
Journal of Water Resource and Protection, 2011, 3, 192-198 
doi:10.4236/jwarp.2011.33025 Published Online March 2011 (http://www.scirp.org/journal/jwarp) 

Copyright © 2011 SciRes.                                                                               JWARP 

Finite Difference Method of Modelling Groundwater Flow 

Magnus. U. Igboekwe*, N. J. Achi 
Department of Physics, Michael Okpara University of Agriculture, 

Umuahia, Nigeria 
E-mail: igboekwemu@yahoo.com 

Received Janaury 1, 2011; revised February 8, 2011; accepted March 2, 2011 

Abstract 

In this study, finite difference method is used to solve the equations that govern groundwater flow to obtain 
flow rates, flow direction and hydraulic heads through an aquifer. The aim therefore is to discuss the princi-
ples of Finite Difference Method and its applications in groundwater modelling. To achieve this, a rectangu-
lar grid is overlain an aquifer in order to obtain an exact solution. Initial and boundary conditions are then 
determined. By discretizing the system into grids and cells that are small compared to the entire aquifer, ex-
act solutions are obtained. A flow chart of the computational algorithm for particle tracking is also developed. 
Results show that under a steady-state flow with no recharge, pathlines coincide with streamlines. It is also 
found that the accuracy of the numerical solution by Finite Difference Method is largely dependent on initial 
particle distribution and number of particles assigned to a cell. It is therefore concluded that Finite Difference 
Method can be used to predict the future direction of flow and particle location within a simulation domain. 
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1. Introduction 
 
Groundwater models are mathematical models derived 
from Darcy’s law which is used to calculate the rate and 
movement of groundwater through the aquifer and con-
fining units in the sub-surface [1]. Ground-water models 
which can also be used to evaluate impact assessment 
required for water in a regulated aquifer system has been 
of importance to agriculturists, environmentalists, hydro-  
logists etc. It is necessary to study the groundwater re-
source potentials of a site because the simulation of 
groundwater flow requires a thorough knowledge and 
understanding of hydrogeologic characteristics of the 
site.  

Groundwater models are used as tools for decision 
making in the management of a water resource system. 
They may also be used to predict some future ground-
water flow. Some of the established solution techniques 
available for solving the governing equations of the 
model are Finite Difference and Finite Element ap-
proximation or a combination of both provided that 
model parameters and initial and boundary conditions are 
properly specified. The numerical solution applied in this 
research work is the finite difference method. This is an 
old method made more useful with the advent of high 

speed computers (digital computers). This method is an 
approach to computational fluid dynamics (CFD) and 
very effective in groundwater flow modelling. Ground-
water is an important resource in so many areas for its 
use as a source of drinking water and irrigation water. In 
many areas, groundwater is threatened by leaching of 
pesticides and other agricultural chemicals and the 
leaching of industrial chemicals from hazardous-waste 
sites. Because of the importance of this resource, and 
because the degradation of groundwater cannot be easily 
reversed, the assessment of threat to groundwater quality 
from human activities is often required. So groundwater 
models are increasingly used as part of this assessment. 
The major aim of this research work is to discuss the 
principles of Finite Difference Method and its applica-
tion in groundwater modeling 

The word model is simply a representation of a real 
system or process. But model has variety of definitions 
that it is often difficult to define [2]. 

A model is a hypothesis for how a system or process 
operates. These models in use today are deterministic 
mathematical models that are based on conservation of 
mass, momentum and energy. Modelling is the process 
by which a physical system is simplified to obtain a ma-
thematically tractable situation. The resulting simplified 
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version of the real system is called model of the system 
or a mathematical model [3]. 

Numerical modelling of groundwater is a relatively 
new field. It was not extensively pursued until the 
mid-1960s when digital computers with adequate capac-
ity became generally available. Since then, significant 
progress has been made in the development and applica-
tion of such techniques to groundwater flow. 

Numerical models are used in groundwater modelling 
because it yields approximate solutions to the governing 
equations through the discretization of space and time. It 
helps in assessing the impact of pollution on an aquifer.  

Groundwater models generally require the solution of 
partial differential equations. The equations describing 
the groundwater flows are second order partial differen-
tial equations which can be classified on the basis of 
their mathematical properties. There are basically three 
types of second order partial differential equations: pa-
rabolic, hyperbolic and elliptic equations [4,5]. 

