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Various methods have been used to estimate the amount of above ground forest biomass across land-
scapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without 
an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which 
could lead them to make poorer decisions in their future management plans. The goal of this study was to 
compare various imputation methods to predict forest biomass and basal area, at a project planning scale 
(<20,000 acres) on the Malheur National Forest, located in eastern Oregon, USA. We examined the pre-
dictive performance of linear regression, geographic weighted regression (GWR), gradient nearest neigh-
bor (GNN), most similar neighbor (MSN), random forest imputation, and k-nearest neighbor (k-nn) to es-
timate biomass (tons/acre) and basal area (sq. feet per acre) across 19,000 acres on the Malheur National 
Forest. To test the different methods, a combination of ground inventory plots, light detection and ranging 
(LiDAR) data, satellite imagery, and climate data was analyzed, and their root mean square error (RMSE) 
and bias were calculated. Results indicate that for biomass prediction, the k-nn (k = 5) had the lowest 
RMSE and least amount of bias. The second most accurate method consisted of the k-nn (k = 3), followed 
by the GWR model, and the random forest imputation. For basal area prediction, the GWR model had the 
lowest RMSE and least amount of bias. The second most accurate method was k-nn (k = 5), followed by 
k-nn (k = 3), and the random forest method. For both metrics, the GNN method was the least accurate 
based on the ranking of RMSE and bias. 
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Introduction 
Estimates of forest biomass and basal area provide critical 

information for quantifying the amount of carbon sequestrated, 
making management decisions, designing processing plants, 
guiding decisions among conflicting land uses, and establishing 
and quantifying wildlife habitats. To meet national and interna-
tional negotiations and reporting requirements, forest manage-
ment plans require local inventory data on biomass, vegetation, 
site productivity, carbon, and other resources. The data must be 
intensive enough to include structural variables relevant to 
biomass and carbon projections and extensive enough to cover 
hundreds to thousands of acres, but not be too expensive to 
collect.  

Recognition of the widespread need for cost-effective, local 
inventory data that spans large regions has led to new methods 
for imputing plot data to sites without data and then generating 
maps of regional biomass and productivity. One imputation 
method is the Gradient Nearest Neighbor (GNN). Vegetation 

maps created using GNN now figure prominently into intera-
gency (Oregon Department of Forestry, USDI Bureau of Land 
Management, and USDA Forest Service) analysis and planning 
efforts across the Pacific Northwest. In addition, they are being 
used to estimate the supply of woody biomass available to pro-
posed energy facilities and in regional conservation planning. 
Other techniques that use imputation, including K-NN (k- 
Nearest Neighbor), are used in parts of the Pacific Northwest. 
Both GNN and K-NN are used to derive forest biomass and 
basal area maps. For example, one can combine satellite im-
agery with data from field plots and impute a raster dataset 
showing a continuous map of biomass and basal area across the 
landscape (Ohmann & Gregory, 2002).  

GNN maps are created by using a multivariate model that 
integrates field plot data with satellite imagery and current 
mapped environmental data. GNN uses the nearest neighbor, or 
shortest distance, from a point to the nearest plot in predictor 
space to generate volume and basal area estimates that are then 
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related to a specific timber type. The distance is measured by 
creating a weight matrix derived by canonical correspondence 
analysis (Ohmann & Gregory, 2002). Similarly, MSN maps are 
created using a model that also integrates field plot data with 
satellite imagery. In contrast, MSN uses a canonical correlation 
analysis to derive a similarity function, with selected response 
variables, to impute data to pixels where no ground plots exist 
(Moeur & Stage, 1995). The k-MSN method uses the same 
methods as MSN, but takes an average of the k nearest neigh-
bor of plots. The Random Forest (RF) imputation method 
creates a classification matrix and regression tree in order to 
find similarities between the explanatory and response variables 
(Crookston & Finley, 2008).  

