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ABSTRACT 
Iron oxide nanoparticles supported on zirconia were prepared by precipitation-deposition method and characte-
rized by XRD, SEM, FT-IR, TGA/DTA, surface area and particle size analysis. Catalytic activities of the cata-
lysts were tested in the gas-phase conversion of cyclohexanol in a fixed-bed flow type, Pyrex glass reactor, at 433 
- 463 K. Major detected products were cyclohexanone, cyclohexene and benzene, depending on the used catalyst. 
The rate of reaction was significantly raised by the introduction of molecular oxygen in the feed gas, thereby 
suggesting the oxidation of cyclohexanol to cyclohexanone. Furthermore, the catalytic activity of iron oxide na-
noparticles supported on zirconia treated with hydrogen at 553 K for 2 hours, was more selective and better than 
the unreduced iron oxide nanoparticles supported on zirconia, in the gas-phase oxidation of cyclohexanol to cyc-
lohexanone. Experimental results showed that there was no leaching of metal, and that the catalyst was thus tru-
ly heterogeneous. 
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1. Introduction 
Since the early 1900’s, iron-based dispersed catalysts 
have been used for the liquification of coals. Continuous 
efforts have been made to reduce size of the particles 
with a simultaneous focus on preserving and enhancing 
the dispersion, in order to improve the quality and affor-
dability of these iron-based catalysts. Several attempts 
have been made to prepare iron oxides and explore their 
catalytic activities in petrochemical industries [1-9]. Re-
search has established the enhancing effect of promoters 
on the catalytic activity of iron-based catalysts, for exam- 
ple, molybdenum promotes the catalytic activity of sul- 
fated hematite while tungsten has additive effect when 
used in combination with molybdenum. Similarly, nickel- 
cobalt has synergetic effect while used with molybdenum,  

etc. [10-12]. Recently, researchers have diverted atten-
tion towards nano-materials and their applications in the 
field of catalysis. In this scenario, iron oxide nanoparticle 
is a potent candidate to be investigated as a catalyst in 
various industrially important reactions, including the 
synthesis of NH3, water shift reaction, desulfurization of 
natural gas, dehydrogenation of ethyl benzene, oxidation 
of alcohol, and manufacture of butadiene [13-18].  

In this work, we prepared iron oxide nanoparticles 
from iron nitrate with precipitating agents, i.e., ammo-
nium hydroxide and ammonium acetate, without the aid 
of any surfactant. Iron oxide particles were found to be in 
the range of 8 - 10 nm as estimated from XRD of pure 
iron oxide nanoparticles. Following the same procedure, 
iron oxide nanoparticles supported on zirconia were pre-
pared by adding deionized water and monoclinic zirconia 
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to iron hydroxide prepared with ammonium hydroxide, 
or an excess of acetone and monoclinic zirconia to  
Fe2(CHOO)6 sol prepared with ammonium acetate. The 
prepared catalysts were characterized by various tech-
niques, and tested for catalytic activities in the gas phase 
conversion of cyclohexanol to cyclohexanone, cyclo-
hexene and benzene, keeping in view the fact that hema-
tite and magnetite are semiconductors and can catalyze 
oxidation/reduction reactions [4].  

2. Experimental 
2.1. General 
Chemicals were of high purity grade and were used as 
such without further purification. The catalyst was pre-
pared in the laboratory from its precursor compounds. 
Nitrogen, oxygen and hydrogen were supplied by BOC 
Pakistan limited. 

2.2. Catalyst Preparation  
The catalyst was prepared in two steps. 

2.2.1. Monoclinic Zirconia 
Monoclinic zirconia was used as a support for the catalyst 
which was prepared by ammonolysis of ZrOCl2∙8H2O 
(0.5 M aqueous solution) [19]. The precipitate was wash- 
ed, dried, grinded, and then calcined at 1203 K in furnace 
at a rate of 1˚C/min.  

2.2.2. Fe2O3/Monoclinic ZrO2 
Fe2O3 nanoparticles were prepared by drop wise addition 
of  

1) 0.5 M ammonium acetate solution to 0.1 M iron ni-
trate solution under vigorous stirring to obtain  
Fe2(CHOO)6 sol [16]. After the reaction, an excess of 
acetone and monoclinic zirconia were added and centri-
fuged to precipitate Fe2(OH)6/ZrO2.  

2) 0.5 M ammonium hydroxide solution to 0.1 M iron 
nitrate solution under vigorous stirring to obtain brow-
nish precipitate. The precipitate was washed twice with 
triple distilled water and centrifuged. To the purified pre-
cipitates, deionized water and monoclinic zirconia were 
added and stirred, followed by centrifugation at 3000 
rpm. Iron hydroxide/zirconia was then dried and calcined 
at 823 K which resulted in the nanoparticles of iron oxide 
supported on ZrO2.  

2.2.3. Reduction of the Catalyst 
The prepared catalyst was reduced at 553 K in tube fur-
nace for 2 h. The nitrogen gas was continuously passed 
through the reactor until the desired temperature (i.e., 
553 K) was achieved, and then a mixture of hydrogen 
and nitrogen (1:1) was passed for two hours at 40 
mL/min, with a subsequent cooling in the nitrogen at-

mosphere.  

