of momentum, or a flux and a density of energy [33], so 
our assumption, that we could call “quantistic”, is in con-
trast with classical mechanics. 

We consider as previously, for sake of simplicity, a 
plane wave of angular frequency ω  travelling with wave 

vector k along the x positive direction of an inertial frame 
S. All our results will be generalizable for k with a generic 
direction with respect to S following the way sets out at 
the end of Section 2. 

In S, 0y zk k= =  and because of the Lorentz trans-
formations (15) of the wave four-vector, the y and z com-
ponents of k will be always zero also in any other inertial 
reference S’. Therefore we will look for the expressions of 
E and xp  only as functions of ω  and xk . In fact, since 
we assume that no force acts on our system, the energy 
and the momentum depend neither on the spatial coordi-
nate x nor on the time t. Let us denote with A a generic 
amplitude of the wave (without defining whether it is a 
scalar, a four-vector or other). We assume the following 
postulates: 

1.b: Each particle is associated with a wave and it is 
impossible to disjoin the motion of the particle from its 
wave. 

2.b: The finite energy and momentum of a free particle 
are associated with the characteristics of a monochromatic 
plane wave, amplitude, frequency and wave vector: 

( ) ( ), , , , , .x x x xE E A k p p A kω ω= =      (22) 

3.b: The momentum of the particle flows in the same 
direction of the wave propagation.  

We intend to show: 
Theorem b: The only functions (22) allowed by Spe-

cial Relativity and by 1.b - 3.b, are the relations of pro-
portionality E Cω=  and x xp Ck= , where C is a relati-
vistic invariant. 

For the development of Theorem b we need the fol-
lowing lemma: 

Lemma: In the frame S0 where the momentum of the 
particle is zero, 0,xp = the wave vector is zero as well, 

0xk = . 
According to our assumptions, the momentum has to 

flow in the direction of the wave propagation, in confor-
mity with what happens to the waves of classical me-
chanics. That is, for 0xp ≠ , if 0xk >  then it is also 

0xp > , if 0xk <  it must be 0xp < : 
0 0, 0 0.x x x xk kp p> → > < → <      (23) 

We require that such a condition holds in every inertial 
system S. Let S0 be the frame in which the momentum of 
the particle is zero ( )0 0xp = . The Lorentz transforma-
tions between the two inertial frames S and S0 for the 
components of the momentum and the wave vector are: 

0 0
0

v v
, ,x x

x x x
E

p k k
c c c c

ω
γ γ  = ⋅ = ⋅ + 

 
     (24) 

where now we have represented in explicit form the de-
pendence of β on the velocity vx  of S0, coincident with 
the rest frame of the particle (hence vx  is also the veloc- 
ity of the particle with respect to S). The sign of xp  only 
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depends on the sign of ( )( )v v 0x xγ γ= > . Therefore it 
follows from Equations (24) that condition (23) is satis-
fied if, and only if, in S0 there is 0 0xk = . Then: 

0 00 0.x xp k= → =             (25) 

So assuming that the momentum, i.e., the velocity of 
the particle, is always in the direction of the wave prop-
agation implies the existence of a frame S0 where mo-
mentum and wave vector are both zero4. 

Let us look for the velocity vx  of the frame S0 as a 
function of ω  and xk . Putting 0 0xk =  into the in-
verse of the second transformation in Equations (24), 

0
v

,x
x xk k

c c
ωγ  = ⋅ − 

 
            (26) 

we get immediately: 
v

.x
xk

c c
ω

=                (27) 

Remembering that the phase velocity is defined as 
v p xkω= , from Equation (27 ) we have 

2v v .x pc=                (28) 

Equation (28) is exactly equivalent to equation (8), 
postulated by de Broglie in order to obtain the harmony of 
phases between the periodic inner phenomenon and the 
external wave. 