Nearest neighbor imputations have been used to perform 
multivariate analyses of forested landscapes by associating 
variables of interest (e.g. ground data) to aerial data (Temesgen 
et al., 2003), satellite imagery (Eskelson et al., 2009a), and light 
detection and ranging (LiDAR) data (Hudak et al., 2008; 
Goerndt et al., 2010). Different analyses have ranked the me-
thods and data sources differently in different forest types. For 
example, in north-central Idaho, Hudak et al. (2008) found that 
the RF method performed best at predicting plot level estimates 
such as basal area and tree density. In Finland, Maltamo et al. 
(2006) compared k-MSN imputations for plot and stand level 
volume estimates and found that aerial-laser scanner data re-
sulted in better estimates than using aerial photo imagery esti-
mates and, when laser and photo data were used together, the 
resulting root mean square error improved again. Eskelson et al. 
(2009a) found that the RF method performed best when com-
pared to the moving average, weighted moving average, and 
MSN and GNN imputation methods.  

Parametric methods are an alternative to the nearest neighbor 
imputation methods that can be used to estimate selected va-
riables of interest (Fotheringham et al., 2002; Wang et al., 2005; 
Salas et al., 2010; Crow & Schlaegel, 1988). Linear and non- 
linear models have been used for this purpose in previous stu-
dies (Wang et al., 2005; Nelson et al., 2004). Another option is 
geographic weighted regression (GWR), which takes a global 
regression model and localizes it to a specific area and allows 
relationships between the explanatory and response variables to 
account for spatial variations, by including a weighting function 
in the regression model Fotheringham et al. (2002).  

Wang et al. (2005) developed an ordinary least squares (OLS) 
model, a spatial lag model, and a GWR model to analyze the 
amount of net primary production (NPP) in forest ecosystems 
across China. They used predictor variables that included forest 
stand locations, forest inventory data, and remotely sensed data. 
The authors found that the GWR model was superior to both 
the OLS model and the spatial lag model in predicting NPP. 

Salas et al. (2010) modeled tree diameter using forest inven-
tory and ancillary data. The models that the authors compared 
were OLS, generalized least squares (GLS), GWR, and linear 
mixed effects (LME). The authors used aerial LiDAR data and 
forest inventory plots to estimate diameter at breast height on 
individual trees in Norway. They found that the most precise 
approach was LME and GWR performed better than both the 
OLS and GLS.  

Airborne LiDAR Scanner (ALS) 
When current field inventory data are insufficient to achieve 

desired precision, a common practice is to increase the number 

of ground plots to measure the forest inventory. This can be 
costly and time-consuming. A newer practice would be to use 
LiDAR data. LiDAR is a tool that forestry researchers and pro-
fessionals are increasingly using to improve estimates of forest 
inventory attributes; the cost may be comparable to traditional 
ground inventory data collection (Hummel et al., 2011). 

LiDAR data are becoming a useful tool in obtaining large 
amounts of forest inventory data due to its precision and rela-
tive ease of ground truthing. Ground truthing LiDAR data consist 
of randomly locating plots across the landscape, measuring the 
trees on the plot, and georeferencing the trees so that they can be 
located in the LidAR data set for crown delineation (Wulder et al., 
2008). LiDAR datasets can be used to describe large areas of 
forested landscape at one time.  

Nelson et al. (2004) used LiDAR to estimate the amount of 
biomass and carbon in the state of Delaware. The authors used 
parallel flight lines 4 kilometers apart to measure the merchan-
table forest volume, biomass and above ground carbon. Using 
four explicitly linear models the authors predicted merchantable 
forest volume and above ground biomass across the state. The 
authors found that merchantable volume estimates were within 
22% of US Forest Service (USDA FS) estimates county wide 
and 15% statewide. Additionally, the authors found that their 
biomass estimates were within 22% of USDA FS estimates 
county wide and 20% statewide. The USDA FS estimates were 
based on FIA volume and biomass estimates at the county and 
state level.  