The two main types of numerical models that are ac-
cepted for solving the groundwater equations are the 
Finite Difference Method and the Finite Element Method 
presented by [6,7]. Both of these numerical approaches 
require that the aquifer be sub-divided into a grid and 
analyzing the flows associated within a single zone of the 
aquifer or nodal grid.  

The equation describing the groundwater flow is a 
Partial Differential Equation. It can be solved mathe-
matically by analytic or numerical solutions. But analytic 
solutions are very difficult to apply because it requires 
that parameter and boundaries should be highly idealized. 
The advantages of analytical solution, if it is possible to 
apply, are that it yields an exact solution to the equation 
and it is simple and efficient to obtain. Many of them 
have been developed for the flow equations, but most of 
them are limited to well hydraulics problems [8]. The 
continuous variable is replaced by discrete variables that 
are defined at grid blocks. Also the continuous differen-
tial equations which define the hydraulic head in the 
system, is replaced by a finite number of head at differ-
ent grids [9]. 

A common method for solution of this equation in civ-
il engineering and soil mechanics is to use the graphical 
techniques of drawing flow nets, where contours of hy-
draulic head and the stream function make a curvilinear 
grid, allowing complex geometries to be solved ap-
proximately. 

The groundwater flow equation is the mathematical 
relationship which is used to describe the flow of 
groundwater through an aquifer [6]. In the study of 
groundwater flow equation, one may discuss about tran-
sient flows and steady state flows. The transient flow 
which is described by a form of diffusion equation simi-
lar to that used in heat transfer to describe heat conduc-

tion is the change in flow condition from one steady-state 
to another. The steady-state flow is described by a form 
of Laplace equation. It is a flow in which all conditions 
(velocity, pressure, etc) remain constant with respect to 
time. The groundwater flow equation is often derived for 
a small representative elemental volume where the prop-
erties of the medium are assumed to be effectively con-
stant. A mass balance is obtained on the water flowing in 
and out of this small volume along with Darcy’s law to 
arrive at the transient groundwater flow equation.  
The flow equation is based on the continuity equation  
[10]: 

Inflow – Outflow = change of storage.    (1) 

For a small portion of an aquifer it can be restated as: 
Subsurface sum + net flow= change in storage  (2) 

Combining Darcy’s law with this continuity equation 
yields the general form of the equation describing the 
transient flow 

s

h
S q

t


G   


              (3) 

where Ss = specific storage 
q = flux 
h = Hydraulic head 
t = time 

The statement indicates that the change in hydraulic 
head with time equals the negative divergence of the flux 
(q) and the source (G). 

Here the head and flux are unknown but Darcy’s law 
relates the flux to the head by substituting it in the flux, 
that is 

 s

h
S K h

t


G     


          (4) 

 

where G = external flow 
K = hydraulic conductivity 
Simplifying this we have 

s

h
S K h

t


G    


2               (5) 

if K is replaced by it’s equivalent T, Equation (5) can be 
written as 

s xx yy

zz

h h
S T T

t x x y y

h
T G

z z

 h               
      

            

         (6) 

where: T = transmissivity 
A steady-state may be reached if the aquifer has re-

charging boundary conditions (or it may be used as an 
approximation in many cases). The equation describing 
this flow is a form of the Laplacian equation given as 

2 0h                     (7) 

This equation states that hydraulic head is a harmonic 
function and has many analogs in other fields. The equa-
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tion above can be rewritten as 

2 2 2

2 2 2
0

h h h

x y z

  
  

     
             (8) 

The above groundwater flow equations are valid for 
three dimensional flow. 

We also have two dimensional groundwater flow and 
the general governing equation is given by 

                 
x y

h h
K b K b G S

s

h

x x y y t
      (9) 

where k = hydraulic conductivity 
b = saturated thickness 
But, Kb = T, therefore: 

                  
x y

h h
T T G Ss

h

x x y y t
       (10) 

In finite difference form, eqn.10 can be expressed as: 

J+I J +I J +I J+I JiB B B
iB B B B B B B

iB

W A S
T h h A G h h

L t
       (11) 

where Wi and Li are boundary width and flow path 
length. 