Coming back to Theorem b, we consider the two inva-
riants square moduli of the four-momentum and the wave 
four-vector: 

2 2 2 2 2 2 2 2 2 2
0 0, ,x xE c p m c c k cω ω− = − =   (29) 

where 2
0m c  and 0ω  are, respectively, the energy E0 

and the frequency in the frames where the momentum and 
the wave vector are zero. We study the four different 
possible cases: 

Case 1: 0 00, 0.m ω≠ ≠  
We have, from the Lorentz transformations between S 

and S0 for the four-vectors P and K: 

( )
( )

( )
( )

0 0 0 0

0 0 0 0 .
x x x

x x x

E c E c p p p E c

c c k k k c

β β

ω ω β βω

γ γ

γ γ

=

=

 = + + 
 

= + +  
 (30) 

Now, according to our Lemma, we assume that in the 
frame S0 we have 0 0xp =  and 0 0xk = . The previous 
equations become: 

0 0

0 0

x

x

E E p E
k

c
c

β

ω ω βω

γ γ
γ γ

== 
 = = 

         (31) 

and by dividing side by side Equations (31) we get: 

0 0

0 0

, .x

x

E p EE
kω ω ω

= =             (32) 

So, being the inertial frame S arbitrary, from the first of 

Equations (32) we deduce that the ratio E ω  has to be 
an invariant. Then we can introduce the invariant C: 

0

0

,
E

C
ω

≡                  (33) 

where C is for the initial hypotheses finite, positive and 
constant with respect to the space-time coordinates ( ),t x . 
By confronting Equations (32) with Equation (33), we 
directly have: 

,   .x xE C p Ckω= =          (34) 

Identifying C with the Planck constant, we can recog-
nize in Equations (34), respectively, the Planck-Einstein 
and the de Broglie relations.  

From the definition of C in relation (33), we see that 
2

0

0

.
m c

C
ω

=                 (35) 

Therefore C does not explicitly depend on the ampli-
tude, but may depend on the inertial mass of the particle 
and the invariant 0ω , the frequency in the frame where 
the wave is stationary. In general: 

( )0 0, .C C m ω=               (36) 

However, if we require, according postulate 2.b and 
the first of Equations (32), that in the limit 0 0m →  the 
invariant C is finite and different from zero, from relation 
(35) it must necessarily be also 0 0ω →  (we shall ana-
lyze the case 0 0m =  and 0 0ω =  below). This claim 
implies the existence of a dependence between 0ω  and 

0m , ( )0 0 0mω ω= . So, in such a circumstance, C can only 
depend on the mass, ( )0C C m= , and the invariant is 
constant for that particle. That is equivalent to assuming 
the inertial mass is the only invariant which plays a role 
in the problem. 

Finally, if we demand that C is independent of the 
mass, such as the Planck constant seems to be experi-
mentally [34], we deduce easily from Equation (35) that 
there must be 0 0m C ω′= , where 2C C c′ =  is an iden-
tical constant for every particle. Then the inertial mass is 
proportional to the frequency of a periodic phenomenon, 
as initially supposed by de Broglie. 

Case 2: 0 00,  0.m ω≠ =  
Now, in S0, we have 0 0xk =  and 0 0ω = . So, from 

the Lorentz transformations (30), if γ  was finite in 
every frame S there would be 0xk =  and 0xω = , a 
situation physically impossible for a wave. 

A way out is represented by allowing the factor γ  to 
be infinite. But this happens only for vx c= , and in 
such a situation the frame S0 and the particle travel at the 
speed of light. In order to avoid the infinite energy of the 
particle we should assume 0 0m = , in contradiction with 
the conditions of Case 2.  

Case 3: 0 00,  0.m ω= ≠  
4Alternatively, we can arrive at this conclusion from inequalities (23) 
by supposing ( )x x xp p k=  a continuous function. 
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In this case, since 2
0 0E m c= , in S0 we have 0 0E =  

and 0 0xp = . Then, from the Lorentz transformations 
(30), for γ  finite the energy of the particle would be 
zero in any frame; but this is a situation devoid of physi-
cal meaning as well. To preserve finite E we should as-
sign to γ  an infinite value considering, like the pre-
vious case, vx c= , the particle in motion at the speed of 
light. However, in order to maintain finite the wave vec-
tor xk , in such a circumstance it would be also neces-
sary to suppose 0 0ω = , in contradiction with the condi-
tions of Case 3. 