Næsset (2004) reported on the first Nordic stand-based forest 
inventory using LiDAR. The author predicted six stand va-
riables from LiDAR data: mean tree height, dominant height, 
mean diameter, basal area, stem volume and stem number. Plot 
and tree level data were collected, including tree diameter at 
breast height (dbh), and tree height. With the plot data the au-
thor calculated: mean height, dominant height, mean diameter 
by basal area, plot basal area, number of trees per hectare, and 
total plot volume. The author found that 85% - 95% of the va-
riability was explained by the regression models for mean 
height and dominant height. Additionally, 72% - 85% of the 
variability was explained by the regression models for basal 
area and stand volume and 49% - 63% of the variability was 
explained by the regression models for mean diameter and stem 
number. Validation of the models revealed the mean differ- 
ences between the ground truth data and the predicted values 
were statistically significant in 5 of 24 cases. 

In this article, we examine the performance of four parame-
tric and two non-parametric methods for estimating the amount 
of standing tree biomass and basal area at a pixel level, across 
the a site on the Malheur National Forest, in Eastern Oregon, 
US: Gradient Nearest Neighbor (GNN), Most Similar Neighbor 
(MSN), k-MSN, and the Random Forest (RF) nearest neighbor 
methods, and linear regression and geographic weighted re-
gression. The different methods were assessed for their accura-
cy by comparing measured ground plot values to model esti-
mates. 

Materials and Methods 
Project Site 

The project site consists of 19,904 acres on the Malheur Na-
tional Forest, located in the Blue Mountains of eastern Oregon 
(Figure 1), called the Damon project site.  
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Figure 1. 
LiDAR datasets on the Malheur National Forest. 

Airborne LiDAR Scanner  
The LiDAR data were collected during the fall of 2007 by 

Watershed Sciences, Inc. The LiDAR was acquired with a Lei-
ca ALS50 Phase II device mounted on a Cessna Caravan 208B. 
The scan angle was ±14˚ from nadir with an intended pulse 
density of ≥4 pulse per square meter. The Leica ALS50 Phase 
II laser system is designed for up to four returns per pulse, and 
all laser returns were processed for the dataset. The actual pulse 
density was 6 pulses per square meter for the Damon site. 

Ground Data 
We had field data from three sources. Previously collected 

ground data consisted of United States Forest Service (USDA 
FS) stand exams from 2008 and current vegetation survey 
(CVS) plots measured between 1998 and 2007 (US Forest Ser-
vice). The stand exams and CVS plots were grown forward to 
2009 with the Forest Vegetation Software (FVS) for the Blue 
Mountain region (Keyser & Dixon, 2008). Eight additional 
cluster plots were measured during the summer of 2009 (Table 
1).  

The USDA FS stand exam data consist of 98 plots that were 
measured in the summer of 2008. Stand Exam plots are a nested 
plot design that consists of a variable radius plot for large trees 
and fixed radius plots for small trees and seedlings. A profes-
sional forester from the USDA FS went back and re-measured 
the plot so that a 1/10th acre fixed plot was used for the large 
trees, instead of the previously measured variable radius plot 
design. These data were analyzed internally by the Forest Ser-
vice within their plot compiler.  

Table 1.  
Number of plots in Damon site. 

Source Number of Plots 

USFS Current Vegetation System 10 

USFS Stand Exams 98 

Summer 2009 8 

 
CVS plot data were supplied by the USDA FS. CVS are 

permanent forest inventory plots in Region 6 (Pacific North-
west) of the USDA FS. Each plot is re-measured once every ten 
years. Within this study site, CVS plots are on a 1.7 mile sys-
tematic grid. The plots consist of a 2.47-acre circular plot with 
5 sub-plots. Each sub-plot is a set of 3 plots: 1) 1/5.3-acre plot, 
2) 1/24-acre plot, and 3) 1/100-acre plot. Each plot has set cri-
teria for which data should be collected and recorded, including 
live and dead tree measurements, down woody debris, shrub 
and understory components, and general geographical and slope 
position information of the plot (US Forest Service, 2001).  