2.3. Characterization of the Catalyst 
Modern techniques such as XRD (X-ray differactrometer 
Rigaku D/Max-II, Cu tube, Japan), SEM (JSM 5910, 
JEOL, Japan), TGA/DTA (Diamond Series PerkinElmer, 
USA), U.K), FT-IR (Shimadzu prestige-21), Surface area 
and pore size analyzer (Quantachrome) were used for 
characterization of the catalyst.  

2.4. Catalytic Test 
100 mg of iron oxide nanoparticles supported on monoc-
linic ZrO2 catalysts were used for the gas phase oxidation 
of cyclohexanol to cyclohexanone in a fixed-bed flow 
type Pyrex glass reactor at 433 - 463 K in a tubular fur-
nace attached to temperature controller. Cyclohexanol 
vapors were fed from saturators, using N2 as a carrier gas 
with a fixed flow rate of 40 mL/min. Reaction mixtures 
of 0.5 mL were injected at specified time intervals with 
six-port gas sampling valve to GC (PerkinElmer Clarus 
580) with column (rtx@-Wax 30 m, 0.5 mm ID, 0.5 nm) 
and FID.  

3. Results and Discussion 
3.1. Characterization of the Catalyst 
XRD of the catalysts, i.e., one prepared with ammonium 
acetate and the other prepared with ammonium hydrox-
ide as a precipitating agent, was carried out. XRD pattern 
of the former catalyst presented with peaks at 2θ = 28.5 
and 31.8 which point towards a retention of the monoc-
linic phase of zirconia. However, the monoclinic phase 
of zirconia was lost in the latter catalyst which could 
probably be due to the presence of water. Furthermore, 
peaks at 2θ = 35.4 and 45.3 were recorded for both sam-
ples prior to being reduced, which account for the crys-
tallized nanoparticles of iron oxide (αFe2O3/γFe2O3). In 
case of reduced samples, a peak was recorded at 2θ = 
69.2 as shown in Figure 1 which owes for the presence 
of magnetite in the samples [12,20,21]. 

The average particle size was estimated (8 - 10 nm) by 
using the Debye-Scherrer equation from peak width 
broadening in the XRD data of pure iron oxide (Figure 
2). This finding is consistent with earlier studies of iron 
oxide nanoparticles [20,22]. 

BET surface area of the catalysts was found to be in 
the range of 150 - 300 m2g−1. FT-IR spectra (Figure 3) of 
freshly prepared sample exhibited peaks at 3300, 1642 
and 1300 cm−1 corresponding to the O-H group, carboxyl 
group and 3NO−  ion, respectively [20,23]. But none of 
these peaks could be recorded for the unused calcined 
sample. However, peaks at 470 cm−1 and 570 cm−1 con-
firmed the presence of hematite particles in the unused 
calcined sample. 
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Figure 1. XRD patterns of the iron oxide nanoparticles sup-
ported on monoclinic zirconia: (a) Prepared with ammonium 
hydroxide as precipitating agent, and calcination at 823 K; (b) 
Prepared with ammonium acetate as precipitating agent, and 
calcination at 823 K; (c) Prepared with ammonium acetate as 
precipitating agent and calcination at 823 K, followed by 
reduction at 553 K in hydrogen flow for 2 hours. 
 

 
Figure 2. XRD patterns of the iron oxide nanoparticles: (a) 
Prepared with ammonium acetate as precipitating agent and 
calcination at 823 K; (b) Prepared with ammonium hydroxide 
as precipitating agent and calcination at 823 K, followed by 
reduction at 553 K in hydrogen flow for 2 hours.  
 

SEM images (Figure 4) show that iron oxide nanopar-
ticles prepared by using NH4OH as precipitating agent 
are clustered together and bear a rough overall morphol-
ogy, whereas those prepared by ammonium acetate as 
precipitating agent are well dispersed and have a smooth 
morphological presentation. SEM images clearly show 
that the morphological smoothness of the iron oxide na-
noparticles in the latter sample enhances with calcination 
and reduction. After reduction in hydrogen flow, the na-
noparticles appear as spherical balls. TGA/DTA study of 
freshly prepared dried catalysts, reflects a three stage 
reduction of iron oxide, and thereby strongly supports the 
procedure we have adopted for the preparation of hematite 
nanoparticles on monoclinic zirconia by calcination at 823 

 
Figure 3. FT-IR of the iron oxide nanoparticles supported on 
monoclinic zirconia: (a) Before calcination, (b) After calci- 
nation. 
 

 
Figure 4. SEM images of iron nanoparticles on ZrO2: (a) Pre-
pared with ammonium hydroxide as precipitating agent; (b) 
Prepared with ammonium acetate as precipitating agent; (c) 
Prepared with ammonium acetate as precipitating agent and 
calcined; (d) Prepared with ammonium acetate as precipitat-
ing agent, calcined and reduced in hydrogen flow.  
 