A = Area of a single zone. 
Groundwater velocity is based on hydraulic conduc-

tivity (k), as well as the hydraulic gradient (I). Therefore 
the equation determined by Darcy to describe the basic 
relationship between sub-surface material and the 
movement of water through them is 

Q = KIA                 (12) 
where Q = volumetric flow rate (Discharge) 

K = Hydraulic conductivity 
A = Area that the groundwater is flowing through 

This relationship is known as Darcy’s law [11]. 
Rearranging Equation (12) we obtain the flux (V) 

which is known as the apparent velocity. 
That is: 

 
Q

KI V
A

                 (13) 

where V = Apparent velocity, m / sec 
The actual groundwater velocity which is called the 

Darcy’s flux (Vx) is given by 

 x

Q KI
V

A n
                (14) 

where Vx = Actual velocity m / sec 
n = Porosity 

This is the actual velocity of groundwater and does 
account for tortuosity of flow paths by including porosity 
in its calculation. 

The Finite Difference Method is a computational pro-
cedure based on dividing an aquifer into a grid (see Fig-
ure 1) and analysing the flows associated within a single 

zone of the aquifer [12]. It utilizes a time distance grid of 
nodes and a truncated Taylor series approach to deter-
mine the condition of flow at any particular node. A brief 
coverage of the application of Taylor Series and nodal 
grid will illustrate several points fundamental to flow 
simulation. 

The flow at time t, the profile of variable y with x may 
be described by a truncated Taylor Series given as 

     

   

1
0 0 0

2 3
11 111

0 02! 3!

x xY x y x y x

x x
y x y x

    

 
                      

    (15) 

The value at x of node i is x0 and the + notation in eq-
uation 15 allows it to be used in forward or backward 
difference approach. 

The forward difference first order is 

    1
0 0Y x y x x y x    0           (16) 

The backward difference first order is 

    1
0 0Y x y x x y x   0           (17) 

The summation of forward or backward difference 
also yields a central difference expression for the first 
order derivative of variable y at x0. 
The central difference first order 

  1
0 0 0,

2

x
Y x y x i j y x x

x

         
     (18) 

In computer notation, these equations (16-18) can be 
re-written as 

 1 1i+ i
i

u u
u x

h


  

 1 1i i
i

u u
u x

h

 
  

 1 1 1

2
i

i

u u
u x

h
  

  

 

Figure 1. Computer notation for finite difference grid. 
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If there is recharge to the aquifer, a more useful result 
is the summation of the second order forward or back-
ward difference forms of the truncated Taylor series to 
determine the second differential of variable y at x0 i.e. 

 11
2

2i i
i

u u
u x u

h


 +1

-1i            (19) 

A special notation is used to describe the positions of the 
node in the finite difference grids. 

In order to solve the groundwater flow equation we 
must be able to specify the initial and boundary condi-
tions. There are two basic types of boundary conditions. 
If the head is known at the boundary of the flow region, 
this is known as a “Drichlet condition”. Then if the flux 
across a boundary to the flow region is known, this is 
known as “Neumann condition”. For a steady-state 
problem, boundary conditions are required; whereas for a 
transient problem, boundary and initial conditions must 
be specified. But in some cases the boundary conditions 
will be mixed with some portions having known head 
and some portions having known flux [13].Initial condi-
tions and boundary conditions can be related to levels, 
pressure, and hydraulic head on the one hand (head con-
ditions), or to groundwater inflow and outflow on the 
other hand (flow conditions).As an example of boundary 
conditions, let us consider Figure 2 below. This is a sand 
and gravel aquifer overlying an impermeable basement 
rock. There are several flow regions present, each lead-
ing away from a groundwater divide towards a stream. 
The plane of W to X is a groundwater divide. There is no 
flow across the divide and the boundary condition along 
the divide is 

d
0

d

h

x
                   (20) 

The plane of Z to Y is the centre of the stream and it is 
also a groundwater divide, across which no flow takes 
place. The boundary condition here is also: 

d
0

d

h

y
                   (21) 

No flow occurs from the sand deposit into the imperme-
able bedrock, so along the X to Y plane there is no flow 
and the boundary condition is 

d
0

d

h

z
                   (22) 

These three boundaries are Neumann boundaries where 
the flow conditions are specified. 
 