Recent research has shown that stratifying the landscape us-
ing LiDAR data is an efficient and effective way to group the 
landscape into similar forest type and structure for further anal-
ysis (Sullivan, 2008; Koch et al., 2009; Mustonen et al., 2008). 
Accordingly, forested stands were delineated using differences 
in height and canopy closure characteristics. Percent canopy 
closure, 25th and 75th height percentiles were used following the 
process outlined by Sullivan (2008), stand delineations were 
created using two software packages, FUSION (McGaughey, 
2009) and Spring (Câmara et al., 1996). The latter is a user- 
based classification software package. For this study, the stand 
density index (SDI) of forest service stand exam plots measured 
in 2006 was used for the training data of the user-based classi-
fication process. 

The 8 cluster plots measured during the summer of 2009 
consisted of a linear cluster (CLUS) of plots of four rectangular 
fixed radius subplots. Moisen et al. (1994) showed that linear 
clusters of plots was a cost efficient way of distributing forest 
inventory plots for assessing map accuracy, while accounting 
for spatial autocorrelation. The advantage of using a CLUS 
design is less cost in traveling to each plot as compared to a 
random design, while the disadvantage for CLUS is that there is 
more potential for spatial autocorrelation. Due to availability of 
previously collected inventory data we opted to use the cluster 
design to sample more ground area with our limited resources 
without sacrificing the total number of plot estimates. Our li-
near clusters consisted of four 1/10-acre rectangular fixed area 
plots. In order to assure a random sample, a grid of 1/10-acre 
plots was placed over the project area and a random location 
was selected based on the plot allocation information previous-
ly computed. The other three plots were located by obtaining a 
random azimuth in one of the four cardinal directions, from the 
first plot center, and installing the three additional plots in a 
linear fashion. 

Each tree in a plot was measured for diameter-at-breast 
height (DBH), species, and crown dominance (dominant, 
co-dominant, intermediate, or over-topped). A tree was meas-
ured if it was 4.5 feet tall or larger. The first, third and fifth tree 
per species per plot were measured for height, crown diameter, 
and crown ratio. Crown diameter was measured by taking a 
random azimuth and measuring the diameter of the crown at 

OPEN ACCESS 44 



D. GAGLIASSO  ET  AL. 

that azimuth, then taking the diameter of the crown perpendi-
cular to the first measurement and averaging the two. Dead 
trees and snags, greater than five inches DBH were measured 
for DBH and height. All trees with broken tops were measured 
for height. 

Ground data were collected on a TDS Ranger handheld 
computer, with the USDA FS Stand Exam software. Missing 
heights were estimated with localized height-diameter equa-
tions for the Blue Mountains as described in stand exam proto-
cols (USDA FS, 2001).  

Data Compilation 
Total standing tree woody biomass (tons per acre) was esti-

mated for each ground inventory plot. In this study, standing 
tree woody biomass is defined as the biomass of the bole, bark, 
and branches of the all standing dead and live trees that are 
greater than or equal to 4.5 feet tall. Volume and biomass esti-
mates were calculated using the USDA FS Forest Inventory 
Analysis (FIA) equations cubic volume, including top and 
stump, and biomass equations for the Blue Mountains (US DA 
FS 2001). All results found in this study assume that the USDA 
FS FIA equations are true and that the underlying assumptions 
of the volume and biomass models are applicable to this study 
area.  

LiDAR data were processed with FUSION (McGaughey, 
2009). Raw LiDAR data files were clipped to each individual 
ground inventory plot and attributes such as a digital elevation 
model (DEM), height percentiles, and their variances were 
obtained. Additionally, using the GridMetrics batch processing 
tool these same estimates were obtained for all other areas 
within the study area. Percent cover, percent slope, aspect, and 
elevation of each plot were found using the LiDAR derived 
DEM. 