Case 4: 0 00,   0.m ω= =  
Let us consider the Lorentz transformations between 

two inertial frames S and S’ for the components of the 
four-momentum and the wave four-vector: 

( )
( )

( )
( ).

x x x

x xx

E c E c p p p E c
k k cc c k

β β

βωω ω β

γ γ

γγ ′′

′ ′ = + ′ ′ + 
 

′′ += +

=

= 
  (37) 

If we put 0 0m =  and 0 0ω =  into the invariants (29), 
and we consider in accordance with our lemma, that xp  
and xk  must have the same sign, we have5: 

, .x x
Ep k
c c

ω′′
′ ′= =           (38) 

Inserting Equations (38) into Equations (37): 

( )
( )

( )
( )

1 1

1 1 ,
x

x

E c E c p E c

c c k c

β β

ω β ω β ω

γ γ

γ γ′ ′

′ ′= + +  
 

= + +

=

=  
  (39) 

we obtain, dividing side by side: 

,   .x

x

pE E E
kω ω ω′ ′

′ ′
= =            (40) 

Being primed and non-primed arbitrary inertial frames, 
from the first of relations (40), we deduce that the ratio 
E ω′′  has to be an invariant. As above, we define the 
invariant 

,E C
ω′
′
≡                 (41) 

and from Equations (40) we get again the Planck-Eins- 
tein and the de Broglie relations (34). 

Summing up, the physically meaningful cases are 
Case 1 and Case 4. Case 1 corresponds to particles with 
inertial mass and waves with 0 0ω ≠ . This is the situa-
tion which is verified for fields with massive quanta. 
Case 4 corresponds instead to particles without inertial 
mass like photons, where the associated waves have 

0 0ω = , like the electromagnetic waves. 

4. Conclusions 
We have shown that, once we assume the existence of a 
wave phenomenon with finite energy and momentum 
like a classical particle, and that the momentum fluxes 
along the same direction of the wave propagation, from 
Special Relativity follows that the four-momentum P and 
the wave four-vector K can be related just in one way, by 
a rule of direct proportionality:  

,C=P K  

where C is an invariant under the Lorentz transforma-
tions. 

Therefore, we have deduced de Broglie and Planck- 
Einstein relations for plane waves from more general 
assumptions than those usually considered. De Broglie 
uses the following hypotheses: 

1) The rest energy of a particle 2
0m c  is proportional 

to a wave frequency 0ν : 
2

0 0 ,m c hν=  

where h is an invariant constant. 
2) The relationship between phase velocity v p  and 

particle velocity vx  is 
2

v ,
vp

x

c
=  

or 
2ʹ) The frame in which the particle is at rest is the 

same frame in which the wave vector is zero, 0xk = .  
Assumptions 2) and 2ʹ) are equivalent, and de Broglie 

himself showed it [1]. However, we have also shown that, 
in order to deduce the proportionality between four- 
momentum and wave four-vector, assumption 1) is not a 
necessary starting point. Moreover 2) and 2ʹ) can be re-
placed by another postulate: 

2‴) The momentum always flows in the same direction 
of the wave propagation in every inertial frame. 

The fact that the particle is at rest, that is v 0x = , in 
the frame where 0xk =  is a situation rather arbitrary, 
which de Broglie justifies with his phase harmony theo-
rem. But as we have shown in our work, it follows from 
the quite natural and classical assumption that a wave 
and its momentum always travel in the same direction. 

Our result shows that the relationship between Rela-
tivity and quantum physics is closer than usually 
thought6. It is also a meaningful example of the condi-
tions that Special Relativity imposes to other theories, 
with Einstein’s words [36]: “the universal principle of 
the special theory of relativity is contained in the post-
ulate: The laws of physics are invariant with respect to 
the Lorentz transformations (for the transition from one 
inertial system to any other arbitrarily chosen system of 

5Of course, we can also choose 

, .x x

Ep k
c c

ω′ ′
′ ′= − = −  

For brevity, we study only one of the two possibilities, the final result 
being the same for both of them. 

6About the connection between the postulates of quantum physics and 
Special Relativity, you can also read [35]. 
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inertia). This is a restricting principle for natural laws, 
comparable to the restricting principle of non-existence 
of the perpetuum mobile which underlies thermodynam-
ics”. 
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