2. Methods 
 
A hypothetical site such as the one shown below (Figure 
3) is chosen. The domain is discretized into an irregular  

 
Figure 2. Boundary conditions for a cross section of a re-
gional aquifer. 
 
grid. Several different hydraulic heads and flux values 
are specified along the boundaries. A river enters the 
aquifer at the northern boundary and exits at the south. 
The production wells near the river withdraw water from 
the aquifer. Groundwater flow occurs mainly from the 
north to the south of the domain. The aquifer is hetero- 
 
 

 

Figure 3. Discretized domain of a hypothetical site showing 
wells and river source. 
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geneous and anisotropic. 

A finite difference grid is laid over an aquifer. It is a 
block centred finite difference grid where the node points 
fall in the centre of the grid. The grid parameters are: 

Number of the grid columns   43 
Number of grid rows         65 
Minimum i coordinate        0 
Minimum j coordinate        0 

The basic grid is regular, with the rows and columns 
being normal to each other. The rows and columns may 
be varied so that there are more node points in certain 
parts of the aquifer than others. But this is desirable in 
the area around a well field. 

For unconfined aquifers the saturated thickness bij is a 
function of the hydraulic heads. A priori both the hy-
draulic heads and the saturated thickness are unknown. 
Mathematically, this leads to non-linear behaviour. An 
initial guess for the saturated thickness is required in 
order to estimate the aquifer transmissivities Txxi,j and 
Tyyi,j. An iterative scheme must be used to calculate the 
hydraulic head distribution, update the transmissivities 
and check if the discrepancy between the previously es-
timated saturated thickness and the updated one is great-
er than a specific tolerance i.e. 

New old 

, ,

max min

i j j ih h

h h

 
  

 > toleranc            (23) 

The directional transmissivities between adjacent 
nodes: Txxi + ½j, Tyyi, j + ½ are calculated by multiplying 
harmonic mean of hydraulic conductivities and geomet-
ric mean of saturated thickness [14]. 

   
  

1 2 xx 1 2 1, 1,

1 2 1 2 1 1

xxi j i j i j i j i, j ijj

yy j yyi j i, j i, j i, j ijj

T K h BT h BT

T K h BT h BT

   

   

   

   

 (24) 

where BTi, j = aquifer bottom elevation at node i, j 
Kxxi + ½j, Kyyi + ½j = Hydraulic conductivities between 
blocks i, j and i+1, j . 
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1
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1
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

   

   


   

,

,

     (25) 

There are two different types of velocity vectors 
(a) Nodal velocities 
(b) Boundary velocities 
Boundary velocities are calculated directly from Darcy’s 

law using the hydraulic head difference and material 
properties between two nodes, whereas the nodal veloci-
ties are interpolated values at the grid nodes. The inter-

nodal components of the Darcy’s flux qx and qy are ob-
tained by differentiation of the calculated hydraulic 
heads. 

 

 

1,

1 2, 1 2,

1,

1 2, 1 2,

, 1 2

, 1 2

i j ij

xi j xxi j

i j ij

yi j yyi j
i

h h
q K

xi j

h h
q K

y j


 


 




 


 
  

         (26) 

where, xi+ ½,j, yi,j + ½ = distance between nodes i, j and i +1, 
j and nodes i, j and i, j +1 respectively Kxxi + ½,j, Kyyi + ½, j = 
Hydraulic conductivities between i + i, j at x direction 
and nodes i, j and i, j +1 at y direction respectively These 
values are taken as the weighted harmonic mean between 
the hydraulic conductivities. 
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x x K K
K

x K x
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K
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







     (27) 

From the Darcy’s fluxes the pore velocities are calcu-
lated as: 

1 2,
1 2,

1 2,

1 2,
, 1 2

, 1 2

i j
xxi j

i j

i j
yyi j

i j

qx
V

n

qy
V

n












 



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

               (28) 

where 
ni + ½,j, ni,j + ½ = effective porosities between nodes i, j and 
i+1, j; and nodes i, j and i, j + 1 respectively. These 
values are taken as the weighted arithmetic mean be-
tween the porosities of adjacent blocks. 