Landsat Thematic Mapper (TM) data was downloaded from 
the United States Geological Survey Global Visualization 
(GloVis) website for the entire project area. The normalized 
difference vegetation index (ndvi) was calculated using bands 
three and four. 

Climate data from the DAYMET website (Thornton, 2003) 
was downloaded for the entire project area. Variables of interest 
consisted of: average daily maximum temperature, average 
daily minimum temperature, average temperature, number of 
growing degree days, number of frost days, and total precipita-
tion. All variables were merged into one large table on a 20 × 
20 meter pixel grid. Additionally, each of the ground inventory 
plots was added as separate rows to the table. 

Statistical Analysis 
For this study, explanatory variables were determined for the 

nearest neighbor imputations and geographic weighted regres-
sion, by implementing an all subsets stepwise regression tech-
nique, as outlined by Goerndt et al. (2010), using the regsub-
sets() function within the leaps package (R Development Core 
Team, 2011). This tool returns the best fitting linear models 
according to the Bayesian information criteria (BIC).  

Using the eight independent variables found by the best fit-
ting linear model, a geographic weighted regression (GWR) 
model was fit using the gwr tool within the spgwr R-package. 
Before a back transformation of the natural log biomass esti-
mate was performed, a bias-correction factor of 0.5 times the 
mean square error was added to the estimates (Baskerville, 

1972; Goerndt et al., 2010). Most similar neighbor (MSN), 
gradient nearest neighbor (GNN), k-nearest neighbor (k-MSN), 
and random forest (RF) were performed using the yai and im-
pute tools within the yaImpute (Crookston & Finley, 2008) 
R-package. 

Each model was assessed using the 116 plots located within 
the study area. We used root mean square error (RMSE) and 
bias to evaluate the models. These values were estimated using 
a leave one out plot cross-validation. The root mean square 
error (Equation (1)) and bias (Equation (2)) were calculated 
using the following: 
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where Yi is the observed value, îY  is the imputed estimate, 
and n is the sample size (number of plots). 

Results  
The best linear model, for estimating biomass (tons per acre) 

on a plot included the following explanatory variables: the 
minimum value from the LiDAR height percentile profile 
(Min_Elev), 80th percentile value of the height profile from the 
LiDAR data (P80), the longitudinal location of the plot 
(UTM_Y), the reflective property value of Landsat TM band 2 
(LandsatB2), Normalized Difference Vegetation Index (ndvi), 
18-year average daily minimum temperature (MinTemp), 
18-year average of the number of growing degree days (Deg-
Day), and the 18-year average of the annual precipitation (Tot-
Precip). The results of this linear model can be seen in Table 
2.  

The best fitting linear model, for estimating basal area per 
acre included the following variables: the standard deviation of 
all LiDAR returns on the plot (StdDev), the 95th percentile val-
ue of the height profile from the LiDAR data (P95), and the 
reflective property value from Landsat TM band 5 (LandsatB5). 
The results from this linear model can be seen in Table 3. 

The inventory plots ranged in cover type, from non-forest 
meadows, to highly dense pine forests. Biomass measured on 
the inventory plots ranged from zero tons per acre to 103.7 tons 
per acre, with a standard deviation of 15.9 tons per acre. The 
basal area of the inventory plots ranged from zero square feet 
per acre to 248.7 square feet per acre, with a standard deviation 
of 55.6 square feet per acre (Table 4). 

Nearest neighbor imputations rely on explanatory variables 
being correlated with the response variables. Thus, the higher 
the correlation coefficient the better the imputation model 
should perform. The highest correlation between the predictor 
variables and biomass per acre comes from the LiDAR derived 
P80 variable, a correlation coefficient of 0.44 (Table 5). 

The highest coefficient in the basal area prediction methods 
was the P95 variable, correlation coefficient of 0.69 (Table 6).  

The RMSE and bias for the nearest neighbor and OLS re-
gressions for biomass (tons per acre) and basal area (square feet 
per acre) models are reported in Tables 7 and 8, respectively.  