K, and for the preparation of magnetite nanoparticles on 
monoclinic zirconia by calcination at 823 K 4 hours follow- 
ed by reduction at 553 K in hydrogen flow for 2 hours. 

3.2. Oxidation/Dehydrogenation 
Oxidation/dehydrogenation was demonstrated by com-
paring the data obtained with and without oxygen under 
identical experimental conditions using magnetite nano-
particles supported on zirconia as a catalyst as shown in 
Figure 5. A noticeable effect was observed on the rate of 
reaction, when oxygen (95 Torr) was introduced in the 
gas feeding system, in comparison to that obtained in 
pure N2 atmosphere. The dehydrogenation activity falls 
again to the same negligible level when O2 is removed 

(a) (b)

(c) (d)
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from the gaseous mixture. This increase in the rate of 
formation of cyclohexanone in the presence of O2 is 
common for metal oxide catalysts and is known as oxi-
dation. Most of the industrially important reactions pro-
ceed through oxidation pathway in the presence of metal 
oxide as catalysts. 

The FT-IR spectra of the catalyst recovered from the 
reaction carried out in the oxygen flow using magnetite 
nanoparticles supported on zirconia showed intense peak 
for carbonyl group, thus showing that the major product 
of gas phase oxidation of cyclohexanol is cyclohexanone 
as shown in Figure 6. The percent yield calculated from 
FT-IR was in a good agreement with that of GC results. 

The same reaction when carried out under identical 
condition using hematite nanoparticles supported on zir-
conia gives cyclohexene as a major product by dehydra-
tion of cyclohexanol as shown in FT-IR spectra (Figure 
7). However with an increase in temperature, benzene 
was also detected suggesting digression of the reaction 
towards dehydrogenation as shown in Scheme 1 [25-29]. 

3.3. Activation Energy  
Variation in the rate of reaction with temperature at con-  
 

 
Figure 5. Activity profile of magnetite nanoparticles/monoc- 
linic ZrO2 for the conversion of cyclohexanol to cyclohexanone 
in an atmosphere of oxygen and nitrogen. 
 

 
Figure 6. FT-IR of the recovered catalyst (magnetite nano-
particles supported on monoclinic zirconia), after being used 
for conversion of cyclohexanol. 

 
Figure 7. FT-IR of the recovered catalyst (hematite nano-
particles supported on monoclinic zirconia), after being used 
for conversion of cyclohexanol. 
 

 
Scheme 1. Major products of cyclohexanol while using mag-
netite nanoparticles supported on monoclinic zirconia (i) or 
hematite nanoparticles supported on monoclinic zirconia (ii & 
iii). 
 
stant pressures ranging from 12 Torr to 33 Torr was ob-
served, using magnetite nanoparticles supported on mo-
noclinic zirconia. Activation energies were calculated 
using Equation (4). Activation energies at pressures 12, 
15, 20, 26, 33Torr are 17.48, 18.2, 17.73, 19.27, 19.73 
kJ·mol−1, respectively. The activation energies for all 
these pressures are in the range where reaction is diffu-
sion controlled. The rate of a reaction is given by fol-
lowing equation. 

rate nkP=                (1) 
According to Arrhenius equation 

Ea RTk Ae−=               (2) 
Putting the value of k from Equation (2) in Equation 

(1), we get 

rate
Ea

nRTAe P
−

=               (3) 

ln rate = (lnA + nlnP) Ea RT−      (4) 

Plot ln rate vs. 1/T will give slope = Ea RT−  while 
intercept = lnA + nlnP as shown in Figure 8. Different 
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values of intercept as obtained from figure were plotted 
against lnP (Figure 8) where intercept = lnA and slope = 
n represent the order of reaction. The exposure of the 
catalyst in presence of oxygen was carried out for 480 
minutes as shown in Figure 9. It is clear from the Figure 
9 that there is no noticeable decline in the catalyst activ-
ity. 

4. Conclusion 
The catalytic activity of hematite and magnetite nanopar-
ticles supported on monoclinic zirconia was investigated 
for the gas-phase reaction of cyclohexanol. It was found 
that the catalyst was more active when reduced and selec-
tive for cyclohexanol oxidation to cyclohexanone, but it 
showed activity and selectivity for dehydration (i.e., 
conversion of cyclohexanol to cyclohexene) when unre-
duced. Furthermore, the catalyst effectuated dehydration/ 
dehydrogenation of cyclohexanol to benzene at higher 
temperatures. The model reaction, i.e., the gas-phase 
oxidation of cyclohexanol to cyclohexanone using mag-
netite nanoparticles supported on monoclinic zirconia, in  
 

 
Figure 8. Plot of ln rate vs. 1/T (slope = Ea RT−  and inter-
cept = lnA + nlnPROH) and plot of lnPROH against calculated 
intercept. 
 

 
Figure 9. Continuous exposure of magnetite nanoparticles 
supported on monoclinic zirconia, used for conversion of 
cyclohexanol to cyclohexanone at 463 K. 

flow reactor, was found to be in diffusion control regime. 
In addition, the iron oxide nanoparticles supported on 
monoclinic zirconia could be easily recovered and used 
several times without significant loss of catalytic activity. 
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