1, 1
1 2

1

1 1
1 2

1

x
ij i, j i j i+ , j

i+ , j
i, j i+ , j

ij i, j i+ , j i+ , j
i, j+

i, j i+ , j

n x n x
n

x

n y n y
n

y y

   
    

       

         (29) 

Particle tracking provides a clearer description of 
groundwater flow within an aquifer. In steady-state flow 
field with no recharge, pathline (particle trace) coincides 
with streamlines. The two dimensional equation of path-
lines is given by: 

   0 0, ,P x y P x y v t   d           (30) 

where 
P = Vector containing the x, y coordinates of the path-
line. 
P(xo,yo) = The starting point of the pathline (initial con-
dition). 
V = Average linear velocity 
t = Time 
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Equation 30 is written in discretized form as an explicit 
time stepping scheme 

Δ Δt t t xtX + = X V t  

Δ Δt t t ytY + = Y V t  

where 
Δt = time increment, Vxt, Vyt, are the upstream compo-
nents of the average linear velocity of the current particle 
locations at time t. 

In this scheme, a set of uniformly distributed particles 
is assigned to each calculation cell. With each time step, 
every particle is moved to a new location based on ve-
locity of the particle in the x and y directions. The veloc-
ity component at particle location is to be obtained from 
iterative scheme. In this scheme the particle representa-
tive area is assigned to each particle by dividing the cell 
into a set of equal number of squared sub cells with each 
particle at its centre. 

The temporal weighted velocity is to be obtained by 
fourth order classical Runge Kutta method [15]. 

A weighted velocity is based on its values evaluated at 
four points in time, and then it is used to move the parti-
cle to a new direction. 

Figure 4 shows the particle tracking algorithm. The 
aquifer is discretized using equally sized calculation cells. 
In the particle tracking scheme, one particle per cell is 
used. 
 
3. Results and Discussion 
 
The hydrodynamics of groundwater flow in a hypotheti-
cal aquifer chosen for this study has been found to de-
pend mainly on the surface water flow within the site. 
The surface water flow is from north to south. So also is 
the groundwater. The aquifer is heterogeneous and ani-
sotropic. 

In the limiting case of a model calculation of an infi-
nitely small grid space, the solution approaches the exact 
solution. Nodal and boundary velocities are calculated as 
the weighted harmonic mean between hydraulic conduc-
tivities and the arithmetic mean of the porosities of adja-
cent blocks. Initial and boundary conditions are used to 
specify the flow condition. 

A numerical problem had been taken which allows the 
testing of numerical modelling technique called Finite 
Difference Method for the simulation of groundwater 
flow. 

The region is bounded by two no flow boundaries as 
show in Figure 2. The aquifer is discretized using equa-  
lly sized 2 x 2 calculation cells. In the scheme, one parti-
cle per cell is used. 

Results from the flow chart of a particle tracking algo-
rithm show that in a steady-state field with no recharge, 
pathlines coincide with streamlines. This means that the 

velocity component at particle location is obtained from 
iterative schemes.  

It is also found that the accuracy of the numerical so-
lution by Finite Difference Method is largely dependent 
on initial particle distribution and number of particles 
assigned to a cell. This scheme provides improved accu-
racy over interpolation scheme especially for block het-
erogeneous aquifer but with increased computational 
efforts. 

4. Conclusions 

Numerical modelling has found interesting application in 
groundwater flow and transport since the mid-1960 s, 
when digital computers with adequate capacity became 
generally available. The need for a numerical model 
cannot be over emphasized since analytical models as- 
sume a homogenous aquifer. 

 

 

Figure 4. Flowchart of the computational algorithm for 
particle tracking. 
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The numerical method applied in this study is the Fi-

nite Difference Method, which in its simplicity provides 
necessary aids in finding solution to groundwater prob-
lems.  

The finite difference grid overlain over the aquifer 
improves the accuracy in the calculation of flow rate and 
direction. It is also an advantage in particle tracking 
within the aquifer domain. The modelling studies have 
been carried out in a hypothetical site with the aim of 
determining rate and direction of flow of groundwater 
through an aquifer domain. The domain is discretized 
with boundary conditions considered for easy calcula-
tions. 

In the flow model it was observed that water flows 
from region of high hydraulic head to region of low hy-
draulic head and that an exact solution could be obtained 
if the grid spacing is small enough say 5 cm. Results 
show that in a steady-state flow field with no recharge, 
pathlines coincide with streamlines. It is therefore con-
cluded that Finite Difference Method can be used to pre-
dict the future direction of flow and particle location 
within a simulation domain. 
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