For the biomass prediction, the k-MSN, k = 5, has the lowest 
RMSE and least amount of bias. The second most accurate 
method consisted of the k-MSN, k = 3, followed by the GWR 
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model and the RF imputation. The GNN method was the least 
accurate (Table 7). For basal area prediction, the GWR model 
has the lowest RMSE and the least amount of bias. The second 

most accurate method was k-MSN, k = 5, followed by the 
k-MSN, k = 3 and then random forest. The GNN method was 
again the least accurate (Table 8). 

 
Table 2.  
Coefficients and standard errors for linear regression model for ln(biomass) in tons per acre. 

80th percentile value from the LiDAR height profile 0.0525 0.0165 

UTM northing −0.0003 0.0000 

Reflective property of Landsat TM band 2 −0.1705 0.0411 

Normalized Difference Vegetation Index −6.382 1.359 

18 year average of the daily minimum temperature 5.052 0.2276 

18 year average of the number of growing degree days 0.0329 0.0049 

18 year average of the annual precipitation 1.231 0.1741 

 
Table 3. 
Coefficient and standard errors for linear regression model for basal area (ft2 per acre). 

Variable Coefficient SE 

Intercept 50.12 22.32 

Standard deviation of all LiDAR returns on the plot −27.79 5.212 

95th percentile value from the LiDAR height profile 11.88 1.634 

Reflective property of Landsat TM band 5 −0.7082 0.1908 

 
Table 4. 
Basic statistics of explanatory and response variables1. 

Biomass (tons per acre) Explanatory variables 

units Min_Elev 
meters P80 meters UTM_Y LandsatB2 µm ndvi MinTemp  

celsius 
DegDay  

degree days TotPrecip cm 

Minimum 1.00 0.00 4882625.7 23.0 0.2 −4.2 1895.7 46.2 

Maximum 4.42 33.9 4901661.6 39.0 0.7 −2.2 2541.2 64.5 

Mean 1.14 14.5 4890903.5 27.8 0.4 −2.9 2298.9 54.0 

Median 1.02 14.8 4888069.0 27.0 0.4 −2.8 2312.5 53.9 

Standard Deviation 0.38 6.34 6759.8 3.5 0.1 0.5 168.0 4.2 

     Basal Area Explanatory Variables  

 units Biomass  
tons per acre 

Basal Area square  
feet per acre StdDev meters P95 meters LandsatB5 µm  

  Minimum 0.0 0.0 0.0 0.0 47.0  

  Maximum 103.7 248.7 13.6 42.6 134.0  

  Mean 8.9 79.3 4.7 18.2 80.0  

  Median 2.9 77.1 4.4 18.2 75.0  

  Standard  
Deviation 15.9 55.6 2.3 7.7 19.8  

1Min_Elev = Minimum value of the LiDAR percentile height profile. P80 = 80th percentile of the LiDAR height profile. UTM_Y = UTM northing coordinate. LandsatB2 = 
reflective property of Landsat TM band 2. Ndvi = normalized difference vegetation index. MinTemp = 18-year average of the minimum temperature. DegDay = 18 year 
average of the number of degree days. TotPrecip = 18-year average of the annual precipitation. StdDev = standard deviation of all LiDAR values on the plot. P95 = 95th 
percentile of the LiDAR height profile. LandsatB5 = reflective property of Landsat TM band 5. 
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Table 5. 
Correlation coefficients of biomass vs. selected predictor variables2. 

 ln_Biomass ln_BA Min_Elev P80 UTM_Y LandsatB2 ndvi MinTemp DegDay 

ln_BA 0.4339         

Min_Elev −0.2310 −0.0870        

P80 0.4368 0.5303 −0.0827       

UTM_Y −0.3135 −0.1858 0.1243 −0.2442      

LandsatB2 −0.3320 −0.4832 0.1873 −0.5834 0.4484     

ndvi −0.0516 0.1673 −0.0568 0.3494 −0.0614 −0.5555    

MinTemp 0.0321 −0.0374 0.2089 −0.0473 0.4424 0.2309 −0.2012   

DegDay −0.1544 −0.0488 0.1485 −0.1336 0.4563 0.1331 −0.1158 0.5835  

TotPrecip 0.1158 −0.0064 −0.1164 0.0742 −0.1848 0.0158 0.1085 −0.4904 −0.9529 

2Min_Elev = Minimum value of the LiDAR percentile height profile. P80 = 80th percentile of the LiDAR height profile. UTM_Y = UTM northing coordinate. LandsatB2 = 
reflective property of Landsat TM band 2. Ndvi = normalized difference vegetation index. MinTemp = 18-year average of the minimum temperature. DegDay = 18 year 
average of the number of degree days. TotPrecip = 18-year average of the annual precipitation. 
 
Table 6. 
Correlation Coefficients of basal area vs. selected predictor variables. 

 Biomass per acre Basal area per acre Standard Deviation of  
LiDAR returns 

95th percentile value of  
LiDAR height profile 

Basal area per acre 0.4372    

Standard Deviation of LiDAR returns 0.1691 0.5749   

95th percentile value of  
LiDAR height profile 0.1883 0.6870 0.9651  

Reflective property of  
Landsat TM band 5 −0.2282 −0.6225 −0.4757 −0.5477 

 
Table 7. 
RMSE and bias for estimating biomass (tons/acre) by selected method. 

Model RMSE Bias 

Linear regression 12.7 −2.41 

Geographic Weighted Regression 11.6 −0.67 

Gradient Nearest Neighbor 16.31 −0.008 

Most Similar Neighbor 13.96 −0.08 

Random Forest 12.22 −1.87 

k-MSN (k = 3) 11.53 0.24 

k-MSN (k = 5) 11.24 −0.004 

Discussion  
Substantial differences were found among the predictive ab-

ilities of the strategies examined to predict forest biomass and 
basal area. As a result, the seemingly divergent parametric and 
non-parametric approaches resulted in different predictions. 
GWR outperformed the other methods in terms of accuracy and 
precision when predicting basal area per acre. This might be 
ascribed to GWR’s ability to localize the relation between the 
response variable and covariate in both the geographical and 
feature and variable space. 

Table 8. 
RMSE and bias for estimating basal area (ft2/acre) by selected method. 

Model RMSE Bias 

Linear regression 33.15 0.0029 

Geographic Weighted Regression 33.08 0.0082 

Gradient Nearest Neighbor 58.65 −4.79 

Most Similar Neighbor 50.99 0.13 

Random Forest 39.03 2.82 

k-MSN (k = 3) 39.02 0.67 

k-MSN (k = 5) 38.62 0.71 

 
Possible reasons for GNN performing poorly, compared to 

the other methods, include the small size of the project site 
compared to previous uses of the GNN method (Ohmann & 
Gregory, 2002) and the explanatory variables’ lack of high 
correlation with the response variables. The GWR method may 
perform better than the non-parametric approaches due to only 
predicting one response variable, biomass. In contrast, the 
nearest neighbor methods are predicting both biomass and basal 
area simultaneously. Therefore, GWR may be sufficient for the 
estimation of biomass per acre if that is the only variable of 
interest; while, the nearest neighbor imputations are preferred 
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when multiple response variables of interest are present in the 
analysis. When predicting a single variable, Eskelson et al. 
(2009b) reported that parametric methods resulted in better 
performance than non-parametric methods. 

The results of this study suggest that the current method be-
ing used to implement forest management activities on the 
Malheur National Forest, MSN, may not be the best method to 
predict total standing tree woody biomass. Instead, the k-MSN 
or RF method may be preferable, particularly if multiple re-
sponse variables are important to consider. In contrast, if users 
are only interested in a single response variable, total standing 
tree biomass, GWR appears more suitable. 
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